
Witnessing Purity, Constancy and Mutability

Ben Lippmeier

School of Computer Science
Australian National University
Ben.Lippmeier@anu.edu.au

Abstract. Restricting destructive update to values of a distinguished
reference type prevents functions from being polymorphic in the muta-
bility of their arguments. This restriction makes it easier to reason about
program behaviour during transformation, but the lack of polymorphism
reduces the expressiveness of the language. We present a System-F style
core language that uses dependently kinded proof witnesses to encode
information about the mutability of values and the purity of computa-
tions. We support mixed strict and lazy evaluation, and use our type
system to ensure that only computations without visible side effects are
suspended.

1 Introduction

Suppose we are writing a library that provides a useful data structure such as
linked lists. A Haskell-style definition for the list type would be:

data List a = Nil | Cons a (List a)

The core language of compilers such as GHC is based around System-F [15].
Here is the translation of the standard map function to this representation,
complete with type abstractions and applications:

map :: ∀a b. (a → b) → List a → List b
map = Λa. Λb. λ(f : a → b). λ(list : List a).

case list of

Nil → Nil b
Cons x xs→ Cons b (f x) (map a b f xs)

Say we went on to define some other useful list functions, and then decided
that we need one to destructively insert a new element into the middle of a list.
In Haskell, side effects are carefully controlled and we would need to introduce
a monad such as ST or IO [8] to encapsulate the effects due to the update.
Destructive update is also limited to distinguished types such as STRef and
IORef . We cannot use our previous list type, so will instead change it to use an
IORef .

data List a = Nil | Cons a (IORef (List a))

Unfortunately, as we have changed the structure of our original data type, we
can no longer use the previous definition of map, or any other functions we de-
fined earlier. We must go back and refactor each of these function definitions to
use the new type. We must insert calls to readIORef and use monadic sequencing
combinators instead of vanilla let and where-expressions. However, doing so in-
troduces explicit data dependencies into the core program. This in turn reduces
the compiler’s ability to perform optimisations such as deforestation and the
full laziness transform [6], which require functions to be written in the “pure”,
non-monadic style. It appears that we need two versions of our list structure
and its associated functions, an immutable version that can be optimised, and
a mutable one that can be updated.

Variations of this problem are also present in ML and O’Caml. In ML, mu-
tability is restricted to ref and array types [11]. In O’Caml, record types can
have mutable fields, but variant types cannot [9]. Similarly to Haskell, in these
languages we are forced to insert explicit reference types into the definitions
of mutable data structures, which makes them incompatible with the standard
immutable ones. This paper shows how to avoid this problem:

– We present a System-F style core language that uses region and effect typing
to guide program optimisation. Optimisations that depend on purity can be
performed on the the pure fragments of the program.

– We use region variables and dependently kinded witnesses to encode mu-
tability polymorphism. This allows arbitrary data structures to be mutable
without changing the structure of their value types.

– We use call-by-value evaluation as default, but support lazy evaluation via a
primitive suspend operator. We use witnesses of purity to ensure that only
pure function applications can be suspended.

Our goals are similar to those of Benton and Kennedy [3], but as in [15] we
use a System-F based core language instead of a monadic one. Type inference
and translation from source to core is discussed in [10].

2 Regions, Effects and Mutability Constraints

In Haskell and ML, references and arrays are distinguished values, and are the
only ones capable of being destructively updated. This means that the structure
of mutable data is necessarily different from the structure of constant data, which
makes it difficult to write polymorphic functions that act on both. For example,
if we use IORef Int as the type of a mutable integer and Int as the type of
a constant integer, then we would need readIORef to access the first, but not
the second. On the other hand, if we were to treat all data as mutable, then
every function would exhibit a side effect. This would prevent us from using
code-motion style optimisations that depend on purity.

Instead, we give integers the type Int r, where r is a region variable, and
constrain r to be mutable or constant as needed. Our use of region variables is

similar to that by Talpin and Jouvelot [16], where the variable r is a name for
a set of locations in the store where a run-time object may lie. We do not use
regions for controlling allocation as per [17], due to the difficulty of statically
determining when objects referenced by suspended computations can be safely
deallocated. We define region variables to have kind %, and use this symbol
because pictorially it is two circles separated by a line, a mnemonic for “this,
or that”. The kind of value types is *, so the Int type constructor has kind
Int :: % → ∗. The type of a literal integer such as ‘5’ is:

5 :: ∀(r : %). Int r

In our System-F style language, type application corresponds to instantiation,
and ‘5’ is the name of a function that allocates a new integer object into a given
region. Note that unlike [16] we do not use allocation effects. This prevents us
from optimising away some forms of duplicated computation, such as described
in §7 of [4], but also simplifies our type system. For the rest of this paper we will
elide explicit kind annotations on binders when they are clear from context.

2.1 Updating Integers

To update an integer we use the updateInt function which has type:

updateInt :: ∀r1 r2.Mutable r1 ⇒ Int r1 → Int r2

Read r2 ∨ Write r1−→ ()

This function reads the value of its second integer argument, and uses this to
overwrite the value of the first. As in [16] we annotate function types with their
latent effects. We organise effects as a lattice and collect atomic effects with the
∨ operator. We use ⊥ as the effect of a pure function, and unannotated function
arrows are taken to have this effect. We also use a set-like subtraction operator
where the effect σ \ σ′ contains the atomic effects that appear in σ but not σ′.
We use ! as the kind of effects, so Read has kind Read :: % → !. The symbol ! is
a mnemonic for “something’s happening!”.

Returning to the type of updateInt , Mutable r1 is a region constraint that
ensures that only mutable integers may be updated. When we call this function
we must pass a witness to the fact that this constraint is satisfied, a point we
will discuss further in §3.

When the number of atomic effects becomes large, using the above syntax
for effects becomes cumbersome. Due to this we sometimes write effect terms
after the body of the type instead:

updateInt :: ∀r1 r2.Mutable r1 ⇒ Int r1 → Int r2

e1−→ ()
⊲ e1 = Read r2 ∨ Write r1

The symbol ⊲ is pronounced “with”. Note that the effect variable e1 is not
quantified. It has been introduced for convenience only and is not a parameter
of the type.

2.2 Updating Algebraic Data

Along with primitive types such as Int , the definition of an algebraic data type
can also contain region variables. For example, we define our lists as follows:

data List r a = Nil | Cons a (List r a)

This definition is similar to the one from §1 except that we have also applied
the List constructor to a region variable. This variable identifies the region that
contains the list cells, and can be constrained to be constant or mutable as
needed. The definition also introduces data constructors that have the following
types:

Nil :: ∀r a. List r a
Cons :: ∀r a. a → List r a → List r a

In the type of Nil , the fact that r is quantified indicates that this constructor
allocates a new Nil object. Freshly allocated objects do not alias with existing
objects, so they can be taken to be in any region. On the other hand, in the type
of Cons, the type of the second argument and return value share the same region
variable r, which means the new cons-cell is allocated into the same region as
the existing cells. For example, evaluation of the following expression produces
the store objects shown below.

list :: List r5 (Int r6)
list = Cons r5 (Int r6) (2 r6) (Cons r5 (Int r6) (3 r6) (Nil r5 (Int r6)))

As the list cells and integer elements are in different regions, we can give
them differing mutabilities. If the type of list was constrained as follows, then
we would be free to update the integer elements, but not the spine.

list :: Const r5 ⇒ Mutable r6 ⇒ List r5 (Int r6)

The definition of an algebraic type also introduces a set of update operators,
one for each updatable component of the corresponding value. For our list type,
as we could usefully update the head and tail pointers in a cons-cell, we get the
following operators:

updateCons,0 :: ∀r a. Mutable r ⇒ List r a → a
Write r
−→ ()

updateCons,1 :: ∀r a. Mutable r ⇒ List r a → List r a
Write r
−→ ()

These operators both take a list and a new value. If the list contains an outer
cons-cell, then the appropriate pointer in that cell is updated to point to the
new value. If the list is not a cons, then a run-time error is raised.

3 Witnesses and Witness Construction

The novel aspect of our core language is that it uses dependently kinded wit-
nesses to manage information about purity, constancy and mutability. A witness
is a special type that can occur in the term being evaluated, and its occurrence
guarantees a particular property of the program. The System-Fc [15] language
uses a similar mechanism to manage information about non-syntactic type equal-
ity. Dependent kinds were introduced by the Edinburgh Logical Framework (LF)
[1] which uses them to encode logical rules.

Note that although our formal operational semantics manipulates witnesses
during reduction, in practice they are only used to reason about the program
during compilation, and are not needed at runtime. Our compiler erases witnesses
before code generation, along with all other type information.

3.1 Region Handles

We write witnesses with an underline, and the first we discuss are the region
allocation witnesses ρn. These are also called region handles and are introduced
into the program with the letregion r in t expression. Reduction of this ex-
pression allocates a fresh handle ρ and substitutes it for all occurrences of the
variable r in t. To avoid problems with variable capture we require all bound
variables r in the initial program to be distinct. Although region handles are
not needed at runtime, we can imagine them to be operational descriptions of
physical regions of the store, perhaps incorporating a base address and a range.
For example, the following program adds two to its argument, while storing an
intermediate value in a region named r3.

addTwo :: ∀r1 r2. Int r1

Read r1−→ Int r2

addTwo = Λr1 r2. λ(x : Int r1).
letregion r3 in succ r3 r2 (succ r1 r3 x)

This program makes use of the primitive succ function that reads its integer
argument and produces a new value into a given region:

succ :: ∀r1 r2. Int r1

Read r1−→ Int r2

Note the phase distinction between region variables rn and region handles ρn.
Region handles are bound by region variables. As no regions exist in the store
before execution, region handles may not occur in the initial program. Also,
although the outer call to succ reads a value in r3, this effect is not observable
by calling functions, so is masked and not included in the type signature of
addTwo. This is similar to the system of [17].

3.2 Witnesses of Constancy and Mutability

The constancy or mutability of values in a particular region is represented by the
witnesses const ρ and mutable ρ. Once again, these witnesses may not occur in

the initial program. Instead, they are created with the MkConst and MkMutable

witness type constructors which have the following kinds:

MkConst :: Π(r : %). Const r
MkMutable :: Π(r : %). Mutable r

Both constructors take a region handle and produce the appropriate witness.
To ensure that both const ρn and mutable ρn for the same ρn cannot be created
by a given program, we require the mutability of a region to be set at the
point it is introduced. We introduce new regions with letregion, so extend this
construct with an optional witness binding that specifies the desired mutability.
If a function accesses values in a given region, and does not possess either a
witness of constancy or mutability for that region, then it cannot assume either.
For example, the following function computes the length of a list by destructively
incrementing a local accumulator, then copying out the final value.

length :: ∀a r1 r2. List r1 a
Read r1−→ Int r2

length = Λa r1 r2. λ(list : List r1 a).
letregion r3 with {w = MkMutable r3} in

let (acc : Int r3) = 0 r3

(length ′ : ...)
= λ(xx : List r1 a).

case xx of

Nil → copyInt r3 r2 acc

Cons xs → let (: ()) = incInt r3 w acc

in length ′ xs

in length ′ list

where

copyInt :: ∀r1 r2. Int r1

Read r1−→ Int r2

incInt :: ∀r1.Mutable r1 ⇒ Int r1

Read r1∨Write r1−→ ()

The set after the with keyword binds an optional witness type variable. If the
region variable bound by the letregion is r, then the right of the witness binding
must be either MkConst r or MkMutable r. The type constructors MkConst and
MkMutable may not occur elsewhere in the program. The length function above
makes use of incInt which requires its integer argument to be in a mutable
region, and we satisfy this constraint by passing it our witness to the fact.

3.3 Laziness and Witnesses of Purity

Although we use call-by-value evaluation as the default, we can suspend the
evaluation of an arbitrary function application with the suspend operator:

suspend :: ∀a b e. Pure e ⇒ (a
e
→ b) → a → b

suspend takes a parameter function of type a
e
→ b, its argument of type a, and

defers the application by building a thunk at runtime. When the value of the
thunk is demanded, the contained function will be applied to its argument, yield-
ing a result of type b. As per [7], values are demanded when they are used as
the function in an application, or are inspected by a case-expression or primi-
tive operator such as update. The constraint Pure e indicates that we must also
provide a witness that the application to be suspended is observably pure. Wit-
nesses of purity are written pure σ where σ is some effect. They can be created
with the MkPurify witness type constructor. For example, the following function
computes the successor of its argument, but only when the result is demanded:

succL :: ∀r1 r2. Const r1 ⇒ Int r1

Read r1−→ Int r2

succL = Λr1 r2 (w : Const r1). λ(x : Int r1).
suspend (Int r1) (Int r2) (Read r1) (MkPurify r1 w)

(succ r1 r2) x

MkPurify takes a witness that a particular region is constant, and produces a
witness proving that a read from that region is pure. It has the following kind:

MkPurify :: Π(r : %). Const r → Pure (Read r)

Reads of constant regions are pure because it does not matter when the read
takes place, the same value will be returned each time. Note that in our system
there are several ways of writing the effect of a pure function. As mentioned in
§2.1 the effect term ⊥ is manifestly pure. However, we can also treat any other
effect as pure if we can produce a witness of the appropriate kind. For example,
Read r5 is pure if we can produce a witness of kind Pure (Read r5).

3.4 Witness Joining and Explicit Effect Masking

Purity constraints extend naturally to higher order functions. Here is the defini-
tion of a lazy map function, mapL, which constructs the first list element when
called, but only constructs subsequent elements when they are demanded:

mapL :: ∀a b r1 r2 e.

Const r1 ⇒ Pure e ⇒ (a
e
→ b) → List r1 a → List r2 b

mapL

= Λa b r1 r2 e (w1 : Const r1) (w2 : Pure e).

λ(f : a
e
→ b) (list : List r1 a).

mask (MkPureJoin (Read r1) e (MkPurify r1 w1) w2) in

case list of

Nil → Nil r2 b
Cons x xs → Cons r2 b (f x)

(suspend (List r1 a) (List r2 b) ⊥ MkPure

(mapL a b r1 r2 e w1 w2 f) xs)

The inner case-expression in this function has the effect Read r1 ∨ e. The first
part is due to inspecting the list constructors, and the second is due to the
application of the argument function f to the list element x. However, as the
recursive call to mapL is suspended, mapL itself must be pure. One way to
satisfy this constraint would be to pass a witness showing that Read r1 ∨ e is
pure directly to suspend . This works, but leaves mapL with a type that contains
this (provably pure) effect term. Instead, we have chosen to explicitly mask this
effect in the body of mapL. This gives mapL a manifestly pure type, and allows
us to pass a trivial witness to suspend to show that the recursive call is pure.

The masking is achieved with the mask δ in t expression, which contains a
witness of purity δ and a body t. The type and value of this expression is the
same as for t, but its effect is the effect of t minus the terms which δ proves are
pure. In our mapL example we prove that Read r1 ∨ e is pure by combining two
other witnesses, w1 which proves that the list cells are in a constant region, and
w2 which proves that the argument function itself is pure. They are combined
with the MkPureJoin witness type constructor which has the following kind:

MkPureJoin :: Π(e1 : !). Π(e2 : !). Pure e1 → Pure e2 → Pure (e1 ∨ e2)

Our mapL example also uses MkPure, which introduces a witness that the
effect ⊥ is pure. Note that our type for mapL now contains exactly the constraints
that are implicit in a lazy language such as Haskell. In Haskell, all algebraic data
is constant, and all functions are pure. In our language, we can suspend function
applications as desired, but doing so requires the functions and data involved to
satisfy the usual constraints of lazy evaluation.

4 Language

We are now in a position to formally define our core language and its typing
rules. The structure of the language is given in Fig. 1. Most has been described
previously, so we only discuss the aspects not covered so far. Firstly, we use ♦ as
the result kind of witness kind constructors, so a constructor such as Mutable has
kind Mutable :: % → ♦. This says that a witness of kind Mutable r guarantees
a property of a region, where ♦ refers to the guarantee.

We use use τi as binders for value types, σi as binders for effect types, and
δi as binders for type expressions that construct witness types. ∆i refers to
constructed witnesses of the form ρ, const ρ, mutable ρ or pure σ. ϕi can refer
to any type expression.

The values in our term language are identified with v. Weak values, v◦,
consist of the values as well as suspended function applications suspend ϕ v◦

1
v◦

2
.

A suspension is only forced when its (strong) value is demanded by using it as
the function in an application, the discriminant of a case expression, or as an
argument to a primitive operator such as update. Store locations li are discussed
in §4.2. The other aspects of our term language are standard. Recursion can be
introduced via fix in the usual way, but we omit it to save space. To simplify the
presentation we require the alternatives in a case-expression to be exhaustive.

Symbol Classes

a, r, e, w → (type variable) T → (type constructor)
x → (value variable) K → (data constructor)

Kinds

κ ::= κ ϕ | Π(a : κ1). κ2 (kinds)
| ∗ | % | ! | ♦ (base kinds)
| Const | Mutable | Pure (kind constrs)

Types

ϕ, τ , σ, δ, ∆
::= a | ∀(a : κ). τ | ϕ1 ϕ2 | (→) | () | T (types)
| σ1 ∨ σ2 | ⊥ | Read | Write (effects)
| MkConst | MkMutable | MkPure | MkPurify | MkPureJoin (witness constrs)
| ρ | const ρ | mutable ρ | pure σ (witnesses)

Terms

t ::= v | t ϕ | t1 t2 | letregion r with {w = δ} in t | K ϕ t

| case t of K x : τ → t′ | updateK,i ϕ t1 t2 | suspend ϕ t1 t2
| mask δ in t

v◦, u◦ ::= v | suspend ϕ v◦

1 v◦

2 (weak values)
v, u ::= x | l | () | Λ(a : κ). t | λ(x : τ). t (values)

Derived Forms

κ1 → κ2

def
= Π(: κ1). κ2 let (x : τ) = t1 in t2

def
= (λ(x : τ). t2) t1

κ ⇒ τ
def
= ∀(: κ). τ letregion r in t

def
= letregion r with ∅ in t

Store Typing Type Environment

Σ ::= l : τ | ρ | const ρ | mutable ρ Γ ::= a : κ | x : τ

Fig. 1. Core Language

Γ ⊢K κ :: κ′

κ ∈ {∗, %, !, ♦}

Γ ⊢K κ :: κ
(KsRefl)

Γ ⊢K κ1 :: κ11 → κ12 Γ ⊢K ϕ :: κ11

Γ ⊢K κ1 ϕ :: κ12

(KsApp)

Γ ⊢K Const :: % → ♦ Γ ⊢K Mutable :: % → ♦ Γ ⊢K Pure :: ! → ♦

Fig. 2. Kinds of Kinds

Γ | Σ ⊢T ϕ :: κ

Γ, a : κ | Σ ⊢T a :: κ (KiVar)

Γ | Σ, ρ ⊢T ρ :: % (KiHandle) Γ | Σ ⊢T ⊥ :: ! (KiBot)

Γ ⊢K κ1 :: κ′

1

a /∈ fv(Γ)

Γ, a : κ1 | Σ ⊢T τ :: κ2

Γ | Σ ⊢T ∀(a : κ1). τ :: κ2

(KiAll)

Γ | Σ ⊢T σ1 :: !

Γ | Σ ⊢T σ2 :: !

Γ | Σ ⊢T σ1 ∨ σ2 :: !
(KiJoin)

Γ | Σ ⊢T ϕ1 :: Π(a : κ1). κ2 Γ | Σ ⊢T ϕ2 :: κ1

Γ | Σ ⊢T ϕ1 ϕ2 :: κ2[ϕ2/a]
(KiApp)

Γ | Σ, const ρ ⊢T const ρ :: Const ρ (KiConst)

Γ | Σ, mutable ρ ⊢T mutable ρ :: Mutable ρ (KiMutable)

Γ | Σ ⊢T pure ⊥ :: Pure ⊥ (KiPure)

Γ | Σ, const ρ ⊢T pure (Read ρ) :: Pure (Read ρ) (KiPurify)

Γ | Σ ⊢T pure σ1 :: Pure σ1

Γ | Σ ⊢T pure σ2 :: Pure σ2

Γ | Σ ⊢T pure (σ1 ∨ σ2) :: Pure (σ1 ∨ σ2)
(KiPureJoin)

Γ | Σ ⊢T (→) :: ∗ → ∗ → ! → ∗ Γ | Σ ⊢T () :: ∗

Γ | Σ ⊢T Bool :: % → ∗ Γ | Σ ⊢T Read :: % → !

Γ | Σ ⊢T MkConst :: Π(r : %). Const r Γ | Σ ⊢T Write :: % → !

Γ | Σ ⊢T MkMutable :: Π(r : %). Mutable r Γ | Σ ⊢T MkPure :: Pure ⊥

Γ | Σ ⊢T MkPurify :: Π(r : %). Const r → Pure (Read r)
Γ | Σ ⊢T MkPureJoin :: Π(e1 : !). Π(e2 : !). Pure e1 → Pure e2 → Pure (e1 ∨ e2)

Fig. 3. Kinds of Types

4.1 Typing Rules

In Fig. 2 the judgement form Γ ⊢K κ :: κ′ reads: with type environment Γ ,
kind κ has kind κ′. We could have added a super-kind stratum containing ♦, but
inspired by [12] we cap the hierarchy in this way to reduce the volume of typing
rules.

In Fig. 3 the judgement form Γ | Σ ⊢T ϕ :: κ reads: with type environment
Γ and store typing Σ, type ϕ has kind κ. We discuss store typings in §4.3.

In Fig. 4 the judgement form Γ |Σ ⊢ t :: τ ; σ reads: with type environment Γ
and store typing Σ, term t has type τ and effect σ. In TyLetRegion the premise
“δi well formed” refers to the requirement discussed in §3.2 that the witness
introduced by a letregion must concern the bound variable r. In TyUpdate
and TyAlt, the meta-function ctorTypes returns a set containing the types of
the data constructors associated with type constructor T .

Γ | Σ ⊢ t :: τ ; σ

Γ, x : τ | Σ ⊢ x :: τ ; ⊥ (TyVar)

Γ, K : τ | Σ ⊢ K :: τ ; ⊥ (TyCtor)

Γ | Σ, l : τ ⊢ l :: τ ; ⊥ (TyLoc)

Γ | Σ ⊢ () :: () ; ⊥ (TyUnit)

Γ, a : κ | Σ ⊢ t2 :: τ2 ; σ2

Γ | Σ ⊢ Λ(a : κ). t2 :: ∀(a : κ). τ2 ; σ2

(TyAbsT)

Γ | Σ ⊢ t1 :: ∀(a : κ11). ϕ12 ; σ1 Γ | Σ ⊢T ϕ2 :: κ11

Γ | Σ ⊢ t1 ϕ2 :: ϕ12[ϕ2/a] ; σ1[ϕ2/a]
(TyAppT)

Γ, x : τ1 | Σ ⊢ t :: τ2 ; σ

Γ | Σ ⊢ λ(x : τ1). t :: τ1

σ
→ τ2 ; ⊥

(TyAbs)

Γ | Σ ⊢ t2 :: τ11 ; σ2 Γ | Σ ⊢ t1 :: τ11

σ
→ τ12 ; σ1

Γ | Σ ⊢ t1 t2 :: τ12 ; σ1 ∨ σ2 ∨ σ
(TyApp)

δi well formed r /∈ fv(τ) Γ ⊢K κi :: ♦

Γ, r : %, wi : κi | Σ ⊢ t :: τ ; σ Γ | Σ ⊢T δi :: κi

Γ | Σ ⊢ letregion r with {wi = δi} in t :: τ ; σ \ (Read r ∨ Write r)

(TyLetRegion)

Γ | Σ ⊢ t :: T ϕ ϕ′ ; σ Γ | Σ ⊢ pi → ti :: T ϕ ϕ′ → τ ; σ′

i

n

Γ | Σ ⊢ case t of p → t :: τ ; σ ∨ Read ϕ ∨ σ′

0 ∨ σ′

1... ∨ σ′

n

(TyCase)

Γ | Σ ⊢T δ :: Mutable ϕ Γ | Σ ⊢ t′ :: τi[ϕ/r][ϕ′/a] ; σ′

Γ | Σ ⊢ t :: T ϕ ϕ′ ; σ K :: ∀(r : %)(a : κ).τ → T r a ∈ ctorTypes(T)

Γ | Σ ⊢ updateK,i ϕ ϕ′ δ t t′ :: () ; σ ∨ σ′ ∨ Write ϕ

(TyUpdate)

Γ | Σ ⊢T δ :: Pure σ Γ | Σ ⊢ t1 :: τ11

σ
→ τ12 ; σ1 Γ | Σ ⊢ t2 :: τ11 ; σ2

Γ | Σ ⊢ suspend τ11 τ12 σ δ t1 t2 :: τ12 ; σ1 ∨ σ2

(TySuspend)

Γ | Σ ⊢ t :: τ ; σ Γ | Σ ⊢T δ :: Pure σ′

Γ | Σ ⊢ mask δ in t :: τ ; σ \ σ′
(TyMaskPure)

Γ | Σ ⊢ p → t :: τ → τ ′ ; σ

θ = [ϕ/r ϕ′/a]

K :: ∀(r : %)(a : κ).τ → T r a ∈ ctorTypes(T) Γ, x : θ(τ) | Σ ⊢ t :: τ ′ ; σ

Γ | Σ ⊢ K x → t :: T ϕ ϕ′ → τ ′ ; σ

(TyAlt)

Fig. 4. Types of Terms

4.2 Dynamic Semantics

During evaluation, all updatable data is held in the store (also known as the
heap), which is defined in Fig. 5. The store contains bindings that map abstract
store locations to store objects. Each store object consists of a constructor tag
CK and a list of store values π, where each value can be a location, unit value,
abstraction or suspension. Each binding is annotated with a region handle ρ that
specifies the region that the binding belongs to. Note that store objects can be
usefully updated, but store values can not.

The store also contains properties that specify how bindings in the various
regions may be used. The properties are ρ, (const ρ) and (mutable ρ). The
last two indicate whether a binding in that region may be treated as constant,
or updated. When used as a property, a region handle ρ indicates that the
corresponding region has been created and is ready to have bindings allocated
into it. Note that the region handles of store bindings and properties are not
underlined because those occurrences are not used as types.

In Fig. 6 the judgement form H; δ δ′ reads: with store H, witness δ pro-
duces witness δ′. Operationally, properties can be imagined as protection flags on
regions of the store — much like the read, write and execute bits in a hardware
page table. The witness constructors MkConst and MkMutable test for these
properties, producing a type-level artefact showing that the property was set. If
we try to evaluate either constructor when the desired property is not set, then
the evaluation becomes stuck.

In Fig. 7 the judgement form H; t −→ H ′; t′ reads: in heap H term t reduces
to a new heap H ′ and term t′. In EvLetRegion the propOf meta-function maps
a witness to its associated store property. Also, note that the premise of EvLe-
tRegion is always true, and produces the required witnesses and properties from
the given witness constructions δi.

l → (store location)
ρ → (region handle)
o ::= ρ | const ρ | mutable ρ (property)
π ::= l | () | Λ(a : κ).t | λ(x : τ).t | suspend ϕ π π′ (store value)
µ ::= CK π (store object)

H : { l
ρ
7→ µ } + { o } (store)

Fig. 5. Stores and Store Objects

4.3 Soundness

In the typing rules we use a store typing Σ that models the state of the heap as
the program evaluates. The store typing contains the type of each store location,
along with witnesses to the current set of store properties. We say the store
typing models the store, and write Σ |= H, when all members of the store typing
correspond to members of the store. Conversely, we say the store is well typed,
and write Σ ⊢ H when it contains all the bindings and properties predicted by
the store typing. Both the store and store typing grow as the program evaluates,
and neither bindings, properties or witnesses are removed once added.

H ; δ δ′

H ; Ew[δ] Ew[δ′]
Ew ::= [] | MkPurify ρ Ew

| MkPureJoin σ1 σ2 Ew Ew

H[const ρ] ;MkConst ρ const ρ (EwConst)

H[mutable ρ] ;MkMutable ρ mutable ρ (EwMutable)

H ; MkPure pure ⊥ (EwPure)

H ; MkPurify ρ const ρ pure (Read ρ) (EwPurify)

H ; MkPureJoin σ1 σ2 pure σ1 pure σ2 pure (σ1 ∨ σ2) (EwPureJoin)

Fig. 6. Witness Construction

e −→ e′

Ev[e] −→ Ev[e′]

Ev ::= [] | Ev ϕ | Ev t2 | v Ev | case Ev of alt

| K ϕ Ev t1 ... | K ϕ v0 Ev ... | ...

| updateK,i ϕ Ev t2 | updateK,i ϕ l Ev

| suspend ϕ Ev t2 | suspend ϕ v Ev

H ; (Λ(a :: κ). t) ϕ −→ H ; t[ϕ/a] (EvTAppAbs)

H ; (λ(x :: τ). t) v◦ −→ H ; t[v◦/x] (EvAppAbs)

H, propOf(∆i) ; δi[ρ/r] ∆i ρ fresh

H ; letregion r with {wi = δi} in t −→ H, ρ, propOf(∆i) ; t[∆i/wi][ρ/r]

(EvLetRegion)

H[ρ] ; K ρ ϕ v◦ −→ H, l
ρ
7→ CK v◦ ; l l fresh (EvAlloc)

H[l
ρ
7→ CK v◦] ; case l of ...K x → t... −→ H ; t[v◦/x] (EvCase)

H ; δ δ′

H ; update ϕ δ t t′ −→ H ; update ϕ δ′ t t′
(EvUpdateW)

H[mutable ρ], l
ρ
7→ CK v◦

n
; updateK,i ϕ mutable ρ l u◦ (EvUpdate)

−→ H, l
ρ
7→ CK v0..u

◦

i ..vn ; ()

H[mutable ρ], l
ρ
7→ CK v◦ ; updateK′,i ϕ mutable ρ l u◦ (EvFail)

−→ H ; fail K 6= K′

H ; δ δ′

H ; suspend ϕ δ t t′ −→ H ; suspend ϕ δ′ t t′
(EvSuspendW)

H ; suspend τ τ ′ σ pure σ (λ(x : τ). t) v◦ −→ H ; t[v◦/x] (EvSuspend)

H ; mask δ in t −→ H ; t (EvMask)

Fig. 7. Term Evaluation

Store bindings can be modified by the update operator, but the typing rules
for update ensure that bindings retain the types predicted by the store typing.
The rule TyLoc of Fig. 4 and KiHandle, KiConst, KiMutable and KiPurify of
Fig. 3 ensure that if a location or witness occurs in the term, then it also occurs
in the store typing. Provided the store typing models the store, this also means
that the corresponding binding or property is present in the store. From the
evaluation rules in Fig. 7, the only term that adds properties to the store is
letregion, and when it does, it also introduces the corresponding witnesses into
the expression. The well-formedness restriction on letregion guarantees that a
witnesses of mutability and constancy for the same region cannot be created.
This ensures that if we have, say, the witness const ρ in the term, then there
is not a (mutable ρ) property in the store. This means that bindings in those
regions can never be updated, and it is safe to suspend function applications
that read them.

Our progress and preservation theorems are stated below. We do not prove
these here, but [10] contains a proof for a similar system. The system in this
paper supports full algebraic data types, whereas the one in [10] is limited to
booleans. Also, here we include a r /∈ fv(τ) premise in the TyLetRegion rule,
which makes the presentation easier. See [10] for a discussion of this point.

Progress. If ∅ | Σ ⊢ t :: τ ; σ and Σ |= H and Σ ⊢ H and nofab(t) then
either t ∈ Value or for some H ′, t′ we have (H; t −→ H ′; t′ and nofab(t′) or
H; t −→ H ′; fail).

Preservation. If Γ | Σ ⊢ t :: τ ; σ and H; t −→ H ′; t′ then for some Σ′, σ′

we have Γ | Σ′ ⊢ t′ :: τ ; σ′ and Σ′ ⊇ Σ and Σ′ |= H ′ and Σ′ ⊢ H ′ and
Γ | Σ ⊢ σ′ ⊑ σ.

In the Progress Theorem, “nofab” is short for “no fabricated region wit-
nesses”, and refers to the syntactic constraint that MkConst and MkMutable

may only appear in the witness binding of a letregion and not elsewhere in the
program. We could perhaps recast these two constructors as separate syntactic
forms of letregion, and remove the need for nofab, but we have chosen not to
do this because we prefer the simpler syntax.

In the Preservation Theorem, note that the latent effect of the term reduces
as the program progresses. The ⊑ relationship on effects is defined in the obvious
way, apart from the following extra rule:

Γ | Σ ⊢T δ :: Pure σ

Γ | Σ ⊢ σ ⊑ ⊥
(SubPurify)

This says that if we can construct a witness that a particular effect is pure, then
we can treat it as such. This allows us to erase read effects on constant regions
during the proof of Preservation. It is needed to show that forcing a suspension
does not have a visible effect, and that we can disregard explicitly masked effect
terms when entering into the body of a mask-expression.

5 Related Work

The inspiration for our work has been to build on the monadic intermediate
languages of [18], [3] and [13]. Note that for our purposes, the difference between
using effect and monadic typing is largely syntactic. We prefer effect typing be-
cause it mirrors our operational intuition more closely, but [19] gives a translation
between the two. Our system extends the previous languages with region, effect
and mutability polymorphism, which improves the scope of optimisations that
can be performed. In [4] and [2], Benton et al present similar monadic languages
that include region and effect polymorphism, but do not consider mutability
polymorphism or lazy evaluation.

The Capability Calculus [5] provides region based memory management,
whereby a capability is associated with each region, and an expression can only
access a region when it holds its capability. When the region is deallocated, its
associated capability is revoked, ensuring soundness. The capabilities of [5] have
similarities to the witnesses of our system, but theirs are not reified in the term
being evaluated, and we do not allow ours to be revoked.

The BitC [14] language permits any location, whether on the stack, heap
or within data structures to be mutated. Its operational semantics includes an
explicit stack as well as a heap, and function arguments are implicitly copied
onto the stack during application. BitC includes mutability annotations, but
does not use region or effect typing.

6 Conclusion and Future Work

We have presented a System-F style intermediate language that supports mu-
tability polymorphism as well as lazy evaluation, and uses dependently kinded
witnesses to track the purity of effects and the mutability and constancy of re-
gions. One of the current limitations of our system is that the results of all case
alternatives must have the same type. This prevents us from choosing between,
say, a mutable and a constant integer. In future work we plan to provide a new
region constraint Blocked that represents the fact that an object could be in
either a mutable or constant region. We would permit such objects to be read,
but not updated, and computations that read them could not be suspended.
Doing so would likely require introducing a notion of subtyping into the system,
so the types of all alternatives could be coerced to a single upper bound.

The system presented in this paper has been implemented in the proto-
type Disciplined Disciple Compiler (DDC) which can be obtained from the
haskell.org website.

References

1. Arnon Avron, Furio Honsell, and Ian A. Mason. An overview of the Edinburgh
Logical Framework. In Current Trends in Hardware Verification and Automated

Theorem Proving, pages 323–240. Springer-Verlag, 1989.
2. Nick Benton and Peter Buchlovsky. Semantics of an effect analysis for exceptions.

In Proc. of TLDI 2007, pages 15–26. ACM, 2007.
3. Nick Benton and Andrew Kennedy. Monads, effects and transformations. In Elec-

tronic Notes in Theoretical Computer Science, pages 1–18. Elsevier, 1999.
4. Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. Rela-

tional semantics for effect-based program transformations with dynamic allocation.
In Proc. of PPDP, pages 87–96. ACM, 2007.

5. Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a
calculus of capabilities. In Proc. of POPL, pages 262–275. ACM, 1999.

6. André Lúıs de Medeiros Santos. Compilation by Transformation in Non-Strict

Functional Languages. PhD thesis, University of Glasgow, 1995.
7. John Launchbury. A natural semantics for lazy evaluation. In Proc. of POPL,

pages 144–154. ACM, 1993.
8. John Launchbury and Simon Peyton Jones. Lazy functional state threads. In Proc.

of PLDI, pages 24–35. ACM, 1994.
9. Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouil-

lon. The Objective Caml system, release 3.11, documentation and user’s manual.
Technical report, INRIA, 2008.

10. Ben Lippmeier. Type Inference and Optimisation for an Impure World. PhD thesis,
Australian National University, 2009. (submitted June 2009).

11. David B. MacQueen. Standard ML of New Jersey. In Proc. of the Symposium

on Programming Language Implementation and Logic Programming, pages 1–13.
Springer-Verlag, 1991.

12. Simon Peyton Jones and E. Meijer. Henk: a typed intermediate language. In Proc.

of the Workshop on Types in Compilation, 1997.
13. Simon Peyton Jones, Mark Shields, John Launchbury, and Andrew Tolmach.

Bridging the gulf: a common intermediate language for ML and Haskell. In Proc.

of POPL, pages 49–61. ACM, 1998.
14. Jonathan Shapiro, Swaroop Sridhar, and Scott Doerrie. BitC language specifica-

tion. Technical report, The EROS Group and Johns Hopkins University, 2008.
15. Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin

Donnelly. System-F with type equality coercions. In Proc. of TLDI. ACM, 2007.
16. Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In Proc. of

Logic in Computer Science, pages 162–173. IEEE, 1992.
17. Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld Ole-

sen, and Peter Sestoft. Programming with regions in the MLKit (revised for version
4.3.0). Technical report, IT University of Copenhagen, Denmark, January 2006.

18. Andrew Tolmach. Optimizing ML using a hierarchy of monadic types. In Workshop

on Types in Compilation, pages 97–113. Springer Verlag, 1998.
19. Philip Wadler and Peter Thiemann. The marriage of effects and monads. ACM

Trans. Computation and Logic, 4(1):1–32, 2003.

