
Type Inference and Optimisation

for an Impure World.

Ben Lippmeier

May, 2010

A thesis submitted for the degree of Doctor of Philosophy
of the Australian National University

2

Declaration

The work in this thesis is my own except where otherwise stated.

Ben Lippmeier

4

Thanks

Thanks to my family and friends for putting up with me and my occasional
disappearances.

Sincere thanks to my supervisor Clem Baker-Finch, to Simon Marlow for an
internship at GHC HQ, and to Bernie Pope for reading draft versions of this
thesis.

Shouts out to the FP-Syd crew, for pleasant monthly diversions when I probably
should have been writing up instead.

Thanks to the General, the Particular and FRATER PERDURABO, who
taught me that great truths are also great lies.

Thanks to the people who receive no thanks.

All Hail Discordia.

5

6

Abstract

We address the problem of reasoning about the behaviour of functional pro-
grams that use destructive update and other side effecting actions. All general
purpose languages must support such actions, but adding them in an undis-
ciplined manner destroys the nice algebraic properties that compiler writers
depend on to transform code.

We present a type based mutability, effect and data sharing analysis for reason-
ing about such programs. Our analysis is based on a combination of Talpin and
Jouvelot’s type and effect discipline, and Leroy’s closure typing system. The
extra information is added to our System-F style core language and we use it to
guide code transformation optimisations similar to those implemented in GHC.
We use a type classing mechanism to express constraints on regions, effects and
closures and show how these constraints can be represented in the same way as
the type equality constraints of System-Fc.

We use type directed projections to express records and to eliminate need for
ML style mutable references. Our type inference algorithm extracts type con-
straints from the desugared source program, then solves them by building a
type graph. This multi-staged approach is similar to that used by the Helium
Haskell compiler, and the type graph helps to manage the effect and closure
constraints of recursive functions.

Our language uses call-by-value evaluation by default, but allows the seamless
integration of call-by-need. We use our analysis to detect when the combination
of side effects and call-by-need evaluation would yield a result different from
the call-by-value case. We contrast our approach with several other systems,
and argue that it is more important for a compiler to be able to reason about
the behaviour of a program, than for the language to be purely functional in a
formal sense.

As opposed to using source level state monads, effect typing allows the pro-
grammer to offload the task of maintaining the intended sequence of effects
onto the compiler. This helps to separate the conceptually orthogonal notions
of value and effect, and reduces the need to refactor existing code when devel-
oping programs. We discuss the Disciplined Disciple Compiler (DDC), which
implements our system, along with example programs and opportunities for
future work.

7

8

Layout

The layout and formatting of this thesis was influenced by the work of Edward
R. Tufte, especially his book “Visual Explanations”. To reduce the need for
the reader to flip pages back and forth when progressing through the material,
I have avoided using floating figures, and have tried to keep related diagrams
and discussion on the same two page spread. For this reason some diagrams
have been repeated, and some sections contain extra white space.

9

10

Contents

Thanks 5

Abstract 7

Layout 9

1 Introduction 17

1.1 Prelude . 17

1.2 The Problem . 18

1.3 Why destructive update matters 20

1.3.1 Efficient data structures require destructive update 20

1.3.2 Destructive update helps to broadcast new values 25

1.4 What is purity? . 30

1.5 Linear and uniqueness typing . 38

1.6 State monads . 40

1.7 Ref types invite large refactorisation exercises 47

1.8 Practical limitations of lazy evaluation 49

1.9 A way forward . 55

2 Type System 57

2.1 Update without imperative variables 58

2.2 Region Typing . 60

2.2.1 Regions and aliasing . 60

2.2.2 Region classes . 62

2.2.3 Functions, allocation and non-material regions 63

2.2.4 Updating data requires it to be mutable 64

2.2.5 Primary regions and algebraic data 65

2.2.6 Thinking about regions 66

2.3 Effect typing . 67

11

12 CONTENTS

2.3.1 Effects and interference 67

2.3.2 Effect information in types 68

2.3.3 Effects and currying . 70

2.3.4 Top level effects . 71

2.3.5 Effects in higher order functions 72

2.3.6 Constraint strengthening and higher order functions . . . 72

2.3.7 Observable effects and masking 78

2.3.8 Recursive effects . 80

2.3.9 Constant regions and effect purification 81

2.3.10 Purification in higher order functions 82

2.3.11 Strict, spine lazy and element lazy lists 84

2.3.12 Lazy and Direct regions 84

2.3.13 Liftedness is not a capability 86

2.4 The problem with polymorphic update 88

2.4.1 Fighting the value restriction 88

2.4.2 Don’t generalise variables free in the store typing 89

2.4.3 Generalisation reduces data sharing in System-F 91

2.4.4 Restricting generalisation with effect typing 92

2.4.5 Observation criteria . 93

2.4.6 Effect typing versus arbitrary update 94

2.5 Closure typing . 96

2.5.1 Dangerous type variables 97

2.5.2 Closure typing and hidden communication 98

2.5.3 Material regions and sharing 101

2.5.4 Material regions and algebraic data types 102

2.5.5 Strong, mixed and absent region variables 104

2.5.6 Pure effects and empty closures 104

2.5.7 Closure trimming . 105

2.6 Type classing . 107

2.6.1 Copy and counting . 107

2.6.2 Type classes for copy and update 108

2.6.3 Shape and partial application 110

2.6.4 Shape constraints and rigid type variables 111

2.6.5 Shape constraints and immaterial regions 113

2.7 Type directed projections . 115

CONTENTS 13

2.7.1 Default projections . 116

2.7.2 Ambiguous projections and type signatures 117

2.7.3 Pull back projections . 117

2.7.4 Custom projections . 119

2.8 Comparisons with other work . 121

2.8.1 FX. 1986 – 1993.
Gifford, Lucassen, Jouvelot and Talpin. 121

2.8.2 C++ 1986
Bjarne Stroustrup. 122

2.8.3 Haskell and unsafePerformIO. 1990
Simon Peyton Jones et al. 122

2.8.4 Behaviors and Trace Effects. 1993
Nielson and Nielson et al 123

2.8.5 λvar . 1993 – 1994
Odersky, Rabin, Hudak, Chen 123

2.8.6 MLKit. 1994
Tofte, Talpin, Birkedal . 124

2.8.7 Functional Encapsulation. 1995. Gupta 124

2.8.8 Objective Caml. 1996
Leroy, Doligez, Garrigue, Rémy and Jérôuillon. 124

2.8.9 Ownership Types. 1998
Clarke, Potter and Noble 125

2.8.10 Calculus of Capabilities and Cyclone. 1999
Crary, Walker, Grossman, Hicks, Jim, and Morrisett . . . 126

2.8.11 BitC. 2004
Shapiro, Sridhar, Smith, Doerrie 127

2.8.12 Monadic Regions. 2006
Fluet, Morrisett, Kiselyov, Shan 127

3 Type Inference 129

3.1 Binding order and constraint based inference 130

3.2 Source language and constraint slurping 132

3.2.1 Normal types . 135

3.2.2 Free variables of types . 136

3.2.3 Dangerous variables . 136

3.2.4 Material and immaterial variables 139

3.2.5 The map example . 141

3.2.6 Annotated source language 142

3.2.7 Slurping and constraint trees 144

14 CONTENTS

3.2.8 Types of programs and declarations 145

3.2.9 Kinds of types and constraints 146

3.2.10 Types of terms . 147

3.2.11 Example: type constraints 154

3.2.12 Constraint sets and equivalence classes 155

3.2.13 Example: type graph . 156

3.3 Constraint reduction . 158

3.3.1 Constraint entailment . 158

3.3.2 Unification . 159

3.3.3 Head read . 160

3.4 Generalisation . 162

3.4.1 Tracing . 162

3.4.2 Loop checking . 162

3.4.3 Packing . 163

3.4.4 Loop breaking . 164

3.4.5 Cleaning . 164

3.4.6 Quantification . 165

3.4.7 Late constraints and post-inference checking 166

3.5 Projections . 168

3.5.1 Example: vectors . 170

3.5.2 Ambiguous projections and type signatures 173

3.6 Constraint ordering and mutual recursion 175

3.6.1 Comparison with Helium. 2002
Heeren, Hage, Swierstra. 181

3.6.2 Comparison with other constraint systems.
Pottier, Sulzmann, Odersky, Wehr et al 182

3.7 Type Classes . 184

3.7.1 Deep Read/Write . 185

3.7.2 Deep Mutable/Const . 186

3.7.3 Purification . 186

3.7.4 Shape . 187

3.8 Error Reporting . 189

3.8.1 Constraint justifications 190

3.8.2 Tracking purity errors . 193

CONTENTS 15

4 Core Language 195

4.1 Constraints and evidence . 196

4.1.1 Witness passing . 196

4.1.2 Dependent kinds . 197

4.1.3 Witnesses of mutability 197

4.1.4 Witnesses of purity . 199

4.2 Simplified core language . 201

4.2.1 Symbol Classes . 202

4.2.2 Super-kinds . 203

4.2.3 Kinds . 203

4.2.4 Types . 203

4.2.5 Terms . 204

4.2.6 Weak values and lazy evaluation 205

4.2.7 Stores, machine states and region handles 206

4.2.8 Region allocation versus lazy evaluation 207

4.2.9 Store typings . 208

4.2.10 Region similarity . 209

4.2.11 Duplication of region variables during evaluation 210

4.2.12 Witness production . 211

4.2.13 Transitions . 212

4.2.14 Super-kinds of kinds . 214

4.2.15 Kinds of types . 215

4.2.16 Similarity . 217

4.2.17 Subsumption . 218

4.2.18 Types of terms . 219

4.2.19 Soundness of typing rules 221

4.2.20 Goodness of typing rules 222

4.3 Extensions to the simplified language 224

4.3.1 Masking non-observable effects 224

4.3.2 Masking effects on fresh regions 225

4.3.3 Masking pure effects . 226

4.3.4 Bounded quantification 228

4.3.5 Effect joining in value types 231

4.4 Optimisations . 232

4.4.1 Local transforms . 232

16 CONTENTS

4.4.2 Floating at the same level 233

4.4.3 Effects and region aliasing 235

4.4.4 Floating into alternatives 236

4.4.5 Floating outside lambda abstractions 237

4.5 Comparisons . 240

4.5.1 Monadic intermediate languages. 1998
Tolmach, Benton, Kennedy, Russell. 240

4.5.2 System-Fc. 2007
Sulzmann, Chakravarty, Peyton Jones, Donnelly. 242

5 Conclusion 245

5.1 Implementation . 246

5.1.1 Implementing thunks and laziness 246

5.2 Limitations and possible improvements 247

5.2.1 Masking mutability constraints 247

5.2.2 Blocked regions and region sums 248

5.2.3 Bounded quantification and effect strengthening 248

5.2.4 Polymorphism, data sharing, and constraint masking . . . 249

5.2.5 Witnesses of no aliasing 251

5.2.6 Should we treat top-level effects as interfering? 252

5.2.7 Add witnesses to write effects 252

5.2.8 A better type for force . 252

5.3 Summary of Contributions . 254

5.4 The Hair Shirt . 255

A Proofs of Language Properties 271

Chapter 1

Introduction

1.1 Prelude

I am thinking of a data structure for managing collections of objects. It pro-
vides O(1) insert and update operations. It has native hardware support on all
modern platforms. It has a long history of use. It’s proven, and it’s lightning
fast.

Unfortunately, support for it in my favourite language, Haskell [PJ03a], ap-
pears to be somewhat lacking. There are people that would tell me that it’s
not needed [PJW92], that there are other options [Oka98b], that it’s bad for
parallelism [Can91] and bad for computer science in general [Bac78]. They say
that without it, programs are easier to understand and reason about. Yet, it
seems that every time I start to write a program I find myself wanting for it.
It’s called the store.

The mutable store, that is. I want for real destructive update in a real functional
language (for my own, particular, subjective definition of ‘real’). I wanted it for
long enough that I decided I should take a PhD position and spend the next
several years of my life trying to get it.

Soon after starting I came to realise two things:

1) That the problem was real, and that many people were aware of it.

2) That this was not a new problem.

17

18 CHAPTER 1. INTRODUCTION

1.2 The Problem

Functional programming is many things to many people, but at the heart of
it is one central idea. Programs should be expressed in terms of higher order
functions, referred to as combining forms in Backus’s seminal paper [Bac78],
instead of as imperative sequences of commands which update a global store.

The folklore promises that as functional programs admit more algebraic laws
than their imperative counterparts, they will be easier to express and reason
about. It also promises that functional programs have the potential to run
faster, with the imagined speedup being partly due to freedom from the ‘von
Neumann bottleneck’, that is sequential access to the global store, and partly
due to optimising transforms which can be carried out due to the algebraic laws
[dMS95].

After 30 years of intense research, several industry strength compilers [PJ94,
NSvEP91, TBE+06, Mac91], and countless research papers, both of these promises
have been delivered on — yet curiously, functional languages have not replaced
imperative ones in mainstream software engineering.

There are a myriad of endlessly debated reasons for this apparent lack of use,
and most will be quite familiar to the people likely to be reading this thesis.
Often touted candidates include organisational inertia and marketing pressure
exerted by large corporations seeking to cement their own particular language
into the psyche of the industry programmer [GJSB05]. It is no doubt easy to
form these opinions, especially if one is a researcher or academic in the field
of programming languages. Almost by definition, we spend the majority of
our time working with our own systems and attending conferences where the
presentations are given by people in similar circumstances.

In recent years this situation has been recognised by the functional program-
ming community itself, hence the creation of forums that seek to collect reports
of industry experience with its languages [Wad04]. The conclusion of many of
these presentations simply reiterates what we have known all along — that func-
tional programming is wonderful and the application of higher order functions,
pattern matching and strong typing (for some) leads to shorter development
times and more reliable software.

By all accounts the community is thriving and much software is being written,
yet the majority of it continues to be from graduate students and researchers
in the field of programming language theory. Of this fact one can easily be con-
vinced by visiting an arbitrary web-based job placement agency and comparing
search results for “Haskell” or “O’Caml” versus any one of “Java”, “Perl”,
“Ruby”, “C++” or “Python”.

Are Haskell and O’Caml destined to be The Velvet Underground of program-
ming languages, where hardly anyone has heard them, but everyone who does
forms a band?1

1After a quote attributed to Brian Eno. The Velvet Underground were a rock music group

active in the late 60’s, early 70’s. They were highly influential, yet initially unsuccessful in a

commercial sense.

1.2. THE PROBLEM 19

Something’s missing?

What if we were to take a step back from the glory of functional programming,
and instead focus on what might be missing? After all, if functional languages
could do everything that imperative languages could, as well as having strong
typing, pattern matching, higher order functions and associated goodness, then
at least there would be no technically based reason not to use them.

With this in mind, this thesis takes the position that an important missing
feature from all current functional languages is real destructive update. A pro-
grammer should be free to update an arbitrary data structure in their program,
with minimal runtime overhead, and with minimal interference from the type
system or language design.

Note the use of the word “interference”. In one sense, a language is a structure
for formulating and communicating ideas, but in another it is a barrier to
a true expression of intent. In an imperative language the programmer can
update their data when and where they see fit, whereas in a typical functional
language, they cannot. We seek to remove this barrier.

This work is embodied in the Disciplined Disciple Compiler (DDC)2. “Disciple”
being the name of the language it compiles, and “Disciplined” invoking the type
and effect discipline [TJ92b] of Talpin and Jouvelot which forms the basis of
our type system. Wherever possible, we have avoided creating yet another
functional language (YAFL) that no-one is likely to use. Disciple’s syntax is
based on Haskell, and DDC itself is written in Haskell. This allows us to
leverage a huge body of existing people, ideas and code. Keeping the source
and implementation languages similar will also make it easy to bootstrap DDC
in future work.

As destructive update is the source of all our problems, we start with a dis-
cussion of why it should be included in a language in the first place. Having
convinced ourselves that it is really needed, we will examine how it is supported
in existing functional languages, and argue that this support is inadequate. We
will discuss the notion of purity and how it benefits a language. We will also
consider what it means for a language supporting destructive update and other
side effects to be pure, and whether the formal notion of purity is useful in prac-
tice. Disciple allows arbitrary structures to be updated, and functions to have
arbitrary side effects. Instead of relying on state monads, we use a type based
analysis to recover mutability, effect and data sharing information from the
program being compiled. We use an intermediate language similar to System-
Fc [SCPJD07] and our analysis recovers enough information to do the same
code transformation style optimisations as a highly optimising compiler such
as GHC [PJ94]. We will discuss some of the practical problems with using lazy
evaluation as the default method, and why space leaks are so common in lazy
programs. Disciple uses strict evaluation by default, but allows the programmer
to introduce laziness when desired. We use the type system to ensure that the
combination of destructive update and laziness does not change the meaning of
the program compared with the strict case.

This chapter outlines our approach and the reasons we have chosen it. Chapter
2 discusses the type system in detail, and Chapter 3 outlines the inference

2When dealing with a field that separates languages into “pure” and “impure”, the religious

connotations are already present. We make no apologies for the name.

20 CHAPTER 1. INTRODUCTION

algorithm. Chapter 4 describes our core language and gives a proof of soundness
for its type system. Chapter 5 summarises what we have learned so far and
suggests avenues for future work.

1.3 Why destructive update matters

Destructive update is the process of changing the value of an object in-place,
by overwriting and hence destroying its old value. Without destructive update
we cannot change the values of existing objects, only allocate new ones.

With deference to Turing completeness, destructive update is simply not re-
quired to write programs. Likewise, almost every feature of a particular lan-
guage can be shown to be superfluous. Tiny systems such as the Lambda
Calculus, Conway’s game of life, and the Rule 30 cellular automata are Turing
complete [Ren02, Coo04], and hence capable of universal computation. On the
other hand, no one writes programs in them, at least not directly.

When considering language features we must always start from a practical, and
therefore subjective viewpoint. When we say “destructive update matters”, we
mean that a large enough subset of programmers find it useful that it warrants
consideration by all.

We suggest that destructive update furnishes the programmer with two impor-
tant and powerful tools, and that these tools are either too cumbersome or too
inefficient to create without it. The first tool is a set of efficient array-like data
structures for managing collections of objects, and the second is the ability to
broadcast a new value to all parts of a program with minimal burden on the
programmer.

1.3.1 Efficient data structures require destructive update

For a mechanical device such as an internal combustion engine, efficiency is
defined as the ratio of useful work output to the amount of energy input to the
device [Gia00]. For a computational device such as a collection structure, we
could reasonably define its efficiency as being the number of insert and update
operations that can be completed per hardware clock cycle.

We pay no attention to the difficulty of designing the structure in the first place.
Like internal combustion engines, the development of common data structures
is best left to teams of experts, permitting the end user to focus on their own
specific tasks.

When the number of objects to be managed is known beforehand, the simplest
collection structure is the array. In a typical garbage collected runtime system,
the allocation of an array requires just three machine instructions. We test
the top-of-heap pointer to ensure enough space is available, write the object
header word, and then advance the pointer. The update of a particular value
is also straightforward. Suppose we have three registers: R1 holding a pointer
to the array, R2 holding the new value, and R3 holding the index of the value
to be updated. Many processors can perform this update with just one or two
instructions [Sun02, Int06].

1.3. WHY DESTRUCTIVE UPDATE MATTERS 21

A v0 v v v v v v v v v1 2 3 5 6 7 8 9R1:

R2:

R3:

4v’

4

4

Of course, due to pipelining and cache effects, the number of machine instruc-
tions executed for an operation does not relate directly to the number of clock
cycles used [HP96]. However, it is a usable approximation for this discussion,
and we will consider the case of updating a flat array as approaching 100%
efficiency for array-like structures.

Perfect efficiency would be achieved if every update operation completed in the
minimum number of clock cycles possible on the available hardware. For most
applications, perfect efficiency is unlikely to ever be achieved by a statically
compiled program, as it is too difficult to accurately simulate pipeline states
and data hazards in a multi-tasking system.

Ignoring cache effects, the efficiency of an array is independent of how many
elements it containts. It costs no more to update a value in a 1000 element
array than to update one in a 10 element array.

Functional arrays are unacceptably slow

Without destructive update we cannot change an array object once it is allo-
cated, but we can side-step this problem by creating a new object instead of
updating the old one. A simple method is to allocate a whole new array and
copy the old values into it, with the new value in place of the one that is being
updated. This works, but is a disaster for performance. Assuming we need
one machine instruction for each value copied, performing an update on a 10
element array now requires 10 instructions, plus three to do the allocation. This
represents a miserable 7.7% efficiency compared with a single instruction de-
structive update. For a 1000 element array we need at least 1003 instructions,
representing approximately 0.1% efficiency. This is clearly unacceptable.

Tree structures are only a partial solution

We can recover some of this ground by using a tree structure instead of a
flat array. If we store values in the internal nodes of a balanced binary tree
then we need n nodes for n values, and the tree is ceil(log2(n)) levels deep.
Unfortunately, to change a value in the tree we must still allocate a new node.
As this new node will be at a different address from the old one, we must then
rebuild all of its parents so that the tree references the new node instead of
the old one. For example, in the tree on the next page, to update v7 we must
reallocate the node that contains it as well as the nodes of v6, v8 and v5.

22 CHAPTER 1. INTRODUCTION

N

N

N N

N

N

v

v v

v

v

v

5

2 8

6

7

9

For a small number of values, using a binary tree is worse than copying the
whole array for each update, because each node contains an object header and
two pointers instead of just a value. A balanced tree of 1000 elements is 10
levels deep, and as a rough approximation, half of the nodes lie at the bottom
of the tree. If we were to update one of these nodes then we would need to
reallocate all of its parents, which equates to 9 * 4 = 36 words of space. Not
all nodes are at this level, but we haven’t accounted for finding the node to be
updated in the first place either. For a back-of-envelope calculation we could
expect an average of at least 50 machine instructions to be required to update a
node in this tree. This equates to 2% efficiency when compared with destructive
array update of a similarly sized array.

Another option is to use trees of a higher order, perhaps a quadtree or a B-tree
structure like the one shown in the following diagram. Adding more values per
node reduces the depth of the tree. It also reduces the number of nodes we
must rebuild when performing an update, but at the cost of making each node
larger.

v vNv vN v vN

v vN

87

6

54

3

21

For a full (2,3)-tree with two keys and three branches per node, each node is 6
words long including the object header. Every extra level provides three times
the number of nodes present in the previous level, and for 1000 values we need a
little more than 6 levels. If we say that each node to be updated has an average
of 5 parent nodes, this equates to 5 * 6 = 30 words of space to be reinitialised
when updating a node. This isn’t much better than the previous case.

Many algorithms naturally use an array as their primary collection structure.
If, for the lack of destructive update, we are forced to a tree instead, then
we automatically impose a log(n) slowdown on our algorithm’s run time. To
access an element in a tree we must traverse its structure, but array access can
be performed in constant time. This slowdown is in addition to a substantial
constant factor due to the extra book-keeping data that must be maintained,
such as object headers and branch pointers that are not needed when using
arrays. In [PMN88] Ponder gives a list of algorithms for which no equivalent,
array-less algorithm of similar complexity is known.

1.3. WHY DESTRUCTIVE UPDATE MATTERS 23

The limit

There are an infinite variety of possible structures for simulating arrays, and
trees represent just a few. By this stage, an astute reader may be thinking about
all their own favourite structures and how much better they are than the ones
outlined here [Oka98b, OG98]. As we are talking about machine instructions
and constant factors, not just algorithmic complexity, there are also a huge
variety of low level details to consider. Details include instruction selection,
caching, data layout, pointer compression [LA05], and using “diff arrays” which
rely on destructive update behind the scenes for efficiency, whilst presenting a
functionally pure interface. An example of pointer compression is to replace
each of the pointers in an object by offsets from a base pointer, instead of
including the store address in full. This can result in substantial space savings
for pointer heavy programs on 64 bit machines, where the size of a particular
data structure is only a tiny fraction of the available address space. Diff arrays
use a destructively updateable array for the current state of the structure, and
updates to the structure are implemented by physically updating this array.
Old states of the array are represented by a list of differences to apply to the
current state, so old states become slower and slower to access as the program
progresses.

There are many avenues for improvement, but without destructive update we
are still hamstrung by the need to allocate objects to represent new program
states. Consider a maximally efficient structure which requires only a single,
tiny object to be allocated for each update. At the least, we could expect this
new object to contain a header word, the new value, and a pointer to the rest
of the structure:

H v’

However, the allocation and initialisation of this object will still require at least
five machine instructions, three for allocation and two to write the new value
and pointer. For some applications a constant five-fold slow down is of no
consequence, but for others it is a deal breaker.

24 CHAPTER 1. INTRODUCTION

Tuples and records are also arrays

At the machine level, tuples and record objects are often very similar to arrays.
We can implement records by representing each field as a pointer to the object
containing its value, so at this level the record is simply an array of pointers.
A record object with 5 fields would contain a header word and five pointers.
Consider then the following record type from DDC:

data SquidS

= SquidS

{ stateTrace :: Maybe Handle

, stateTraceIndent :: Int

, stateErrors :: [Error]

, stateStop :: Bool

, stateArgs :: Set Arg

, stateSigmaTable :: Map Var Var

, stateVsBoundTopLevel :: Set Var

, stateVarGen :: Map NameSpace VarBind

, stateVarSub :: Map Var Var

, stateGraph :: Graph

, stateDefs :: Map Var Type

, statePath :: [CBind]

, stateContains :: Map CBind (Set CBind)

, stateInstantiates :: Map CBind (Set CBind)

, stateGenSusp :: Set Var

, stateGenDone :: Set Var

, stateInst :: Map Var (InstanceInfo Var Type)

, stateQuantifiedVars :: Map Var (Kind , Maybe Type)

, stateDataFields :: Map Var ([Var], [(Var , Type)])

, stateProject :: Map Var (Type , Map Var Var)

, stateProjectResolve :: Map Var Var

, stateClassInst :: Map Var [Fetter] }

This record represents the state of our type inferencer while it is reducing
constraints. The meaning of the fields is not important for this discussion. We
include this data type to make the point that real records can contain upwards of
22 separate fields. No matter how efficiently the internal sets, maps and graphs
are implemented, without destructive update we cannot change the value of a
field without rebuilding at least part of the record object. If we must rebuild it
all, then this is at least 22 times slower than using destructive update.

In a language without destructive update we must allocate and initialize new
objects to represent new program states. This a drastically less efficient al-
ternative. In practice, even if a language does not support the destructive
update of arbitrary structures, attempts are made to introduce it in a more
restricted form. In [SCA93] Sastry presents an analysis to determine an order
of evaluation for array access and update operations, that allows the updates to
be implemented destructively. Besides being first order only, the trouble with
many such analyses is that when they fail to introduce an update at an impor-
tant point in the program, the programmer is left with little recourse to add it
manually. There is also the problem of determining which updates should have
been implemented destructively, but weren’t.

As discussed in §1.6, Haskell includes a monadic sub-language that supports
the destructive update of select structures such as arrays. However, this sub-
language introduces its own problems, and algebraic data such as records and

1.3. WHY DESTRUCTIVE UPDATE MATTERS 25

lists cannot be similarly updated. In [San94] Sansom describes the time profile
of an early version of GHC, and mentions that the use of a monadic mutable
array over an association list improved the performance of type substitution by
a factor of 10. When combined with other improvements, this resulted in a 20x
speedup of the type checker as a whole.

If a particular programmer does not use functional arrays or large records in
their programs, then they may not be aware of the run-time cost of using them.
However, those who do are looking down the barrel of a five fold slow-down, or
worse, compared with other languages.

1.3.2 Destructive update helps to broadcast new values

There is an often rehearsed argument that the expressiveness of a language
is more important than efficiency, because improvements to processor speed
will quickly recover any lost ground. The standard counter is to say that the
common man wants their new and faster computers to do new and faster things,
not the original things less efficiently.

These arguments can also be applied to destructive update. “Surely”, the
antagonist offers, “a five fold slow-down is not that bad. Moore’s law says we’ll
have that back in four years, and look at all the extra compiler optimisations
we can do now that the language is pure!”.

Computational efficiency may or may not matter to a particular programmer,
but the level of abstraction offered by the language should matter to all. We
will now move away from concerns over run time speed, and instead focus on the
expressiveness of the language itself. Consider a set of program modules which
all reference a single, shared value. This value could be a cursor position or
timing value, something that changes often and is of interest to many separate
modules. We will refer to this value as X. In a language with destructive update
we can place X in a container structure and have each module access it via a
pointer:

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������

����������
����������
����������
����������

����������
����������
����������
����������Module 1 Module 2

Module 3

Module 4

RRR

X

Using destructive update, one module can modify X and the new version is
immediately visible to others. Notice that module 1 has a reference to the
top of the container structure as well as a description of how to find the value
of interest. In this example the container is a binary tree and the value is
accessable by following three right branches from the root node. On the other
side, modules 2, 3, and 4 do not need to know how to locate X within its
container because they have a pointer directly to it. This second group of
modules is not interested in the container or any other value contained within.

26 CHAPTER 1. INTRODUCTION

Without destructive update, a module cannot change X directly, nor can it
change the pointers within client modules so that they reference any new objects
it might create. The programmer is forced to rewrite all modules so that they
reference the top level of the container structure, and include a description of
how to find the value of interest.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

����������
����������
����������
����������

����������
����������
����������
����������Module 1 Module 2

Module 3

Module 4

RRR RRR

RRR

RRRX

By doing this we have reduced the level of abstraction in the program. Whereas
modules 2, 3, and 4 are only interested in the value X, they must now also
concern themselves with the container structure and how to find and update
elements contained within.

This problem is compounded when a shared value is logically part of several
containers. Perhaps X is also present in a graph structure, and the tree is
used to represent a set of objects which must be written to disk when the
program finishes. The modules that wish to update the shared value must have
knowledge of all structures which contain it.

Shared values like the one described here are often needed to write interactive
programs such as Frag [Che05]. In Haskell, variables holding timing values,
mouse positions and other user interface states are typically bundled up into a
record of IORefs. This in turn requires all code which accesses these values to
be written in the IO monad, a point we will return to in §1.6.

Updating nested records in Haskell is painful

Haskell 98 has an conspicuously poor record system. In itself this is not a new
observation, but we pause to discuss it because we feel the problem arises in
part from the lack of destructive update in the ambient language. Standard
complaints include the records not being light weight, not being extensible, and
that all field names are in the top level scope [JPJ99]. In addition, we consider
the syntax for updating nested records to be unusable.

The following code defines three record types with two fields each. Type R1

contains type R2, and type R2 contains type R3. Notice the prefixes r1, r2 and
r3 on each field name. In Haskell, field names pollute the top level name space,
so we can’t have a field named field1 in R1 as well as in R2 without creating
a name clash.

1.3. WHY DESTRUCTIVE UPDATE MATTERS 27

data R1 = R1 { r1Field1 :: Int

, r1Field2 :: R2 }

data R2 = R2 { r2Field1 :: Char

, r2Field2 :: R3 }

data R3 = R3 { r3Field1 :: Bool

, r3Count :: Int }

We will create a record value of type R1 as an example. Similarly to the previous
section, we treat the field r3Count as a shared value that many program modules
will be interested in. When the record is created we will initialise this field to
zero. The exact values used for the other fields are not important for this
example.

record1 = R1 { r1Field1 = 5

, r1Field2 =

R2 { r2Field1 = ’a’

, r2Field2 =

R3 { r3Field1 = False

, r3Count = 0 }}}

Extracting the counter field from the structure is straightforward. Each field
name becomes a projection function which takes the record and produces the
field value, for example r1Field1 :: R1 -> Int. We can make use of the
function composition operator to extract the count field using a pleasing syntax:

count = (r3Count . r2Field2 . r1Field2) record1

Updating the counter is another matter entirely. As we do not wish to modify
the other fields in the structure, we must unpack and repack each level in turn.
This process corresponds to reallocating parents when updating a node in a
tree. Unfortunately, this time we cannot write a cute recursive function to do
so because the records at each level have different types. The following diagram
shows the structure of the nested records:

field1 field2

field1 field25

’a’ R3

R2

R1

field1 count

I

C

falseB I 0

28 CHAPTER 1. INTRODUCTION

field1 field2

field1 field25

’a’ R3

R2

R1

field1 count

I

C

falseB I 0

If we wish to change the count field in this structure to the value 1, we must
allocate a new object containing this value. We must then rebuild the R3, R2
and R1 nodes so that the structure references this new object while retaining
the pointers to the other nodes. Here is the gory Haskell expression:

record2

= record1 { r1Field2 =

(r1Field2 record1) { r2Field2 =

((r2Field2 . r1Field2) record1) { r3Count = 1 }}}

Clearly this is not something a typical programmer would enjoy writing. The
field names and the variable record1 are repeated twice each, the line must be
broken into fragments to fit on the page, it does not indent well, and there is
much visual noise.

It is worse when we need to update this field with a non-trivial expression.
Consider the simple act of incrementing r3Count. We can use layout to reduce
the noise, but it is still quite bad:

record3

= record2 {

r1Field2 = (r1Field2 record2) {

r2Field2 = ((r2Field2 . r1Field2) record2) {

r3Count = (r3Count . r2Field2 . r1Field2) record2 + 1

}}}

The need to write such tedious code to perform such a simple update would be
a deal breaker for many programmers.3

Consider an equivalent statement in an imperative language, such as C++.

record2.field2.field2.count += 1

Destructive update allows the programmer to focus solely on the element of
interest, while leaving the others untouched. Granted, the above statement
does not have the same semantics as the Haskell version because it modifies the
original object instead creating a new one. If this behaviour is required then
many imperative, object oriented languages support a fragment such as:

record3 = record2.copy()

record3.field2.field2.count += 1

3It certainly is for the author.

1.3. WHY DESTRUCTIVE UPDATE MATTERS 29

To the surrounding program these two simple statements have the same effect
as the Haskell expression shown above, with the added advantage that the
concepts of copy and update are clearly separated.

In C++ we can make life even easier for the programmer. We can create a
reference to the field of interest and increment it without any knowledge of the
surrounding record structure:

int* countRef = &(record.field2.field2.count)

(* countRef) += 1;

Admittedly, references and destructive update can be used for evil as well as for
good. Many confusing programs can be constructed in which different program
modules communicate via shared mutable objects in a way which is entirely non-
obvious to the casual observer, and almost impossible to debug. The counter to
this argument is to say that confusing programs can be written in any language,
and a good carpenter can hammer a nail into a wall without smashing their
own fingers.

We should note that the problem of updating nested records in Haskell can
be made easier by generic programming libraries such as ‘Scrap Your Boiler-
plate’ [LPJ03] (SYB) and DriFT [HJL06]. Although these systems can help,
we feel they are not complete solutions as they lack the efficiency and ease of
use of destructive update. SYB style systems tend to traverse uninteresting
parts of a structure when performing an update, resulting in a significant per-
formance penalty [Mit07]. DriFT is a preprocessor which can automatically
generate update functions for each of the fields in a record, though it does not
support nested update as per the previous example. When implementing DDC
we defined tuples of get and set functions for each field, along with combinators
to compose these functions and to update fields deep within nested records.
We have found this to be a serviceable yet tedious approach, as we have not
yet written a preprocessor to generate the tuples. This approach also does not
solve the problem of field names being in top level scope.

30 CHAPTER 1. INTRODUCTION

1.4 What is purity?

Although the word purity has many varied meanings, most would agree that
the following expression is pure:

(λx. double x) (succ 5)

To reduce this expression call-by-value, we first evaluate the argument and then
substitute into the body of the function.

(λx. double x) (succ 5)
−→ (λx. double x) 6
−→ double 6
−→ 12

When we reduce the same expression call-by-name, we substitute the argument
first, yielding the same result.

(λx. double x) (succ 5)
−→ double (succ 5)
−→ double 6
−→ 12

In the simply typed lambda calculus, the order in which function applications
are evaluated does not affect the end result. This behavior is also known as the
Church-Rosser property [Ros84], or confluence. Purity is of tremendous help
to compiler writers because it gives us the freedom to reorder function appli-
cations during compilation, whilst preserving the meaning of the program. By
reordering function applications we can expose many useful compiler optimi-
sations [dMS95], and this well known identity of the map function is one such
example:

map f (map g xs) ≡ map (f ◦ g) xs

The first expression applies g to each element of the list xs yielding an interme-
diate list. It then applies f to each element of this list, yielding the result. In
the second expression, the composition of f and g is applied to each element di-
rectly, without requiring the construction of an intermediate list. As long as we
are free to reorder function applications, we can optimise a arbitrary program
by rewriting expressions of the first form into the second.

The Glasgow Haskell Compiler includes a myriad of similar optimisations. Sim-
ple, frequently invoked rewrites are “baked-in” to the compiler proper, whereas
more specific identities such the one above are part of the standard libraries,
or are defined by the programmer directly. The recent work on stream fu-
sion [CLS07] is a prime example of library defined rewrites which depend on
purity.

In contrast, the following expression is decidedly not pure:

choose (inTrouble ()) (launchMissiles 5) (eatCake 23)

The end result of this expression depends very much on the order of evaluation.
The intention is for the first argument to execute first, before choosing one of
the others. This ordering must be preserved in the compiled program, else the
meaning of the program will be changed.

1.4. WHAT IS PURITY? 31

The concept of purity can also be applied to a language as a whole. With the
Church-Rosser property in mind, Sabry defines a purely functional language to
be one that satisfies the following criteria [Sab98]:

1. it is a conservative extension of the simply typed λ-calculus.

2. it has a well-defined call-by-value, call-by-need, and call-by-name evalua-
tion functions (implementations), and

3. all three evaluation functions (implementations) are weakly equivalent.

We will consider the finer points of these criteria in a moment. Separate from
Sabry’s definition, the functional programming community generally recognises
Haskell to be pure, while SML, Scheme, Fortran and C++ are said to be impure
languages. However, note that Fortran and C++ are not extensions of the λ-
calculus, so are not functional either.

Pure and impure are loaded terms

Sabry’s definition contains several subtle points, not least of which are the words
being defined. The Oxford English Dictionary (OED) gives several meanings
for the word “impure”. In regards to “a language or style”, the word has
the meaning of “containing foreign idioms or grammatical blemishes”. In this
context, the “foreign idioms” would include interactions with the outside world
such as launching missiles or eating cake. These actions are not part of the
formal definition of the lambda calculus, and it is not obvious what the result
will be from the function names alone. The other meaning offered by the OED
is along the lines of “not pure ceremonially; unhallowed”, or “containing some
defiling or offensive matter; dirty, unclean”.

This is unfortunate terminology. In contrast, mathematical disciplines are
sometimes separated into groups labeled pure and applied. The intention is
that the more pure disciplines have no immediate practical applications, but
are considered worthy of study because they increase our understanding of
mathematics as a whole. On the other hand, the applied fields focus on using
mathematics to achieve goals in other disciplines, such as physics. What was
once considered a pure field may become more applied when a concrete applica-
tion is found. For example, abstract algebra is now an integral part of the error
control coding systems that we rely on for electronic communication [LDJC83].

Computational side effects

Granted, impure languages can be much harder to reason about, and the bulk
of this thesis is about doing just that. Actions which affect the outside world
must be implemented in the appropriate order, else the program may not yield
the intended result. Other internal actions such as destructively updating data
and then reading it back must also be sequenced appropriately.

When the end result of two expressions depends on the order in which they
are evaluated, those expressions are said to have computational effects, or to
interfere [Rey78].

Computational effects are also known as side effects, because an expression can
return a value as well as “doing something else”. This is another unfortunate

32 CHAPTER 1. INTRODUCTION

term. When a pharmaceutical product has a side effect, this is usually taken
to be a bad thing. A pharmaceutical side effect is an undesirable result, but a
computational side effect is often the entire reason for running a program in
the first place.

Do we really need three implementations?

We return to Sabry’s second and third criteria for a purely functional language:

2. it has a well-defined call-by-value, call-by-need, and call-by-name evalua-
tion functions (implementations)

3. all three evaluation functions (implementations) are weakly equivalent.

At the time of writing, Haskell is call-by-need, and there is no formal definition
of its implementation. The Haskell 98 report [PJ03a] contains a description of
the syntax and English language notes on the intended meaning, but no formal
operational or natural semantics. There are formal semantics for fragments
such as the lazy lambda calculus [Abr90, Lau93b], but not the complete lan-
guage. Whether this counts as having three “well defined” implementations is
debatable.

SML has a formal semantics [MTHM97], yet it is call-by-value only. There is a
lazy version of ML [Aug84], but not all features of SML are supported, notably
exceptions and mutable references.

On the other hand, Haskell includes the seq combinator which can be used
to turn a natively call-by-need application into a call-by-value one, within the
same implementation. For example, the following application will evaluate call-
by-need as default:

f exp...

However, we can force the argument to be evaluated in an approximately call-
by-value manner by writing:

let x = exp...
in seq x (f x)

By binding exp... to the variable x and then passing this as the first argument
to seq , we force it to be reduced to head normal form4 [PJ87, PJ92] before
substitution into f . This simulates call-by-value evaluation. However, in a lazy
language the definition of “value” usually includes expressions that contain
redexes, as long as there is no redex at top level. If we desire hyper-strict
evaluation, where all possible redexes are reduced before application, then we
need to make more judicious use of seq . We will return to this point in §1.8.

4In the STG machine on which GHC is based, function application is between variables and

atoms. For this implementation an expression cannot be in weak head normal form without

also being in head normal form.

1.4. WHAT IS PURITY? 33

Weak equivalence

Consider the following function application, where ⊥ represents an expression
that performs no IO actions, but does not terminate and thus does not yield a
value.

(λz. 5) ⊥

When we evaluate this expression call-by-need, the variable z is not present in
the body of the function, so we can simply discard the argument. However, if
we use call-by-value, or the rewrite using seq from the previous section, then
the evaluation of this expression will diverge.

Sabry’s definition of weak equivalence accounts for this:

Let P be a set of programs, B be a set of observables and eval1 and eval2 be
two partial functions (implementations) from programs to observables. We say
eval1 is weakly equivalent to eval2 when the following conditions hold:

• If eval1(P) = B then either eval2(P) = B or eval2(P) is undefined

• If eval2(P) = B then either eval1(P) = B or eval1(P) is undefined

When discussing the observables of a program we will omit the time taken for it
to evaluate. We will consider only the final value returned, and the IO actions
performed, as being its “result”. If one implementation evaluates more slowly
than another, but otherwise returns the same value and performs the same
actions, then by the above definition they are still equivalent. If this were not
the case then most compiler optimisations would change the meaning of the
program. In fact, if they didn’t change its meaning, by making it faster, then
they would be useless.

If evaluation time is not observable then, by rights, non-termination should not
be observable either. In a practical sense, the only way we could observe that
a program did not terminate is by waiting an infinite time for it to complete.
For this reason we take non-termination as being part of the “undefined” in the
definition of weak equivalence. Under this definition, if we evaluate a program
with one implementation and it terminates, but in another it does not, the im-
plementations are still weakly equivalent. As non-termination is not observable,
by extension it is also not an action, nor does it correspond to a side effect.

We also take “undefined” to mean that the program would not compile due to
a type error. Disciple is call-by-value by default, but also supports call-by-need
evaluation. We shall see in §2.3.9 that if we attempt to suspend a function ap-
plication that has an observable effect, something that would otherwise change
the meaning of the program with respect to the call-by-value case, the com-
piler will detect this and report a type error. By Sabry’s definition we argue
that this makes Disciple a purely functional language — even though arbitrary
structures can be destructively updated, and functions can have arbitrary side
effects.

We consider Terauchi and Aiken’s system of witnessing side-effects [TA05] to
be purely functional for the same reason. Like ours, their system supports
the update of mutable references at arbitrary points in the program. It also
provides a type system to ensure witness race freedom, which means there are
enough data dependencies in the program to prevent a parallel reduction of it
from having an indeterminate result.

34 CHAPTER 1. INTRODUCTION

Expressive power and operational equivalences

Of course, Sabry’s definition of what a purely functional language is may or
may not correspond to the informal understanding of it by the functional pro-
gramming community at large. There is also the question of whether “purely
functional” should mean the same thing as “pure”, as in our experience these
terms are used interchangeably.

Whether or not purely functional languages are somehow intrinsically better
than impure ones is a moot point. Sabry’s discussion of why Haskell is purely
functional hinges on the fact that monadic programs can be treated as pro-
ducing a description of the IO actions to be performed, instead of executing
them directly. The actual execution only happens when computing the observ-
able result of the description, a process conceptually separate from evaluation.
However, as GHC uses monads to support mutable references, and these refer-
ences can contain lambda terms, the “evaluation” and “observation” functions
would need to be defined as co-routines. As only the evaluation part adheres
to Sabry’s definition, we feel that the term “purely functional”, when applied
to a language as a whole, is a description of the formalisation of that language,
and not of the feature set presented to the user. It is not about the “lack of
side effects” or “lack of mutable state”, because Haskell provides both of these.

On the other hand, the term “pure” when applied to a single expression has
a more widely accepted meaning. A pure expression has no side effects and
its evaluation can be reordered with any other expression without affecting its
result. If the evaluation cannot be safely reordered with another then we will
call the expression “impure”. The ability to reorder expressions is an operational
equivalence.

In [Fel91] Felleisen notes that: “an increase in expressive power is related to a
decrease in the set of “natural” (mathematically appealing) operational equiv-
alences”. In §1.3 we saw that the omission of destructive update from a lan-
guage reduces its expressiveness because it means there is no easy way to update
shared values contained within data structures. By “no easy way” we mean that
if we had a program that destructively updated a shared value, and we had to
rewrite that program without using update, then we would need to perform far
reaching changes to the code.

Our language, Disciple, is based on Haskell and is extended to support the
destructive update of arbitrary structures, and some other impure features.
We add these features to increase the expressive power of the language, but by
doing so we lose certain operational equivalences. The game is then to win a
high degree of expressiveness while losing only a small number of operational
equivalences. Expressiveness is not easy to quantify, but we touched on it in
our discussion of why destructive update matters. In Chapter 4 we discuss how
we have organised our core language so that only the parts of the program that
use impure features lose operational equivalences. This allows the full gamut of
program optimisations to be applied to the pure parts, which we feel is a fair
compromise.

Non-termination is not an effect

In Disciple, the time taken for a program to evaluate is not formally observ-
able, though we do not consider this approach to be the only valid option. For

1.4. WHAT IS PURITY? 35

example, in a hard real time system the time taken to evaluate a program is
just as important as its final result (by definition). If a program written in
such a system cannot produce its result in the required time, then the pro-
gram is wrong. In Disciple we have no formal support for such requirements,
other than good intentions. As we leave run time unobservable, then it follows
that non-termination should not be observable either. This is a difference to
Tolmach’s system [Tol98] which has specific support for pure but potentially
non-terminating computations. We will return to this in §4.5.1. Although non-
termination is not observable, we certainly don’t want to introduce it into an
otherwise terminating program. By the definition of weak equivalence, intro-
ducing non-termination would not change a program’s meaning, but it would
certainly aggravate the programmer.

DDC is a general purpose compiler and its role is to produce a binary that runs
“fast enough” to satisfy the programmer. This “fast enough” is not well defined,
though the general rule is the faster the better. This has implications for
our handling of potentially non-terminating expressions. Suppose ⊥ represents
some non-terminating, but otherwise effect free expression. If, when compiling
a program, we see an expression of the form ((λz. 5) ⊥) then we will be free to
perform a compile time β-reduction and rewrite this to 5, or not. Rewriting it
reduces the run time of the program, from infinite to something finite, which
we take as being a good thing. However, this treatment of non-termination is
at odds with some styles of imperative programming that use functions like:

void loop ()

{

while (true)

;

}

Although this function appears to do nothing, as part of a larger program it
may be doing nothing for a particular purpose. For example, programs in
embedded systems are often based around interrupt service routines (ISRs).
Such programs typically use the main routine to set up a number of ISRs, and
then enter an endless loop. When a hardware device requires service, or a timer
expires, the processor calls the ISR, does some computation and returns to the
main loop. In this case the program is not supposed to terminate, and it would
be wrong to “improve” it by eliminating the loop. In DDC we handle this by
requiring endless loops to contain a side effecting function. For example:

loop () = let = sleep 1 in loop ()

The type of sleep will include an effect that signals to the compiler that the
function is evaluated for some reason other than to gain its return value. We
discuss effect types in §2.3.

Referential Transparency

Purity is related to the notion of referential transparency. A language is said to
be referentially transparent if any subexpression can be replaced by any other
that is equal in value, without affecting the end result of the program [SS90].

36 CHAPTER 1. INTRODUCTION

Reusing our previous example:

(λx. double x) (succ 5)

If we take (succ 5) to have the value 6 then we are free to replace any instance
of (succ 5) with this value, without changing the result of the program:

(λx. double x) 6

This is clearly valid, because it is the result we would have obtained when
reducing the expression call-by-value anyway, and we know that the lambda
calculus is pure.

For contrast, consider the following expression which reads a character from
the console:

getChar ()

Is this expression referentially transparent? If we were to say that the “value” of
getChar () is a character, then the answer would be no. The character returned
will depend on which key the user presses, and could be different every time.
We cannot take the first character that the user enters and use this to replace
all other instances of getChar () in the program without changing its meaning.

We could equally say that this expression does not in fact have a value separate
from the context in which it is evaluated. Knowledge of the return value is
inextricably linked to knowledge of what key the user will press. Saying that
the “value” of getChar () is a just character is a gross oversimplification.

Another way of looking at this is to say that the expression getChar (), and the
character value, are not observationally equivalent [Gun92]. The observed result
of evaluating a character is just the character, but the evaluation of getChar ()
also changes (or examines) the state of the outside world.

If desired, we could deal with this problem by simply embedding the notion
of “the outside world” directly into the space of values. Once this is done we
might then pretend that the language was referentially transparent all along.
In Haskell syntax, we could give getChar the following type:

getChar :: World → (Char ,World)

This function takes the previous state of the world and returns a character
along with the new world. The technique of threading the world through IO
functions goes back to at least FL [AWW91], though the state parameter was
named the history instead of the world.

To construct a useful example, we would also like to have a function which
prints characters back to the console:

putChar :: Char →World →World

The problem of manufacturing the initial world can be solved by introducing a
primitive function which executes the program, similarly to the main function
in C or Haskell.

runProg :: (World →World)→ ()

1.4. WHAT IS PURITY? 37

Now we can can write a program which reads a character and prints it back to
the user:

let prog world
= (let (c, world2) = getChar world

world3 = putChar c world2
in world3)

in runProg prog

Whether we chose to swallow these definitions would likely depend on whether
we had constructivist or intuitionistic tendencies. As it is impossible to actu-
ally construct a value of World type, we cannot replace an expression such as
(getChar world) with its resulting value, like we did with (succ 5). We could
replace it with an expression such as (id (getChar world)), but that seems
pointless.

Nevertheless, programming in this style has an important advantage. We can
write our compiler as though the language were indeed pure and referentially
transparent, because the act of passing around the world explicitly introduces
the data dependencies needed to enforce the desired sequence of effects. In
addition, we do not actually need to construct the world value at all. At runtime
can we can simply pass around a dummy value, or eliminate the world passing
entirely during compilation, once it has served its purpose. This allows the
programmer to manage the problem, but the burden of correctness is theirs.
For some programs, failing to supply adequate data dependencies can cause
unexpected results at runtime.

Data Dependencies

Consider the following expression:

f (putStr “hello”) (putStr “world”)

In what order should these two strings be printed? If we read this as a curried,
call-by-value application, then the expression is equivalent to:

(f (putStr “hello”)) (putStr “world”)

In this case the output would be: “worldhello ”. On the other hand, if the
compiler did a left to right conversion to administrative normal form during
desugaring, then we could also read the expression as:

let x = putStr “hello”
y = putStr “world”

in f x y

If the runtime system then evaluated these bindings top to bottom, in a call-by-
value manner, then the output would instead be: “helloworld”. If evaluation
was call-by-name then it would depend on which order f used its arguments, if
at all.

If we instead converted the expression to C99, its result would be undefined
by the language standard [C05]. In C99, side effects are only guaranteed to be
completed at each sequence point, before moving onto the next one. There is a
sequence point just before the call to a function, but only after all arguments

38 CHAPTER 1. INTRODUCTION

are evaluated. Each argument does not have its own sequence point, so the
compiler is free to call the putStr functions in any order.

If we do not wish to rely on the order specified (or not) by the language stan-
dard, we could instead use our world passing mechanism to enforce a particular
sequence:

let prog world
= (let (x,world2) = putStr “hello” world

(y,world3) = putStr “world” world2
in fun x y world3)

in runProg prog

Now there there is no ambiguity.5 Assuming that putStr is an atomic, primi-
tive operation which is strict in both arguments, the first occurrence must be
evaluated before the second because we need to pass the token bound to world2
to the next occurrence.

Unfortunately, this mechanism falls apart if we mix up the variables binding the
world token, such as world and world2 . Our program can also give unexpected
results if we accidentally re-use them:

let prog world
= (let (x,) = putStr “hello” world

(y,) = putStr “world” world
in fun x y world)

in runProg prog

In this case we have passed the same token to each instance of putStr . In a
call-by-need language such as Haskell, and in the absence of data dependencies,
the order in which let bindings are evaluated depends on the order their values
are demanded by the surrounding program.

1.5 Linear and uniqueness typing

Linear typing is a way to enforce that particular values in a program, like our
world token, are used in a single threaded manner. Linear values can be used
once, and once only, and cannot be discarded [Wad90b]. Uniqueness typing
combines conventional typing with linear typing so that non-linear values, ca-
pable of being shared and discarded, can exist in the same program as linear
values [BS94]. This can be done by adding sub-typing and coercion constraints
between uniqueness variables as in Clean [BS93], or more recently, by using
boolean algebra and unification as in Morrow [dVPA07].

With uniqueness typing we can give putStr the following type:

putStr :: String× ×
−→World• ×

−→World•

The first • annotation indicates that when we apply this function, the world
token passed to it must not be shared with any other expression. On the right of
the arrow, the • indicates that when the function returns, there will be no other
references to the token bar this one. This forces the world token to be used in

5Or at least less ambiguity, we’re still glossing over the actual operational semantics of the

language.

1.5. LINEAR AND UNIQUENESS TYPING 39

a single threaded manner, and not duplicated. In contrast, the × annotation
indicates that the String and function values may be shared with other parts
of the program.

Using this new type explicitly disallows sharing the world as per the example
from the previous section:

let prog world
= (let (x,) = putStr “hello” world

(y,) = putStr “world” world
in fun x y world)

in runProg prog

Here, the world token passed to putStr is non-unique because there are three
separate occurrences of this variable. On an operational level, we can imagine
that in a call-by-need implementation, a thunk is created for each of the let
bindings, and each of those thunks will hold a pointer to it until they are
forced.

Uniqueness typing can also be used to introduce destructive update into a
language whilst maintaining the illusion of purity. From this point on we will
elide × annotations on function constructors to make the types clearer.

Using the Morrow [dVPA07] system we could define:

newArray :: Int× −→ (Int× → au) −→ Array• au

update :: Array• au −→ Int×
•
−→ au •

−→ Array• au

newArray takes the size of the array, a function to create each initial element,
and produces a unique array. The u annotation on the type variable a is a
uniqueness variable, and indicates that the array elements are polymorphic in
uniqueness. The update function takes an array, the index of the element to
be updated, the new element value, and returns the updated array. Notice
the uniqueness annotations on the two right most function arrows of update.
As we allow partial application we must prevent the possibility of just the
array argument being supplied and the resulting function additionally shared.
When applying a primitive function like update to a single argument, many
implementations will build a thunk containing a pointer to the argument, along
with a pointer to the code for update. If we were to share the thunk then we
would also share the argument pointer, violating uniqueness.

Making the array unique forces it to be used in a single threaded manner. This
in turn allows the runtime system to use destructive update instead of copy
when modifying it. We can do this whilst maintaining purity, as uniqueness
ensures that only a single function application will be able to observe the array’s
state before it is updated.

To read back an element from the array we can use the select function:

select :: Array• a× −→ Int×
•
−→ (a×, Array• a×)•

select takes an array, the index of the element of interest and returns the el-
ement and the original array. As the tuple returned by the function contains
a unique array it must also be unique. This is known as uniqueness propa-
gation[BS93]. Similarly to the partial application case, if the tuple could be
shared by many expressions then each would also have a reference to the array,
ruining uniqueness.

40 CHAPTER 1. INTRODUCTION

Notice that it is only possible to select non-unique elements with this function.
After select returns there will always be two references to the element, the one
returned directly in the tuple and the one still in the array.

One way to work around this problem is to replace the element of interest with
a dummy at the same moment we do the selection. Of course, once we have
finished with the element we must remember to swap it back into the array. By
doing this we can preserve uniqueness, but at the cost of requiring a different
style of programming for unique and non-unique elements.

replace :: Array• a• −→ Int×
•
−→ a•

•
−→ (a•, Array• a•)•

Uniqueness typing goes a long way towards introducing destructive update into
a language, while maintining the benefits of purity. Unfortunately, besides
the added complexity to the type system, programs using it can become quite
verbose. Having the required data dependencies in one’s code is all well and
good, but manually plumbing every unique object around the program can
become tedious.

We will take a moment to meditate on the following type signature, from the
analtypes module of the Clean 2.2 compiler source code:

checkKindsOfCommonDefsAndFunctions

:: !Index !Index !NumberSet ![IndexRange]

!{# CommonDefs} !u:{# FunDef} !v:{# DclModule}

!* TypeDefInfos !* ClassDefInfos !* TypeVarHeap

!* ExpressionHeap !* GenericHeap !* ErrorAdmin

-> (!u:{# FunDef}, !v:{# DclModule}, !* TypeDefInfos

, !* TypeVarHeap , !* ExpressionHeap , !* GenericHeap

, !* ErrorAdmin)

This function has thirteen arguments, and the returned tuple contains 7 compo-
nents. The !, # and * are strictness, unboxedness and uniqueness annotations
respectively, and {a} denotes an array of elements of type a.

Admittedly, we did spend a few minutes looking for a good example, but the
verbosity of this signature is not unique among its brethren. We are certainly
not implying that the Clean implementer’s coding abilities are anything less
than first rate. However, we do suggest that the requirement to manually
plumb state information around a program must be alleviated before such a
language is likely to be adopted by the community at large. With this point in
mind, we press on to the next section.

1.6 State monads

In the context of functional programming, a monad is an abstract data type
for representing objects which include a notion of sequence. Introduced by
Moggi [Mog89] and elaborated by Wadler and others [Wad90a, PJW92, Lau93a,
LHJ95], they are a highly general structure and have been used for diverse
applications such as IO, exceptions, strictness, continuations and parsers [LM01,
HM98].

In Haskell, the primary use of the general monad structure is to hide the plumb-
ing of state information such as world tokens, and the destructively updateable

1.6. STATE MONADS 41

arrays from the previous section. For example, in thread-the-world style, a
function to read an Int from the console would have type:

getInt :: World → (Int ,World)

This signature has two separate aspects. The Int term in the tuple gives the
type of the value of interest, while the two occurrences of World show that this
function also alters the outside world. We can separate these two aspects by
defining a new type synonym:

type IO a = World → (a, World)

We can then rewrite the type of getInt as:

getInt :: IO Int

This new type is read: “getInt has the type of an IO action which returns an
Int”. Note that we have not altered the underlying type of getInt , only written
it in a more pleasing form. We can also define a function printInt , which prints
an Int back to the console:

printInt :: Int → IO ()

By applying the IO type synonym we can recover its thread-the-world version:

printInt :: Int →World → ((), World)

The magic begins when we introduce the bind combinator, which is used to
sequence two actions:

bindIO :: IO a→ (a→ IO b)→ IO b
bindIO m f

= λ world.
case m world of

(a,world ′)→ f a world ′

bindIO takes an IO action m, a function f which produces the next action in
the sequence, and combines them into a new action which does both. In a
lazy language such as Haskell we use a case-expression to force the first action
to complete before moving onto the second. In a default-strict language like
Disciple we could write bind using a let-expression, which would have the same
meaning:

bindIO :: IO a→ (a→ IO b)→ IO b
bindIO m f

= λ world.
let (a, world ′) = m world
in f a world ′

We also need a top-level function to run the whole program, similar to runProg
from before:

runIO :: IO a→ a
runIO m = m TheWorld

In this definition, TheWorld is the actual world token value and is the sole
member of type World . In a real implementation, World could be made an

42 CHAPTER 1. INTRODUCTION

abstract data type so that client modules are unable to manufacture their own
worlds and spoil the intended single-threadedness of the program. We would
also need to ensure that only a single instance of runIO was used.

Here is a combinator that creates an action that does nothing except return a
value:

returnIO :: a→ IO a
returnIO x = λworld . (x,world)

Now we can write a program to read two integers and return their sum, without
needing to mention the world token explicitly:

runIO
(bindIO getInt (λx.
bindIO getInt (λy.
returnIO (x + y))))

In Haskell we can use any function of two arguments infix by surrounding it with
back-quotes. We can also use the function composition operator $ to eliminate
the outer parenthesis:

runIO $
getInt ‘bindIO‘ λx.
getInt ‘bindIO‘ λy.
returnIO (x + y)

Finally, by using do-notation and the monad constructor class [Jon93] we can
hide the uses of bindIO and write this program in a more familiar style:

runIO $
do x ← getInt

y ← getInt
returnIO (x + y)

Representing effects in value types is a double edged sword

The use of state monads in this way has several benefits. First and foremost, by
using bindIO we have eliminated the need to manually plumb the world token
around our programs. We can also use state monads to manage internal state
by replacing the world token with references to these structures. Additionally,
because monads are a general data type whose application is not restricted
to just IO and state, we can define combinators which work on all monads
including lists, exceptions, continuations and parsers.

Including effect information in types also aids program documentation. Pro-
grammers often write code comments to record whether certain functions per-
form IO actions or use internal state. By including this information directly
in type signatures we leverage the compiler to check that this documentation
remains valid while the program is developed.

However, the fact that effect information is represented in the space of values
and value types is a double edged sword. On one hand, we did not need any
specific support from the language to define our IO monad. On the other
hand, functions which perform IO actions (still) have different structural types
compared to ones that do not.

1.6. STATE MONADS 43

For example, a function which doubles an integer and returns the result would
have type:

double :: Int → Int

A function which doubles an integer as well as printing its result to the console
would have type:

doubleIO :: Int → IO Int

Imagine that during the development of a program we wrote a function that
uses the first version, double:

fun :: Int → Int
fun x
= let . . . = . . .

x′ = double x
y = . . .

in x′ + y

Suppose that after writing half our program we then decide that fun should
be using doubleIO instead. The definition of fun we already have uses a let-
expression for intermediate bindings, but now we must refactor this definition
to use the do-notation, or use an explicit bind combinator to plumb the world
through. For the do-notation, we must change the binding operator for our
monadic expression to ←, as well as adding a let keyword to each of the non-
monadic bindings:

fun :: Int → IO Int
fun x
= do let . . . = . . .

x′ ← doubleIO x
let . . . = . . .
x′ + y

The type of fun has also changed because now it performs an IO action as well.
We must now go back and refactor all other parts of our program that reference
fun. In this way the IO monad begins to infect our entire program, a condition
colloquially known as monad creep [Lou08] or monaditis [Kar08]. Although we
have hidden the world token behind a few layers of syntactic sugar, it is still
there, and it still perturbs the style of our programs. The space of values and
the space of effects are conceptually orthogonal, but by representing effects as
values we have muddled the two together.

One could argue that in a well written program, code which performs IO should
be clearly separated from code which does the “real” processing. If this were
possible then the refactoring problem outlined above should not arise too often.
However, as monads are also used for managing internal state, and such state
is used in so may non-trivial programs, all serious Haskell programmers will
have suffered from this problem at some point. In practice, the refactoring of
programs between monadic and non-monadic styles can require a substantial
amount of work [LNSW01].

44 CHAPTER 1. INTRODUCTION

Haskell has fractured into monadic and non-monadic sub-languages

Being a functional language, programs written in Haskell tend to make heavy
use of higher-order functions. Higher-order functions serve as control structures
similar to the for and switch statements in C, with the advantage that new
ones can be defined directly in the source language.

This heavy use of higher-order functions aggravates the disconnect between
the monadic and non-monadic styles of programming. Every general purpose
higher-order function needs both versions because monads are so often used to
manage internal state. Consider the map function which applies a worker to all
elements of a list, yielding a new list:

map :: (a→ b)→ [a]→ [b]
map f [] = []
map f (x : xs) = f x : map f xs

This definition is fine for non-monadic workers, but if the worker also performs
an IO action or uses monadic state then we must use the monadic version of
map instead:

mapM :: Monad m⇒ (a→ m b)→ [a]→ m [b]
mapM f [] = return []
mapM f (x : xs)
= do x′ ← f x

xs′ ← mapM f xs
return (x′ : xs′)

Interestingly, we can make the non-monadic definition of map redundant by
deriving it from this monadic one. We will use the identity monad, which
contains no state and does not allow access to the outside world. This monad
is just an empty shell which satisfies the definition:

map :: (a→ b)→ [a]→ [b]
map f xx = runIdentity (mapM (λx. return (f x)) xx

Although we have no proof, we believe that it is possible to transform at least
all second order monadic functions to similar non-monadic versions in this way.
It is a pity then that the standard Haskell libraries are missing so many monadic
versions. For example, the Data.Map package of GHC 6.10.1, released in Novem-
ber 2008, defines a finite map collection type that includes the functions map,
mapWithKey and mapAccum among others. The types of these functions are:

map :: (a→ b) → Map k a→ Map k b
mapWithKey :: (k → a→ b) → Map k a→ Map k b
mapAccum :: (a→ b→ (a, c)) → a→ Map k b→ (a,Map k c)

There are no equivalent mapM , mapWithKeyM and mapAccumM functions in
this library. In fact, there are no monadic versions for any of the Data.Map

functions. The Map data type is also abstract, so if the programmer wants
to apply a monadic worker function to all of its elements then life becomes
troublesome. One solution is to convert the entire structure to a list and use
mapM discussed earlier. Of course, doing this will incur a performance penalty
if the compiler is unable to optimise away the intermediate lists.

The lack of monadic versions of functions is not confined to the Data.Map

library. GHC 6.10.1 also lacks monadic versions of the list functions find , any

1.6. STATE MONADS 45

and span. If monads were mostly used for domain specific applications, then the
lack of library functions may not hurt in practice. For example, we have used
the Parsec monadic parser combinator library [LM01] in the implementation
of DDC. During development we mainly used the parser specific combinators
provided by the library, and doubt that we could even think of a sensible use
for mapAccumM in this context.

On the other hand, the management of IO and internal state is not a domain
specific problem. State monads permeate the source code for many well known
Haskell applications such as darcs and the aptly named XMonad window man-
ager [SJ07].

We do not feel that the lack of monadic library functions is due to poor per-
formance on the part of library developers. Similarly, the lack of a standard
linked list library in C99 can easily be blamed on the absence of a polymorphic
type system in the language. In C99 there is no way to express a type such as
length :: [a]→ Int , so programmers tend to roll their own list structures every
time. A list of integers could be defined as:

struct ListInt { int x; struct ListInt* xs; };

In C99, functions over lists can be succinctly written as for-loops:

int lengthListInt (struct ListInt* list)

{

int len = 0;

for (struct ListInt* node = list;

node != 0;

node = node ->xs)

len ++;

return len;

}

This works, but the programmer must then define a separate version of each
list function for every element type in their program. Either that or abuse the
void* type. More commonly, the definitions of simple list functions are typed
out again and again, and more the complex ones are defined with macros. A
library writer cannot hope to create functions for every possible element type,
so we are left with no standard list library at all.

Similarly, Haskell does not provide a convenient way to generate both monadic
and non-monadic versions of a function, nor does it provide an easy way to
abstract over the difference. Programmers are taught not to cut and paste
code, so we are left with one version of each function but not the other.

Monad transformers produce a layered structure

Monad transformers [LHJ95] offer a convenient way of constructing a monad
from several smaller components, each providing a different facet of its compu-
tational behavior. The resulting data type is known as a monad stack, due to
the layered way of constructing it.

46 CHAPTER 1. INTRODUCTION

For example, version 0.8 of the XMonad window manager uses a stack providing
configuration information, internal state and IO:

newtype X a = X (ReaderT XConf (StateT XState IO) a)

This type is constructed by applying two monad transformers, ReaderT and
StateT to the inner monad, IO . StateT extends IO with the ability to access
the XState record type, while ReaderT extends it with the ability to access
configuration information stored in the XConf record type.

The implementation of DDC’s type inferencer also uses a monad stack built
with StateT and IO . In this case, StateT supplies access to the current state
of the algorithm while IO provides a destructively updatable array used to
represent the type graph. Monad transformers save the programmer from the
need to manually define their own monads. Without such a mechanism they
would be forced to redefine primitive functions like bind and return each time
a new monad was needed.

As mentioned by Filinski [Fil94], the structure created by monad transformers
is distinctly hierarchical. In the X type above, IO is on the bottom, followed
by StateT , followed by ReaderT . This fact is reflected in programs using it,
as explicit lifting functions must be used to embed computations expressed
in lower monads into the higher structure. For example, the liftIO function
takes an IO action and converts it into an equivalent action in a monad which
supports IO:

liftIO :: MonadIO m⇒ IO a→ m a

For both XMonad and the DDC type inferencer, the fact that monad trans-
formers produce a layered structure is of no benefit. Actions which supply
configuration information, alter the internal state of the program, and inter-
face with the outside world are all commutable with each other. On the other
hand, monads which express computational behaviors such as back-tracking
and exceptions are not similarly commutable [Fil94].

The XMonad source code of November 2008 includes a binding which renames
liftIO into the shorter io. A hand count by the author yielded 57 separate uses
of this lifting function, versus 65 occurrences of the keyword do. If it were
possible to collapse the monad stack into a single layer then we could avoid
this explicit lifting of IO actions. Of course, we would want to achieve this
without losing the behavioral information present in their types. The effect
typing system we shall discuss in the next chapter does just this.

Interestingly, from the high occurrence of IO lifting functions and the perva-
siveness of the X type, we see that XMonad is in fact an imperative program.
It is imperative in the sense that its processing is well mixed with IO, though
not in the sense that it is based around the destructive update of a global store.
Although it is written in a “purely functional language”, this does not change
the fact that the construction of a window manager is an inherently stateful
and IO driven problem, with a stateful and IO driven solution.

1.7. REF TYPES INVITE LARGE REFACTORISATION EXERCISES 47

1.7 Ref types invite large refactorisation exercises

SML obstinately supports destructive update, though its use is restricted to ar-
rays and to data structures that incorporate the special Ref type. The following
functions are used to program with Ref . We use Haskell syntax for consistency.

newRef :: a→ Ref a
readRef :: Ref a→ a
writeRef :: Ref a→ a→ ()

newRef takes an object and returns a fresh mutable reference to that object.
readRef takes a reference to an object and returns the object. writeRef takes a
mutable reference, a new object, and updates the reference to point to the new
object.

Although serviceable, tying update to a particular type constructor forces the
programmer to decide which parts of their structures should be updatable when
their types are defined. On the surface this may seem reasonable, but consider
the design of a simple library for a cons-list. We start with the data type:

data List a
= Nil
| Cons a (List a)

We would now like to define a set of functions which operate on values of this
type. One such function is index , which returns the element at a particular
position in the list:

index :: Int → List a→ a
index 0 (Cons x xs) = x
index n (Cons x xs) = index (n− 1) xs
index Nil = error . . .

Suppose that once we have finished this definition we then want a function
replace that destructively replaces the element at a certain position in the list.
This requires the head of the Cons cell to be updatable, so we insert a Ref
constructor into the data type:

data List a
= Nil
| Cons (Ref a) (List a)

The definition of replace is then:

replace 0 e (Cons rx xs) = writeRef rx e
replace n e (Cons rx xs) = replace (n− 1) e xs

This is all well and good, but as the List type has changed we need to go back
and change the definition of index to read the element out of the reference
before returning it. We must also inspect every other function we’ve defined
that uses the List type. If a function accesses the head of a Cons cell then it
needs a call to readRef as well.

index :: Int → List a→ a
index 0 (Cons x xs) = readRef x
index n (Cons x xs) = index (n− 1) xs
index Nil = error . . .

48 CHAPTER 1. INTRODUCTION

Conceptually, the operation of index hasn’t changed at all. index still recur-
sively steps through the list until it finds the desired element, then returns it.
However, we had to modify its definition because we added a function to the
library which requires a certain property (mutability) of the data structure,
even though index itself doesn’t make use of that property. Notice that the
modifications required are purely mechanical in nature, and that this problem
is very similar to monad creep discussed in the previous section.

Suppose that after defining a few more functions, we desire a new one called
insertAt . This function will make use of destructive update to insert a new
element at a particular position in the list. This requires the tail of each Cons
cell to be mutable as well, so we have to change the data type once again:

data List a
= Nil
| Cons (Ref a) (Ref (List a))

The definition for insertAt is:

insertAt :: Int → a→ List a→ ()

insertAt e Nil = error . . .

insertAt 0 e (Cons r rxs)
= let xs = readRef rxs

in writeRef rxs (Cons (Ref e) (Ref xs))

insertAt n e (Cons r rxs)
= let xs = readRef rxs

in insertAt (n− 1) e xs

Once again, we must go back and inspect every function we have defined so far
to make sure that all accesses to the tail of a Cons cell first read the reference.
Our index function is now:

index :: Int → List a→ a
index 0 (Cons x xs) = readRef x
index n (Cons x xs) = index (n− 1) (readRef xs)
index Nil = error . . .

More mechanical modifications have wasted more programming time. What
can be done to alleviate this problem? The central activity of programming is
defining data structures and writing functions which operate on them. Unless a
programmer is simply replicating a program they have written before then they
are unlikely to know exactly which parts of their structure should be wrapped
in Ref and which can be left bare.

If we define all structures to be mutable from the start then we can avoid having
to re-inspect existing functions as the data type evolves, though this would
require many superfluous calls to readRef . In addition, a naive implementation
of Ref would simply insert reference objects into the run-time data structure,
so we would pay a performance penalty as well:

C

R

R C R

R

I I1 2

1.8. PRACTICAL LIMITATIONS OF LAZY EVALUATION 49

On the other hand, if we define our data types without using Ref , then struc-
tures of that type can not be updated — ever. If those structures are provided
by a library and a client programmer decides they actually do want to perform
an update, then it is likely that the only practical solution will be to define
their own types and write code that duplicates functionality already present in
the original library.

This is exactly the case with SML lists and tuples, which are all immutable.
Although some code duplication can be alleviated by using similar module
signatures for mutable and immutable objects, the fact that the two have fun-
damentally different types only serves to encourage it. If only the immutable
versions are provided in base libraries, then users are encouraged to use these
structures in cases where a mutable one would be more appropriate. This in
turn relegates mutable structures to be second class citizens of the language.

1.8 Practical limitations of lazy evaluation

The following example from [GS01] demonstrates the subtlety of space usage
in lazy languages:

let xs = [1..n]
x = head xs
y = last xs

in x + y

We will use GHC as a reference point for the behavior of a real implementation.
When compiled with no optimisations, the execution of this program will create
a thunk for each let-binding before evaluating the addition [PJ92]. If we assume
that addition demands its arguments left to right, the thunk for x will be forced
first, resulting in the value 1. This thunk will then be overwritten with its value,
which eliminates the contained reference to xs. The evaluation of y entails the
construction and traversal of the list [1..n] until we reach its last element. In
a garbage collected implementation this can be done in constant space because
last does not hold a reference to a list cell once it has traversed it.

However, if we change the order of arguments to addition the program consumes
space proportional to the length of the list:

let xs = [1..n]
x = head xs
y = last xs

in y + x

In this case, the evaluation of y entails the construction of the entire list. The
list cannot be garbage collected until the thunk for head xs has been forced,
because it contains a reference to its first element. This example shows that
only slight modifications to a program can result in dramatic differences in
space usage.

All strictness analyses are incomplete

The run time performance of many lazy programs can be improved by exploiting
the strictness properties of functions. A function f is strict if and only if

50 CHAPTER 1. INTRODUCTION

f ⊥ ≡ ⊥ [PJ87]. This can arise for three reasons. If f inspects the value of its
argument when it evaluates, then it will diverge if its argument does. If f always
returns its argument uninspected, then the result will be ⊥ if the argument is.
Finally, f may always diverge, independent of the argument value. If none of
these cases apply then function is non-strict.

For example, the choose function is strict in its first argument but not the
others:

choose b x y = if b then x else y

When this function is applied to its three arguments, it will always require the
value of b. On the other hand, either x or y may be returned, but not both. A
similar example is the first function which returns just its first argument while
discarding the second:

first x y = x

As x is passed through to the result, it is strict in this argument. As the
function body makes no reference to y, it is non-strict in that one. Strictness
analysis [BHA85, WH87, SR95] is used to recover the strictness properties of
functions. A compiler can use this information to convert a call-by-need pro-
gram into a more call-by-value version without changing its meaning. For an
implementation such as GHC, this amounts to identifying the let-bound vari-
ables which are passed to strict functions, and evaluating those bindings as soon
as they are encountered, instead of building thunks.

For many lazy programs, especially those performing lots of numeric computa-
tion, evaluating strict bindings early can result in substantial performance im-
provements. Early evaluation saves the allocation and initialisation of thunks,
as well the need to update and garbage collect them once their values are de-
manded.

In practice, a compiler should reduce strict bindings to weak head normal form
(whnf) [PJ87] only. Reduction to whnf eliminates outer redexes while allowing
thunks to be present deep within data structures, such as at the tail position
of lists. To see why, consider our first example again:

let xs = [1..n]
x = head xs
y = last xs

in x + y

The fact that addition and head are strict in their arguments implies that the
xs, x, and y bindings can be evaluated as soon as they are encountered. If we
evaluate [1..n] to whnf we construct just the outer Cons cell and the program
runs in constant space. However, if we were to fully evaluate [1..n] before taking
its head, then the program will consume space proportional to this list.

Like all compile time analyses, strictness analysis is necessarily incomplete.
This is plainly obvious from our choose example:

choose x y z = if x then y else z

Suppose we write an expression which uses choose to print one of two results:

putStr (choose b exp1 exp2)

1.8. PRACTICAL LIMITATIONS OF LAZY EVALUATION 51

putStr is strict in its argument, yet the question of whether it prints exp1 or
exp2 can only be answered by knowing the value of b. In general, the value
of b cannot be determined at compile time. Apart from bumping up against
the halting problem, this fact is obvious if we consider a situation where b is
derived from user input.

In a typical Haskell program, many functions are concerned with processing
algebraic data. Such functions are usually written with pattern matching, or
with a case-expression that examines the outer constructor of the input value.
case-expressions are a generalisation of if-expressions, so we have the same
problem as with the choose example above. In general, for a particular function
call we can not know what the outer constructor of its argument will be, which
defeats strictness analysis in a similar manner.

Space leaks can be elegantly created with mapAccumL

In a lazy functional program, a space leak is created when unevaluated thunks
reference a large amount of data, preventing it from being reclaimed by the
garbage collector. This can be counter intuitive at first glance. How can an
unevaluated expression use more space than its actual result? Consider the
expression (range 1 100) which builds the list [1..100]. We would expect a
thunk representing the application of range to its arguments 1 and 100 to use
much less space than a fully evaluated list of 100 elements.

However, consider the case where one of the arguments is a variable instead
of an integer value. A thunk which represents the application (range 1 n)
contains a reference to the object n, and as long as the thunk is live this object
cannot be garbage collected. Suppose n is also a thunk, and that it references
a large amount of data. While our original list remains unevaluated, this data
remains live. It may be that the program’s performance would be improved by
forcing the list to be fully evaluated as soon as possible. This would allow the
garbage collector to reclaim space used by thunks and objects that are no longer
referenced. Of course, whether this would work in practice is very application
specific. Factors to consider include the size of the resulting list versus the size
of the retained data, whether the entire list value will actually be used by the
program, whether the live data is also held live by other expressions, cache and
main memory sizes, and so on.

Space leaks are especially common in lazy programs which are based around
state and state transformers. For these programs, execution is divided into a
sequence of steps, with a well-defined state before and after each step. The
function f takes the old state, some input x and produces the next state and
some output y:

f f

yy

x

statestate 2state10

x 1

10

0

52 CHAPTER 1. INTRODUCTION

In Haskell, this pattern of computation is expressed by the function mapAccumL
which has type:

mapAccumL :: (state → x→ (state, y))→ state → [x]→ (state, [y])

mapAccumL takes a transition function, an initial state, a list of inputs and
produces the final state and the list of outputs. Many programs use a similar
pattern of computation, though not all express it with mapAccumL. Consider
an interactive program such as a computer game. We could imagine that state
is a description of the game world, x is the user input, y is a description of the
user display, and f is the game logic which computes a new state and display
based on the input.

For a computer game, the state could consist of the player’s position, surround-
ing terrain, current enemy positions, remaining ammunition, and so on. A
space leak is created when the program fails to demand the entire y value after
each step. Suppose that y includes the player’s score at each step of the game,
but this information is not displayed in real time. Although the score at each
step might be expressed by a single integer, as it depends on the current game
state at least past of this structure must be kept live until the integer is fully
evaluated. If a user plays the game for an hour, with a new state generated
30 times a second, then this can equate to a substantial amount of retained
data. Additionally, when the score is a non-trivial function of the current state,
reasoning about the amount of space wasted becomes intractable.

In Haskell, the only practical way to deal with a complex leak is to write
so called deepseq functions that manually traverse over an entire structure to
ensure it is fully evaluated. Other techniques can help, such as having the
garbage collector perform leak avoiding projections [Wad87], but to fully cure
leaks the programmer must ensure that all structures which should be evaluated
actually are. Most deepseq functions are written to eliminate all redexes in a
structure, and are therefore equivalent to the reduce to normal form strategy
from [THLPJ98]. A built-in deepseq function was proposed for Haskell’, the
successor standard to Haskell 98 [Has08], but as of November 2008 it has not
been implemented in GHC.

It is also possible to add strictness annotations to user defined data types. These
annotations prevent thunks being created at certain positions in the structure,
but cannot be easily be added to library defined types such as Map and List .

Case study of a space leak

A state based space leak was encountered while the author was developing a
graph coloring register allocator [Cha04, SRH04] for GHC 6.7. The algorithm is
based around a graph where each node represents a program variable. An edge
between two nodes represents a constraint that those two variables can not be
assigned to the same register. The goal is to assign registers, visualised as colors,
to each of the nodes in a way that satisfies the constraints, whilst using only
the available set of registers. The algorithm proceeds by extracting a constraint
graph from the code undergoing register allocation, and then attempting to
color it. If this is not possible with the available colors (registers) then the
algorithm modifies the code to store some variables on the stack instead of
registers, and tries again. For non-pathological programs this process should
converge within three or four iterations.

1.8. PRACTICAL LIMITATIONS OF LAZY EVALUATION 53

Graph coloring register allocation is a state based algorithm. The state con-
sists of the current version of the code undergoing allocation, along with the
constraint graph. As opposed to the mapAccumL function, there is no extra
per-step input to the state transition function corresponding to the x values
in the previous diagram. The output y values correspond to graph profiling
information, such as the number of colored versus uncolored nodes remaining
after each step.

When the allocator was being developed we were well aware of space leaks and
their causes. The intended operation of the algorithm was to build a complete
constraint graph, attempt to color it, and if that failed to build a new graph
and leave the old one for the garbage collector. We knew that if the program
retained any references to the profiling information for old graphs, then this
would prevent those graphs from being garbage collected. If this happened we
would have a space leak, so we made considerable effort not to retain profiling
information unless it was explicitly requested. We reasoned that if the user
requested profiling information then they would not mind if the allocator ran a
little slower due to retained data, as this was not a common operation.

However, once it was written, an examination of heap space [SPJ95] used by
the allocator revealed the following:

ghc-6.7.20070913 -B/home/t-benl/devel/ghc-HEAD-prof -fhardwire-lib-paths -O2 -fr

72,787,117 bytes x seconds Mon Sep 24 11:48 2007

seconds0.0 2.0 4.0 6.0

by
te

s

0M

2M

4M

6M

8M

10M

12M

14M

16M

18M

20M

22M

OTHER

(882)/StranalCore2Core

(527)Parser.CAF

(908)/genMachCode/NativeCo...

(613)PrelInfo.CAF

(850)/bin_exportsTypecheck...

(895)/ProfMassage/Stg2StgC...

(856)/bin_rulesTypecheck-R...

(862)/OccAnal/SimplifyCore...

(892)CorePrep

(896)CodeGen

(905)/ColorGraph/RegAlloc/...

(904)/RegAlloc/NativeCodeG...

(887)CoreTidy

MAIN

(863)/SimplTopBinds/Simpli...

(853)/bin_tycldeclsTypeche...

(893)CoreToStg

(848)Typecheck-Rename

(906)/BuildGraph/RegAlloc/...

The two large spikes in space usage that appear around 6 and 7 seven seconds
are directly attributable to the register allocator. This is when performing
allocation for the SHA1.hs module from the darcs 1.0.8 source code. Object type
profiling revealed that most of the space was taken up by thunks representing
function applications.

As to the exact cause of the leak, we are not sure. We could imagine that
when the compiler emits a particular compiled machine instruction, this action
demands the result of register allocation for that instruction. The registers allo-
cated to a particular instruction depend on what other registers are assigned to
surrounding instructions. We could then imagine a section of graph in the final
state of the allocator being demanded. This in turn might demand larger sec-
tions of graph from previous states, along with parts of the various intermediate
versions of assembly code that we tried to find allocation solutions for.

54 CHAPTER 1. INTRODUCTION

Good research has been done on formally analysing the space usage of call-by-
need programs [GS01, BR00]. However, trying to reason about the exact space
behavior of a three thousand line program, compiled with a production compiler
that incorporates tens, if not hundreds of individual optimisations is another
matter entirely. We plainly admit that our reasoning is little but inspired guess
work.

What we do know is that using a deepseq function to force the graph to be
fully constructed before coloring cured the worst of the problem. This result
was obtained through experimentation and frequent consultation with the heap
usage profile. The following profile is for the final version:

ghc-6.7.20070913 -B/home/t-benl/devel/ghc-HEAD-prof -fhardwire-lib-paths -O2 -fr

54,421,971 bytes x seconds Mon Sep 24 11:42 2007

seconds0.0 2.0 4.0 6.0

by
te

s

0M

2M

4M

6M

8M

10M

OTHER

(873)/FloatInwardsCore2Core

(907)/regLiveness/NativeCo...

(613)PrelInfo.CAF

(850)/bin_exportsTypecheck...

(908)/genMachCode/NativeCo...

(895)/ProfMassage/Stg2StgC...

(856)/bin_rulesTypecheck-R...

(862)/OccAnal/SimplifyCore...

(892)CorePrep

(896)CodeGen

(905)/ColorGraph/RegAlloc/...

(904)/RegAlloc/NativeCodeG...

(887)CoreTidy

MAIN

(863)/SimplTopBinds/Simpli...

(853)/bin_tycldeclsTypeche...

(906)/BuildGraph/RegAlloc/...

(893)CoreToStg

(848)Typecheck-Rename

In this version the large spikes in space usage have been reduced, resulting
in a peak usage around half of the unforced version. We conjecture that the
remaining cost attributed to (906)/BuildGraph/RegAlloc is mostly due to the
legitimate construction of the graph during allocation, though once again we
can not be sure. We deemed the profile acceptable, and moved on to other
things.

We glean several points from this experience. Firstly, although a programmer
may write what they feel is a state based program, if it is expressed in a lazy
language then it may not behave that way at runtime. Secondly, the exact cause
of space leaks in large lazy programs can be very hard to reason about. That
being said, although the problem may be hard to characterise, the solution is
well understood. Forcing thunks to values eliminates their contained references
and frees up objects for the garbage collector.

On a philosophical note, we feel there is an immense practical difference between
optimisation and control. Having a large number of optimisations in a compiler
is all well and good, but if the compiled code still doesn’t run fast enough
then the language (and/or compiler) must provide enough additional control
for the programmer to step in and fix the problem. If this is not possible then
the programmer will be forced to use a different language, and if that happens
more than once then they will be unlikely to choose the same system for their
next project.

1.9. A WAY FORWARD 55

In this case we were able to fix the problem. However, we do note the irony of
writing extra code to manually force the evaluation of expressions that we did
not intend to be suspended in the first place. We cannot, off hand, think of a
single place in the register allocator code where lazy evaluation was used for a
useful purpose.

We are not suggesting that laziness is never useful, more that it depends on the
application. For a selection of programs from the nofib benchmark suite [Par92],
Harris [HS07] gives the percentage of allocated thunks that were actually eval-
uated at run-time. In the 20 programs considered, 9 ended up evaluating at
least 99% of their thunks, 14 evaluated at least 90%, while only one evaluated
less than 80%.

The fact that a program evaluates almost all of its thunks does not imply it
does not make use of laziness. For example, if we use laziness to evaluate the
expression sum [0..100] in constant space, then all the thunks in the list will
be forced. The application of sum to a Cons cell demands the element value
as well as the tail of the cell. However, the fact that a program evaluates 99%
of its thunks would suggest that it is not creating lazy lists where the spine is
evaluated but the majority of the elements are not. It would also suggest that
the program is not using the “sexier” lazy structures, such as infinite game trees
[Hug89].

1.9 A way forward

Disciple allows destructive update and lazy evaluation to be present in the same
language. We do this while preserving the overall structure of types, and while
keeping most of the nice algebraic properties associated with purely functional
languages. By preserving the structure of types we hope to avoid the refactoring
exercises discussed earlier. We do not rule out support for state monads or Ref
types, rather we desire a system which does not require them to write most
programs.

We use a type based mutability and effect analysis. The analysis determines
which objects in the program might be destructively updated, and which are
guaranteed to remain constant. Using this information, the compiler can per-
form optimisations on the pure parts of the program while leaving expressions
with interfering computational effects in their original order. This strategy is
similar to that taken by Tolmach [Tol98] though we use a System-F [Rey74]
style core language instead of a monadic one. The core language uses a witness
passing mechanism to manage mutability and effect constraints, similar to that
used to manage type equality constraints in System-Fc [SCPJD07]. Although
the extra mutability and effect information is visible in source types, it can
usually be elided by the programmer, and is therefore not an undue burden.

The default evaluation method is call-by-value. This makes it easier to con-
struct an efficient implementation on current hardware, as well as eliminating
an important source of space leaks. The programmer may manually suspend
function applications when desired, and the runtime system will automatically
force them as needed. This is unlike library based implementations of laziness
in languages such as O’Caml. These implementations require the use of explicit
forcing functions, as well as changing the types of lazy values.

56 CHAPTER 1. INTRODUCTION

We also use our analysis to detect when an object is guaranteed not to be a
thunk. Our implementation of lazy evaluation is likely to be slower than a
natively lazy system such as GHC. However, non-lazy code should not suffer a
substantial performance penalty compared with other default strict languages
such as ML and C.

Our type system uses a type class based mechanism to attach purity, mutability,
constancy, laziness and other constraints to data types. This allows functions to
be polymorphic in those attributes and not require the overall structure of types
to be changed. We also use this mechanism to detect when the combination of
laziness and destructive update in the same program might give a result different
to the call-by-value case. We flag these as type errors and assert that our
language is still purely functional by Sabry’s definition [Sab98]. Our language
includes support for record types, and we use type directed field projections
which permit field names to be in record-local scope.

We would like for it to be possible and practical to write efficient programs in our
language. Finally, we would like it to be attractive to people who don’t actually
care that much about the philosophy of functional programming. We follow
Steele and Sussman [SS76], and Knuth [Knu74] in that a language designer’s
emphasis should be on helping the programmer solve their particular problems.
Our aim is not to separate language features into “good” and “bad”, only to
offer sharp tools in a hope they will be useful.

Chapter 2

Type System

We have seen that ML style references are clumsy to work with because their
use changes the structure of types. This causes mutable values to be type-
incompatible with constant values, and invites large re-factorisation efforts
when writing code. Could there be a better way? In a traditional impera-
tive language such as C, Pascal or Java, the programmer is free to update data
as they see fit, and the type of mutable data is not required to be structurally
different from that which remains constant. However, if we were to allow the
programmer to update any object in the system, without tracking it carefully,
then we would have to assume that every object was mutable. This would dra-
matically limit our ability to perform optimisations on the intermediate code.
With this in mind, we first consider the form of update we wish to support,
and then seek a way of tracking which objects it is applied to.

We intend this chapter to serve as a gentle introduction to our type system,
and to the concepts involved. For this reason we have refrained from starting
with a formal description of our language or its typing rules. This information
is given in §3.2.

57

58 CHAPTER 2. TYPE SYSTEM

2.1 Update without imperative variables

In a typical imperative language the syntax to bind a variable is the same as
that used to update it. This conflates the two issues. Consider the semantics
of the following program fragment:

x = 5

Readers with a more functional background would likely read this as “x has
value 5”. Readers with a more imperative background could equally reply “x
is being updated to value 5.” With the difference between boxed and unboxed
integers in mind, the fragment could also mean “x is a pointer to an object,
and it is the pointer which is being updated” or perhaps “x points to an object,
and it is the object which is being updated”. These three readings for update
are shown in the following diagram, where the value is being updated from 3
to 5.

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
��� 33 5 5::

3 5

unboxed update redirection boxed update

:xx x

 := 5x

In the first two cases it is the local value of x that is being changed. In these
cases we call x an imperative variable, and we do not support this form of
update in our language. However, in the last case only the object pointed to
by x changes. We support this option and write x := 5 to distinguish it from
the syntax for binding which is simply x = 5.

Why do it this way? Firstly, we intend to support update by the inclusion of
functions such as:

updateInt :: Int → Int → ()
updateChar :: Char → Char → ()

The first parameter of these functions is the object to be updated, and the
second is the source of the new value. We use (:=) as an overloaded update
operator, so x := 5 can be rewritten as updateInt x 5.

In light of this, we restrict update to objects for two main reasons. The first is
that in our implementation we use local unboxing [Ler97] to support efficient
numeric computation, and we desire intermediate results to be held in the
register set wherever possible. If we permit local values to be updated, then
we would also want to pass them by reference, so that called functions could
update them via this reference.

2.1. UPDATE WITHOUT IMPERATIVE VARIABLES 59

Consider then an unboxed version of updateInt , and some C code that uses it:

void trouble(void)

{

int x, y;

...

x = 3;

y = 5;

updateIntUnboxed (&x, y);

...

}

This code is valid, though deeply troubling to a C compiler. As x is passed
by reference, its value must be held on the stack instead of in the register
set, otherwise we couldn’t construct a pointer to it. More seriously, in regards
to separate compilation, a C compiler would be unable to guarantee that this
pointer becomes unreachable before trouble returns, losing the stack frame and
the storage for x. As in [Hen02] we have observed GCC to disable a number of
low-level optimisations when compiling code which uses pointers to automatic
variables. We could perhaps implement local update as a primitive of the
language, but we avoid this option due to the extra complexity and conceptual
mismatch relative to object update.

Another reason for not supporting imperative variables, and perhaps a more
convincing one for readers who don’t spend all their time writing compilers,
is that it simplifies the type system. If we only support update of the objects
pointed to by our variables then we only need to reason about the mutability
of these objects, and not of the variables as well. This can be contrasted with
[Ode91] and [SSD08b] which reason about both.

60 CHAPTER 2. TYPE SYSTEM

2.2 Region Typing

2.2.1 Regions and aliasing

A region is the set of store locations where a particular object may be present at
runtime. We use regions to reason about the mutability and aliasing of objects.
The following diagram shows a store containing a number of objects, divided
into two regions. This diagram is intended to be suggestive only. Many systems
besides our own make use of regions, and a particular system may allow them to
be disjoint areas of the store, include free space, grow with time, be hierarchical,
include only sub-components of an object, and so on.

obj1

obj2

obj3
obj4

obj5

obj6

1234

1238

1246
1250

1682

1690

}

}

ρ1

ρ
2

We use ρn to denote region handles. A region handle can be thought of as a
runtime identifier for a particular region, or perhaps an index into a table that
describes the extent of a region. For the simple system in the diagram, we could
treat a region as a set of aligned, 4-byte words. In this case our region handles
could be defined as:

ρ1 = {1234, 1238, 1246, 1250}
ρ2 = {1682, 1690}

At compile time we will not necessarily know how the objects in the store
will be arranged, or how to define the region handles. We would like to write
functions that operate on objects from any region, independently of how they
are arranged. For this purpose we introduce region variables, which we use to
bind region handles. Region variables are identified as rn in this text.

There are conceptual similarities between region and value information. Con-
sider the following statements of value:

23 7→ < ...10010... >
a = 23

In the first statement, the numeral 23 represents an object in the store that
includes a particular bit string. In the second statement we have used a value
variable to bind the numeral 23. We can think of regions as being akin to
the objects in the store, region handles being akin to numerals, and region
variables being like value variables. In this sense, regions are physical things,

2.2. REGION TYPING 61

region handles are descriptions of them, and region variables are place holders
for the handles.

Clearly though, regions and values are different kinds of things. As per tradition
we use a star * to denote the kind of value types. Region kinds are denoted by a
percent sign %1. In the concrete syntax we also use % as a namespace qualifier,
writing %rn in place of rn. This helps the parser, as well as being convenient
for syntax highlighting text editors.

Unlike the system of Tofte and Birkedal [TB98], ours deals only with region
variables and not with the definition of region handles, or the layout of the
store. Their system uses regions to manage the allocation of free space at run
time, where ours uses regions as part of an analysis to guide compile time code
optimisations.

Our analysis is type based. We add region variables to all type constructors
which correspond to data objects that can be usefully updated. This includes
constructors like Int , Bool and List , but not the function constructor (→) or
the unit constructor (). The function constructor does not need one because
the value of a function cannot be updated at runtime. The unit constructor
does not need one because there is only one possible unit value.

For example, a list of character pairs could have type:

pairs :: List r1 (Pair r2 (Char r3) (Char r4))
pairs = [MkPair ’g’ ’o’, MkPair ’b’ ’y’, . . .]

In a top level signature such as this, if two type constructors have different
region variables, such as Char r3 and Char r4, then the corresponding values
are guaranteed to be represented by different run-time objects. However, in
general these objects may alias. For example, here is a function which creates
a pair of integers:

intPair :: ∀r1 r2 r3. Int r1 → Int r2 → Pair r3 (Int r1) (Int r2)
intPair x y = MkPair x y

As the region variables r1, r2 and r3 are quantified in the type signature, we
may pass the same integer object for both arguments of the function:

five :: Int r5

five = 5

pairOfFives :: Pair r4 (Int r5) (Int r5)
pairOfFives = intPair five five

Here, the region variables r1 and r2 of intPair have been instantiated to r5.
This tells us that both elements of the pair may refer to the same heap object,
and they will in this case. Note that in the body of intPair , the value variables
x and y may also refer to the same object because we can pass the same one
for both arguments.

In the type of pairOfFives, the region variable r4 is fresh because the evaluation
of intPair will allocate a new object to represent the pair. Freshly allocated
objects do not alias any existing objects.

Aliasing information is of fundamental importance when reasoning about de-
structive update, as any read or write actions performed on objects in one region

1Pictorially, % is two circles separated by a line, a mnemonic for “this, or that”

62 CHAPTER 2. TYPE SYSTEM

will not be visible to the parts of a program that only deal with another. To use
the language of [Rey78], actions performed on disjoint regions do not interfere.

In many cases the region variables attached to differently named type construc-
tors will be distinct, but this is not required in general. In our pairs example, all
the list constructor cells are in one region, and all the pair cells are in another:

C C ...r

r

r

r

1

2

3

4

...

...

...

’g’ ’b’

’o’ ’y’

PP

Setting r1 = r2 would be equivalent to placing the list cells in the same region
as the pair cells.

Like Talpin and Jouvelot’s original work [TJ92b], our concept of a region is
simply a name for a set of locations. We sometimes find it useful to visualise
regions as colours of paint, which we apply to data objects stored in the heap.
Setting r1 = r2 corresponds to painting all the list and pair cells the same colour.
They will be harder to distinguish afterwards, corresponding to a weakening of
our analysis, but it will cause them no harm.

As region variables are provided as parameters to type constructors, the kinds
of the constructors reflect this. Char takes a region and produces a type. List
takes a region, a type, and produces a new type. Pair takes a region, two types,
and produces a new type:

Char :: %→ ∗
List :: %→ ∗ → ∗
Pair :: %→ ∗ → ∗ → ∗

2.2.2 Region classes

When a value is mutable we add mutability constraints to the region variables
in its type. For example, if we wanted to update the characters in a string we
would give it type:

str :: Mutable r2 ⇒ List r1 (Char r2)

The constraint Mutable r2 is a region class. Region classes are similar to the
value type classes in Haskell [HHPJW96], such as Show and Eq. With value
type classes, the type constraint Eq a requires a to be a type that supports
equality. Similarly, the region constraint Mutable r2 requires r2 to correspond
with a region that supports update.

When discussing our system we use the word “type” to refer to all the infor-
mation in a signature, including value type information such as List and Char ,

2.2. REGION TYPING 63

any constraints on variables, region information, as well as the effect and clo-
sure information we will discuss later. For this reason we also refer to both
region classes and value type classes as simply “type classes”. Note that the
programmer usually doesn’t have to provide this additional information in type
signatures. Most can be reconstructed by the type inferencer. This is discussed
further in §2.7.2 and §3.4.7.

Returning to the signature of str , we call term on the right of the ⇒, the body
of the type. We call the value portion of the body is its shape, because this
information describes the overall structure of the object in the store.

As our types often contain a large number of constraints, we usually write them
after the body, instead of before it as in Haskell:

str :: List r1 (Char r2)
⊲ Mutable r2

The ⊲ is pronounced “with”, and is written as :- in the concrete syntax.
The difference between the above type and the original prefix form is purely
syntactic, and our compiler accepts both.

In the above type, no constraint has been placed on r1. If we wish to update the
spine of the list as well as its characters, then this region must also be mutable.
Multiple constraints are separated by commas:

str :: List r1 (Char r2)
⊲ Mutable r1

, Mutable r2

Being able to update the spine of a list is useful for operations such as inserting
a new element into the middle of the list, as it allows us to change the tail
pointers of existing cons cells.

On the other hand, if we wish to prevent updates to the spine we could use the
constraint Const r1 to enforce this:

str :: List r1 (Char r2)
⊲ Const r1

, Mutable r2

As there are two region variables in this type, both the spine and elements can
have differing mutabilities. Attempting to constrain a region variable to be
both Mutable and Const results in a compile time type error.

2.2.3 Functions, allocation and non-material regions

In our system the successor function has the following signature:

succ :: ∀(r1 :: %) (r2 :: %). Int r1 → Int r2

In this type we have included the kind of each region variable, but as in Haskell
we can omit this information if it can be easily inferred. The variables r1

and r2 must have region kind because they are used as parameters to the Int
constructor, so we instead write:

succ :: ∀r1 r2. Int r1 → Int r2

64 CHAPTER 2. TYPE SYSTEM

Starting with the Int r1 term on the left of the arrow, the fact that r1 is
quantified indicates that succ can operate on values from any region. On the
right of the arrow, the fact that r2 is quantified indicates that succ can produce
its output into any region. This is possible because the function allocates a
new Int object each time it is called, and freshly allocated objects do not alias
existing objects. Alternatively, if a function does not allocate its return value,
then the region variables in its return type will not be quantified:

x :: Int r3

x = 5

sameX :: ()→ Int r3

sameX () = x

In this example, sameX returns the same object every time it is called. This
object comes from its environment, and is shared between all calls to it, hence
r3 must remain unquantified. Unquantified region variables can also appear on
the left of an arrow. This happens when a function conflates its arguments with
values from the environment:

y :: Int r4

y = 23

chooseY :: Int r4 → Int r4

chooseY z = if ... then y else z

The object returned by chooseY could be either its argument z, or the shared
object y. Our system cannot represent the fact that the returned object might
be in one region or another, so we use the same variable for both. This limita-
tion is discussed in §5.2.2. In this example, r4 is also present in the environment,
so it cannot be quantified in the type of chooseY .

Although r4 appears in the types of both y and chooseY , each occurrence has
a slightly different meaning. In the type of y, it represents a particular set of
locations in the heap, and one of those locations contains the integer object of
value 23. On the other hand, the use of r4 in the type of chooseY does not
mean that chooseY also contains an integer object. Instead, these occurrences
represent locations in the store where the function’s argument and return values
lie. We distinguish between these two cases by saying that r4 in the type of y
is in a material position, whereas in the type of chooseY is not. The difference
between the material and immaterial positions of type constructors is discussed
more fully in §2.5.4.

2.2.4 Updating data requires it to be mutable

When a function can update its argument, we add a constraint to its type that
requires the argument to be mutable. For example, the inc function destruc-
tively increments its argument and has type:

inc :: ∀r1. Int r1 → ()
⊲ Mutable r1

This type indicates that inc can operate on integers in any region, as long as
that region is mutable. We treat mutability as a capability provided by the
objects in our system, and the requirement for this capability flows from the
functions that make use of it. An alternative setup would be to explicitly permit

2.2. REGION TYPING 65

update by requiring the programmer to supply type signatures and mutability
constraints for every object that is to be updated, or to use a special keyword
when allocating them. We feel that the use of a special keyword would create
clutter in the program, though we will sometimes require mutability constraints
to be given in a type signature. We will return to this in §3.4.7.

During type inference, the compiler compares all the constraints placed on the
region variables in the program. In the absence of an explicit type signature, if
a particular region is not constrained to be mutable, then at runtime the objects
contained within that region will never be passed to a function that can update
them. For this reason, material region variables that are not constrained to be
mutable are considered to be constant.

This does not apply to quantified, immaterial regions in the types of functions.
In this case the three options: mutable, constant, and unconstrained, have
distinct meanings. For example, in the following type signature:

foo :: ∀r1. Int r1 → ()

As r1 is unconstrained we may apply this function to integers which are either
mutable or constant, whereas with:

foo′ :: ∀r1. Int r1 → ()
⊲ Const r1

We can only apply this function to integers which are constant.

2.2.5 Primary regions and algebraic data

In all examples so far, the type constructors used have had only one region
parameter. This is typical for simple types with a small amount of internal
structure, but we need more when defining algebraic data. Consider a vector
of two integers:

data IntVector r1 r2 r3

= IV (Int r2) (Int r3)

The first region variable r1 corresponds to the region containing the outer IV
constructor. This is called the primary region variable. The variables r2 and r3

appear in the body of the definition and represent the regions containing the
integer components. For example, the value (IV 2 3) would be represented as:

IV

2 3

r

r2 r3

1

These three separate region variables provide three degrees of freedom when
deciding which parts of the object should be mutable and which should be
constant. Allowing r2 and/or r3 to be mutable permits the components to
be updated, and when r1 is mutable we can update the pointers in the outer
constructor. The tag of the outer constructor is also contained in the primary

66 CHAPTER 2. TYPE SYSTEM

region. Updates to the tag permit the value of enumerations such as Bool to
be changed.

Note that with this system it is not possible to give the pointers to the two
components separate region variables. We omit this capability to reduce the
complexity of the system, though we see no fundamental barrier to supporting
it if required in the future.

2.2.6 Thinking about regions

There are several ways to conceptualise what a region actually “is”, and we
have mentioned two so far. Firstly, a region is an area of the heap where
objects can be stored at runtime. For systems that use regions to manage
allocation and deallocation [TBE+06], this is the most natural. Fresh objects
are allocated into a particular region, and the whole region is reclaimed by
the storage manager when the objects contained are no longer needed by the
running program. Such systems use region allocation to augment or replace the
standard garbage collection mechanism. At an operational level, the regions
in such systems are usually contiguous, or are constructed with a linked list
of contiguous memory pages. However, DDC does not use regions to manage
allocation, it relies on a traditional garbage collector. We can still imagine a
region to be a specific area of the heap, but the parts of the heap that make up
the region are scattered throughout, and do not form a contiguous block.

Secondly, a region is a label for a collection of objects in the store. Earlier we
suggested imagining these labels to be like colours of paint. When a program
is compiled, the compiler decides on a fixed set of colours (regions). It then
pretends that at runtime, every object allocated by the program will be painted
with one of these colours. The colours help it to reason about what the program
is permitted to do with a certain object. For example, we could paint all the
mutable objects with shades of pink, and all the constant objects with shades of
blue. Importantly though, the colours are just pretend. Our analysis is static,
so we do not record what region an object belongs to in the object itself, or
maintain any region information at runtime.

Finally, a region is a label for a set of program points which perform alloca-
tion [Pie05]. If we know that a particular object is in region r1, then it must
have been allocated by one of the points corresponding to r1. Every object is
allocated by one program point, and an allocation point can allocate zero or
more objects. Allocation points exist within functions, so whether or not an
allocation point ever allocates depends on whether the function is ever called.
However, during evaluation the objects tend to get mixed up, such as when
choosing between two objects in an if-expression. This means that the com-
piler will usually lose track of the exact point where a particular object was
allocated. It can only hope to reduce it to a small set of possibilities. Using
this idea we can imagine that if a region variable is constrained to be Const ,
some part of the program requires an allocation point to produce a constant
object. Likewise, if a region variable is constrained to be Mutable, some part
of the program requires a mutable object. A mutability conflict arises when a
particular allocation point must produce an object that is both mutable and
constant. This is not possible, so we report an error. We will exploit this line
of reasoning further when we come to prove the soundness of our core language
in §4.2.19.

2.3. EFFECT TYPING 67

2.3 Effect typing

2.3.1 Effects and interference

When the evaluation of an expression performs read or write actions on mutable
data, the compiler must ensure that these actions occur in the correct order,
else the meaning of the program will change. We have seen how region variables
are used to reason about the mutability of data, and we now discuss how to
reason about the actions. Following Talpin and Jouvelot [TJ92b] we use effect
typing to annotate function types with a description of the actions each function
performs.

For example, the inc function reads its argument, computes the successor, and
writes the new value back to its argument. Adding this information to the type
gives us:

inc :: ∀r1. Int r1
Read r1 ∨ Write r1−→ ()

⊲ Mutable r1

The effect annotation on the function arrow tells us which regions in the store
will be accessed when it evaluates. When the effect term becomes large this
syntax is hard to read. For this reason we usually introduce an effect variable,
and add a constraint to the type that contains the original effect term:

inc :: ∀r1. Int r1
e1→ ()

⊲ e1 = Read r1 ∨Write r1

, Mutable r1

Effect variables are identified as en in this text, and as variables preceded by an
exclamation mark2 !en in the concrete syntax. The exclamation mark is used
as both a namespace qualifier and as the symbol for effect kinds. In the concrete
syntax, effect constructors such as !Read and !Write are also preceded by this
namespace qualifier. Akin to value type constructors, the effect constructors
have specific kinds. Both Read and Write take a region and produce an effect,
so we have:

Read :: %→ !
Write :: %→ !

Treating the function constructor as a general type constructor, we can read
the infix application a

e
→ b as shorthand for the prefix application (→) a b e.

This will help when presenting the typing rules of the core language, as we can
use general type application to build function types instead of requiring a rule
specific to functions.

Single, atomic effects such as Read r1 and Write r1 are gathered together with
the join operator ∨. Effects form a lattice ordered by set inclusion on atomic
effects. We use σ1 ⊑ σ2 to mean effect σ1 is no greater than effect σ2, for
example:

Read r1 ⊑ Read r1 ∨Write r1

The ∨ operator corresponds to set union. We use ⊥ (bottom) to represent the
effect of an expression which performs no visible actions, and a function arrow

2a mnemonic for: “something’s happening!”

68 CHAPTER 2. TYPE SYSTEM

with no annotation is taken to have this effect. Conversely, we use ⊤ (top) to
represent the effect of an expression which could perform all possible actions.
This top element is useful because we can erase any effect term in our program
by replacing it with ⊤, without loss of safety. We can also use ⊤ when the true
effect of an expression is unknown. As we desire a top element in our effect
structure, we use a lattice to gather effects instead of using sets directly. We
also find the lattice notation more convenient, as we can write σ ∨ Read r1

instead of σ ∪ {Read r1}, where σ is an arbitrary effect. The original effect
system of Gifford and Lucassen [GL86] is also presented as a lattice, though
they do not use an explicit top element.

The notion of effect is intimately related to the notion of interference [Rey78],
which relates to how the evaluation of one expression may affect the outcome
of another. For example, if one expression has the effect Read r1 and another
has Write r1, then they may be accessing the same heap object. In this case
our compiler must worry about the order in which these two expressions are
evaluated, and in particular, it must preserve this order when performing op-
timisations. Importantly, the notion of interference is separate from the usual
method of propagating information between expressions via data dependencies.
For example:

y = double x
z = succ y

The evaluation of the first statement is most certainly going to affect the out-
come of the second, but we don’t count this as interference, because changing
their order would violate the scoping rules of the language and prevent the
program from being compiled.

On the other hand, if we had:

y = succ x
inc z

These two statements may or may not interfere, depending on whether x, y or
z are aliases for the same object.

When speaking of effects, we pronounce ⊥ as “pure”, because the evaluation of
an expression with this effect can be safely reordered with respect to any other.
We pronounce ⊤ as “sync” because an expression with this effect may interfere
with all other impure expressions, so it must be synchronised with respect to
them all.

2.3.2 Effect information in types

Here is the type of updateInt , which overwrites the value of its first argument
with the second:

updateInt :: ∀r1 r2. Int r1 → Int r2
e1−→ ()

⊲ e1 = Write r1 ∨ Read r2

, Mutable r1

2.3. EFFECT TYPING 69

When typeset, effect variables are written above the function arrow. However,
in the concrete syntax we combine them with the arrow:

updateInt :: forall %r1 %r2

. Int %r1 -> Int %r2 -(!e1)> ()

:- !e1 = !{ !Write %r1; !Read %r2 }

, Mutable %r1

The syntax !{ !e1; !e2; ... } is equivalent to e1 ∨ e2 ∨ ...

All functions that write to a particular region also require that region to be mu-
table. When we express type signatures, we can leave out mutability constraints
so long as we include the appropriate write effect.

On the other hand, the inclusion of a mutability constraint does not imply that
a function is necessarily capable of writing to the associated region. The effect
information in a type gives an upper bound on the particular actions a function
may perform at runtime. For example, the following type signature is valid, but
some of the information contained does not correspond to an actual property
of the function:

returnFive :: ∀r1 r2. Int r1
e1−→ Int r2

, e1 = Write r1

⊲ Mutable r1

returnFive x = 5

This is an example of effect weakening. It is always safe to treat a particular
function (or expression) as having a larger effect than it necessarily does. With
regard to interference, weakening the effect of an expression corresponds to
synchronising its evaluation with other parts of the program, more than we
would strictly need to.

Returning to the type of updateInt , the effect term we use for e1 could really be
anything we like, as long as it includes Write r1 ∨ Read r2. Indeed, we could
weaken its type by quantifying e1 and making this fact explicit:

updateInt :: ∀r1 r2 e1. Int r1 → Int r2
e1−→ ()

⊲ e1 ⊒ Write r1 ∨ Read r2

, Mutable r1

Writing this another way, we could place the e1 ⊒Write r1∨Read r2 constraint
directly on the quantifier:

updateInt :: ∀r1 r2 (e1 ⊒Write r1 ∨ Read r2)

. Int r1 → Int r2
e1−→ ()

⊲ Mutable r1

This new constraint gives a lower bound on the effect with which e1 can be
instantiated as. We will return to the practical differences between the strong
and weak forms of updateInt in §2.3.6

Note that although atomic effects have a textual ordering when collected to-
gether with ∨, there is no corresponding information in the analysis. In the type
of updateInt , the effect term Write r1 appears before Read r1 on the page, yet
clearly the function must read the source argument before it writes to the des-
tination. The ∨ operator is commutative so σ1 ∨ σ2 is equivalent to σ2 ∨ σ1.
For comparison, in the behavior types of Nielson and Nielson [NN93, NN99],
the order of actions is preserved.

70 CHAPTER 2. TYPE SYSTEM

2.3.3 Effects and currying

In our examples, usually only the right-most function arrow will have an effect
annotation, though this is not required in general. Our primitive updateInt
function needs both arguments before it can proceed, hence both Read r2 and
Write r1 appear on the same arrow.

If we partially apply updateInt by supplying just the first argument, then the
runtime system will build a thunk. This thunk holds a pointer to the object code
for the “real” primitive update function, along with a pointer to the supplied
argument. Building a thunk has no visible effect on the rest of the program,
so this partial application is pure. Only when we apply the second and final
argument will the runtime system be in a position to call the primitive function
to carry out the update action.

In contrast, we could define a slightly different function that reads the source
argument as soon as it is applied:

readThenUpdateInt

:: ∀r1 r2. Int r1
e1−→ Int r2

e2−→ ()
⊲ e1 = Read r1

, e2 = Write r2

, Mutable r2

readThenUpdateInt src
= do src′ = copyInt src

(λ dest → updateInt dest src′)

where

copyInt

:: ∀r1 r2. Int r1
e1−→ Int r2

⊲ e1 = Read r1

Note that unlike in Haskell, the Disciple do-expression is not monadic. A do-
expression consists of a sequence of statements or bindings, terminated with a
statement. The value of the whole expression is the value of the last statement.
We treat do binds; expr as being sugar for let binds in expr , where the let is
non-recursive.

In readThenUpdateInt we make a copy of the source argument as soon as it is
available. The variable src′ binds this copy and is free in the inner function.
If we partially apply readThenUpdateInt to just its first argument, then the
runtime system will build a thunk which references the copy. At this point we
are free to update the original source object, without affecting the result of the
inner function.

We can see this behavior in the type signature for readThenUpdateInt . Once
the first argument is applied the function does not cause any more visible read
effects.

2.3. EFFECT TYPING 71

2.3.4 Top level effects

So far we have only considered actions that modify the internal state of the
program, that is, reads and writes to mutable data. For a general purpose
language we must also be able to perform IO. The order of these actions must
be maintained during compilation, and we can use the effect mechanism to do
so. We refer to effects which represent actions on external state as top-level
effects. These effects exist in the top level scope and cannot be safely masked.

Although the Read and Write effect constructors are “baked-in” to the lan-
guage, we allow the programmer to define their own constructors to represent
top level effects. For instance, for a typical interactive application we could
define the following:

effect Console
effect FileSystem
effect Network

The primitive functions that access the outside world include these constructors
in their effect terms. For example:

putStr :: ∀r1. String r1
e1−→ ()

⊲ e1 = Read r1 ∨ Console

The type of putStr tells us that it will read its argument and perform an action
on the console. DDC ensures that the orderings of calls to putStr are maintained
with respect to all functions that have top level effects.

In particular, if we define a function with a different top-level effect:

readFile :: ∀r1 r2. FilePath r1
e1−→ String r2

⊲ e1 = Read r1 ∨ FileSystem

We must still synchronise uses of readFile with putStr , because in general,
console and file actions may interfere. This point is discussed further in §5.2.6.

72 CHAPTER 2. TYPE SYSTEM

2.3.5 Effects in higher order functions

When we move to higher order functions, we begin to see effect variables in the
types of their parameters. For example, the type of map is:

map :: ∀a b r1 r2 e1

. (a
e1−→ b)→ List r1 a

e2−→ List r2 b
⊲ e2 = e1 ∨ Read r1

map f [] = []
map f (x : xs) = f x : map f xs

The map function applies its first parameter to every element of a list, yielding
a new list. It must inspect the list to determine whether it is empty or a cons
cell, hence the Read r1 effect. When it applies its parameter, that function
invokes its actions, hence the variable e1 also appears in the effect term for e2.

The actual effect bound to e1 depends on how map is applied. For example,
we could use partial application to define a new function which will take the
successor of a list of integers:

succ :: ∀r3 r4

. Int r3
e3−→ Int r4

⊲ e3 = Read r3

mapSucc :: ∀r5 r6 r7 r8

. List r5 (Int r6)
e4−→ List r7 (Int r8)

⊲ e4 = Read r6 ∨ Read r5

mapSucc = map succ

Due to the application map succ, the read effect of succ is bound to e1 in the
type of map. This effect term is then substituted into the constraint for e2.
Accounting for type generalisation, this read effect becomes the Read r6 term
in the type of mapSucc.

From the type of mapSucc we see that it will read the list cells from the region
named r5, as well as reading the element cells (via succ) from the region named
r6.

2.3.6 Constraint strengthening and higher order functions

The core of our type inference algorithm is modeled after the Type and Effect
Discipline [TJ92b]. It returns a type term and a set of effect constraints for
every expression in the program. This combination of type term and constraints
corresponds to the “weak” version from §2.3.2. For example, the inferred type
of succ would be:

succ :: ∀r1 r2 e1. Int r1
e1−→ Int r2

⊲ e1 ⊒ Read r1

We read this type as: a function which takes an Int in a region named r1,
returns an Int in a region named r2, and whose evaluation causes an effect that
includes Read r1. We use ⊒ in the constraint because we can treat succ as
having any effect, as long as it includes Read r1. However, as the function

2.3. EFFECT TYPING 73

itself only has the Read r1 effect, we will not lose any information if we replace
⊒ by = and strengthen this type to:

succ :: ∀r1 r2. Int r1
e1−→ Int r2

⊲ e1 = Read r1

We could also substitute the constraint into the body of the type, yielding the
flat version:

succ :: ∀r1 r2. Int r1
Read r1−→ Int r2

We gain two immediate benefits when strengthening types in this way. Firstly,
the types of most common library functions can be expressed without using the
unfamiliar ⊒ operator, which reduces the number of symbols that beginners
need to worry about, and is a benefit not to be underrated. The second is that
it reduces the need for a large number of effect applications in programs which
have been translated to our core language.

Our core language discussed in §4 is an extension of System-F, similar in spirit
to the core language used in GHC. As usual, the instantiation of type schemes
corresponds to type application in the core language. An application of succ
using the weak version of its type would require an expression such as:

succ ra rb (Read r1) x

Here, ra, rb and Read r1 satisfy the ∀r1 r2 e1. portion of the type scheme. Both
ra and rb are true parameters. They supply information regarding the location
of the argument and return value, and are likely to be different for each use of
succ. On the other hand, the fact that succ has the effect (Read r1) is obvious
from its type, and supplying this information every time it is called needlessly
increases the verbosity of the core program. This becomes problematic when
we apply functions that have a more interesting behaviour. It is not uncommon
for types in typical programs to have upwards of 20 atomic effect terms.

By strengthening the type of succ we can elide the effect application and apply
the function with the smaller expression:

succ ra rb x

This is possible unless the application of succ genuinely needs to be treated as
having a larger effect. This can occur for two reasons. Firstly, when choosing
between two functions on the right of an if or case-expression, we must weaken
their effect terms so that their types match. We discuss this further in §4.3.

Secondly, it is not obvious how to strengthen the types of higher order functions,
or if this is even possible in general.3 These types can include ⊒ constraints
on effect variables that appear in parameter types. Such constraints require
function parameters to have at least a certain effect, but as we can treat any
function as having more effects than it is actually able to cause, they don’t pro-
vide any useful information to the compiler. The fact that we have constraints
of this form is an artefact of the bi-directional nature of the typing rules, and
the Hindley-Milner style unification algorithm used to perform inference. The
effect of a function can include the effect of its parameter, as per the map ex-
ample, but also the other way around. We will see an example of this in a
moment.

3I do not know how to do this, but do not have a proof that it is impossible.

74 CHAPTER 2. TYPE SYSTEM

First Order

We start with a simple first order function, id:

id :: ∀a e1. a
e1−→ a

⊲ e1 ⊒ ⊥

id = λx. x

If an effect term corresponds to an action that could be carried out if the
function were evaluated, then we call it a manifest effect of the function. In
this example, e1 is a manifest effect, albeit it is ⊥. Clearly, id is pure so there
is nothing preventing us from dropping the quantifier for e1 and substituting ⊥
for e1 in the body of the type:

id :: ∀a. a
⊥
−→ a

Notice that in the original type, e1 is manifest, and does not appear in the
parameter portion of the type, that is, on the left of a function arrow.

Second Order

Here is an example second order function:

appFive :: ∀a r1 e1. (Int r1
e1−→ a)

e1−→ a
⊲ e1 ⊒ ⊥

appFive = λg. g 5

appFive accepts a function parameter and applies it to the integer 5. The
effect caused by the use of appFive will be the same as the effect caused by
the parameter function. This information is represented by the fact that e1

appears in both the parameter type and as a manifest effect on right most
function arrow. Although we have the constraint e1 ⊒ ⊥, unlike the case for
id , we cannot safely strengthen this type and substitute ⊥ for e1:

appFivebad :: ∀a r1. (Int r1
⊥
−→ a)

⊥
−→ a

This new type is strictly less general than the original because we can only
apply it to parameter functions that are pure. However, e1 ⊒ ⊥ is a statement
that is always true, so we can drop it from the signature and write:

appFive :: ∀a r1 e1. (Int r1
e1−→ a)

e1−→ a

In future we will always elide trivial constraints such as e1 ⊒ ⊥. To make things
slightly more interesting, we will add another effect to appFive:

succFive :: ∀r1 r2 r3 e1 e2

. (Int r1
e1−→ Int r2)

e2−→ Int r3

⊲ e2 ⊒ e1 ∨ Read r2

succFive g = succ (g 5)

succFive is similar to appFive, except that it passes the result of its parameter
function to succ. This introduces the new effect Read r2. Note that the effect of
the parameter, e1, and the manifest effect of the overall function are now linked

2.3. EFFECT TYPING 75

via the constraint on e2. This is in contrast to appFive, where they were linked
via a single variable. When we strengthen the effect constraint and substitute
it into the body of the type we get:

succFivestrong :: ∀r1 r2 r3 e1

. (Int r1
e1−→ Int r2)

e1∨Read r2−→ Int r3

Performing this substitution has not lost any information. We can see that the
effect of evaluating succFive is to apply the parameter function and read its
result. If desired, we could introduce a new effect variable for the e1 ∨Read r2

term, and convert the strong form back to the original weak version. In this
case the two are equivalent.

For comparison, here is a second order function where strengthening does not
work:

chooseFive :: ∀r1 r2 e1

. (Int r1
e1−→ Int r2)

e1−→ Int r2

⊲ e1 ⊒ Read r1

chooseFive g = let f = if . . . then g else succ
in f 5

Note that the if-expression is choosing between the parameter function g and
and succ. The type inference algorithm uses unification to ensure that both
these expressions have the same type. succ reads its argument, so g is treated as
though it reads its argument also. This is the reason for the Read r1 constraint
on the variable e1, which names the effect of the parameter function. It is
important to note that the function parameter passed to chooseFive is now
required to have the Read r1 effect. If we wanted to apply chooseFive to the
pure function id , then we would need to instantiate id with a weaker effect, so
that it also contains Read r1.

This “leaking” of a function’s real, manifest effect into the type of its param-
eter is the other half of the bi-directional information flow discussed earlier.
Interested parties are referred to the literature on intersection and union types
as a possible way around this problem [CF04, DP03]. Such type systems can
express more detailed properties of programs, but full type inference is often
undecidable. Perhaps a union typing system guided by type annotations could
give a more pleasing type to chooseFive. However, we have been primarily in-
terested in compile time optimisation and are unconvinced of the benefits of a
more complex system, so have not looked into this further.

Also, such constraints only seem to arise in programs that choose between func-
tions, or use collection structures that contain functions. We haven’t written
many Disciple programs which do this, and are not sure if having constraints on
effect variables in parameter types represents a real problem in the language.

We cannot strengthen the type of chooseFive and remove the ⊒ constraint as
we did previously. Substituting Read r1 for e1 in the body would break the
link between the effect of the parameter and the manifest effect of the overall
function:

chooseFivebad :: ∀r1 r2

. (Int r1
Read r1−→ Int r2)

Read r1−→ Int r2

76 CHAPTER 2. TYPE SYSTEM

For this reason we must include bounded quantification in both our source and
core languages. We strengthen ⊒ constraints to = constraints only when the
variable does not appear in a parameter type (to the left of a function arrow).
This simple rule allows us to elide the majority of effect applications that would
otherwise appear once the program has been translated to the core language.
As we shall see, there are cases where we could strengthen but don’t, but they
are rare in practice.

One more second order function follows. This time we have applied succ to the
result of f to yield an additional read effect:

chooseSuccFive :: ∀r1 r2 r3 e1 e2

. (Int r1
e1−→ Int r2)

e2−→ Int r3

⊲ e1 ⊒ Read r1

, e2 ⊒ e1 ∨ Read r2

chooseSuccFive g = let f = if . . . then g else succ
in succ (f 5)

The point to notice here is that the constrained effect variable e1 also appears
in the constraint for e2. This means that when we convert the type to use
bounded quantifiers we must be careful about their order. For example, writing
each quantifier separately gives:

chooseSuccFive
:: ∀r1. ∀r2. ∀r3. ∀(e1 ⊒ Read r1). ∀(e2 ⊒ e1 ∨ Read r2)

. (Int r1
e1−→ Int r2)

e2−→ Int r3

Unlike the first three region quantifiers, we cannot change the order of the two
effect quantifiers, else e1 would be out of scope in the second constraint. This
has two important implications for our implementation.

The first is that although our type inference algorithm returns a type which
includes a constraint set using ⊲, the core language uses individual bounded
quantifiers as above. This means that when converting types to the core repre-
sentation we must do a dependency walk over the constraint set to ensure the
quantifiers are introduced in the correct order.

The second is that we have no way of representing graphical or recursive effect
constraints in the core language, so we must break these loops during transla-
tion. This process is covered in §2.3.8 and §3.4.

Third Order

Moving up the chain, we now consider a third order function foo. We will
reuse appFive in this example, so repeat its definition. We admit that foo is a
constructed example, but make the point that a type system must handle such
examples anyway. The reader is invited to analyse their own favourite third
order function.4

foo = λf. succ (f succ)
appFive = λg. g 5

4We had enough trouble coming up with this one.

2.3. EFFECT TYPING 77

As the operation of foo is perhaps non-obvious to the casual observer, we offer
an example call-by-value reduction of the term (foo appFive):

foo appFive −→ (λf. succ (f succ)) appFive
−→ (λf. succ (f succ)) (λg. g 5)
−→ (succ ((λg. g 5) succ))
−→ (succ (succ 5))
−→ 7

The type of foo inferred by our system is:

foo :: ∀r1 r2 r3 r4 e1 e2 e3

. ((Int r1
e1−→ Int r2)

e2−→ Int r3)
e3−→ Int r4

⊲ e1 ⊒ Read r1

, e3 ⊒ e2 ∨ Read r3

foo takes a second order function as its parameter. In the source, foo’s param-
eter is applied to succ, hence the (Int r1

e1−→ Int r2) component of its type.
As the result of this application is passed again to succ, the result has type
Int r3. The function foo itself returns the result of this final application, giving
the return type Int r4.

Note the semantic difference between the two effect constraints. The constraint
on e3 gives the manifest effect of evaluating the function, whereas the constraint
on e1 says that foo’s parameter will be passed a function which has a read effect.

In this type, as e1 does not express a link between the parameter and the
manifest effect of the function, we could strengthen it to:

foo :: ∀r1 r2 r3 r4 e2

. ((Int r1
Read r1−→ Int r2)

e2−→ Int r3)
e2∨Read r3−→ Int r4

However, functions of order three and higher are rare, so in our current imple-
mentation we stick with the simpler strengthening rule.

Higher order functions in practice

When researching the material in this section we had difficulty finding examples
of useful functions of order three or greater. In [Oka98a] Okasaki suggests that
in the domain of parser combinators, functions up to sixth order can be useful
in practice. However, the signatures he presents use type synonyms, and the
principle types of the combinators are of lower order. For example, using the
ML syntax of the paper the bind combinator is:

fun bind (p, f) sc = p (fn x⇒ f x sc)

If we limit our self to simple types then this is a third order function:

bind : ((∗ → ∗)→ ∗, ∗ → ∗ → ∗)→ ∗ → ∗

Yet its intended type signature, given as a comment in the ML code is:

(∗ bind : ‘a Parser ∗ (‘a→ ‘b Parser) → ‘b Parser ∗)

Although Parser is a type synonym for a third order function, it could be
argued that this does not make bind fifth order.

78 CHAPTER 2. TYPE SYSTEM

2.3.7 Observable effects and masking

Consider the following function:

slowSucc x
= do y = 0

y := y + 1
x + y

We have used the operator (:=) as sugar for the updateInt function from §2.3.2.
This function has six atomic effects. The two addition expressions read both
their arguments, and the update function reads the result of (y + 1) then over-
writes the old value of y.

If we included all of these effects in the type for slowSucc then we would have:

slowSucc :: ∀r1 r2 r3 r4 r5

. Int r1
e1−→ Int r5

⊲ e1 = Read r1 ∨ Read r2 ∨ Read r3 ∨ Read r4

∨Write r2

, Mutable r2

Here is a version of slowSucc where the variables and constants have been
annotated with the regions they are in, relative to the above type signature.

slowSucc xr1

= do yr2 = 0r2

yr2 := (yr2 + 1r3)r4

(xr1 + yr2)r5

The point to note is that much of the information in the type of slowSucc won’t
be of interest to a function that calls it. The constants 0 and 1, the value of
y, and the result of the addition (y + 1) are entirely local to the definition of
slowSucc. If we so desired, space to hold these values could be allocated on the
stack when calling the function, and then freed when returning from it. The
fact that slowSucc makes use of these values is not observable from any calling
context.

The only way a caller can communicate with a particular function is via its
argument and return values, as well as via its free variables. A caller can pass
an argument, receive a result, and in a language with destructive update the
called function could modify values accessable via its free variables.

From the type signature for slowSucc we see that its argument is passed in
a region named r1, and its return value is produced into a region named r5.
Other than the addition and update operators, this particular function has no
free variables. As regions r2, r3 and r4 are not free in the body of the type,
that is the Int r1

e1−→ Int r5 term, the effects and constraints on these regions
can be erased. We call this process masking those effects and constraints. This
gives:

slowSucc :: ∀r1 r5

. Int r1
e1−→ Int r5

⊲ e1 = Read r1

Note that slowSucc has a pure interface. Although it uses destructive update
internally, a calling function cannot observe this. This form of effect masking

2.3. EFFECT TYPING 79

achieves a similar result to monadic encapsulation of effects in the ST monad
[LPJ94], with the advantage of being performed automatically by the compiler.

Here is another example:

length xs
= do n = 0

map (λ . n := n + 1) xs
n

This imperative version of the list length function initialises a counter to zero,
uses map to increment the counter for every element of the list, then returns the
counter. map is similar to the standard map function, except that it discards
its return value. When using map the parameter function is only executed for
its effect. In this way map is similar to mapM from Haskell. If we used just
the masking rule from the previous example then we would have the following
type for length:

length :: ∀a r1 r2. List r1 a
e1−→ Int r2

⊲ e1 = Read r1 ∨Write r2

, Mutable r2

The map function reads its argument list, so we have Read r1 in the type
of length. The expression n := n + 1 updates the value of n, which is fi-
nally returned. This gives Int r2 as the return type, along with Write r2 and
Mutable r2 as effects and constraints of the function.

Note that the return value of length is freshly allocated, so the calling function
cannot have a reference to it beforehand. Because of this, the fact that the
return value was created via destructive update is unimportant. We can use
an additional masking rule: if a region variable is quantified, not present in
a parameter type, and not present in the closure of the function, then effects
and constraints on that region can be masked. We will discuss closures in §2.5.
Masking the type of length above gives:

length :: ∀a r1 r2. List r1 a
e1−→ Int r2

⊲ Read r1

Once again, we see that although length uses destructive update internally, it
has a pure interface.

We will now sadly admit that although our current implementation of DDC
masks the Write r2 effect in the type of length it does not also mask the
Mutable r2 constraint. Although we can plainly see that this is a valid operation
in the source language, we do not yet have a system in place to mask the
corresponding constraint in the core language. In future work we plan to use
the system outlined by Gupta [Gup95] to do so. This is discussed further in
§2.8.7 and §5.2.1.

80 CHAPTER 2. TYPE SYSTEM

2.3.8 Recursive effects

Consider the following function:

fac n
= case n of

0 → 1
→ n ∗ fac (n− 1)

This function also contains six separate sources of effects. Firstly, when the
case-expression evaluates it must read the value of n to determine which alter-
native to take. The multiplication and subtraction expressions must read their
operands. Finally, evaluation of the recursive call to fac causes all of these
effects again. Just as the recursive function fac is defined in terms of itself, the
effect of fac includes itself.

With this in mind we could give fac the following type:

fac :: ∀r1 r2 e1. Int r1
e1−→ Int r2

⊲ e1 ⊒ Read r1 ∨ e1

The effect term Read r1 is due to the case, multiply and subtraction expres-
sions, and e1 is due to the recursive call. As per the previous section, we have
masked the effect of reading the two ‘1’ constants.

Now, although the effect e1 is constrained to include itself, the fact that e1 is
recursive is not used by our subsequent analysis. Due to this, we will simplify
this type by breaking the recursive loop. We do this by first decomposing the
constraint e1 ⊒ Read r1 ∨ e1 into two parts:

e1 ⊒ Read r1

e1 ⊒ e1

The second part, e1 ⊒ e1 is trivially satisfied, so we can write the type of fac
in a simpler form:

fac :: ∀ r1 r2 e1. Int r1
e1−→ Int r2

⊲ e1 ⊒ Read r1

We can also apply the effect strengthening rule to eliminate the quantifier for
e1 and change the constraint operator from ⊒ to =. This gives us our final
type:

fac :: ∀ r1 r2. Int r1
e1−→ Int r2

⊲ e1 = Read r1

Note that as our core language cannot represent recursive effect types, we must
always perform this loop breaking simplification. Other systems based on be-
haviors and trace effects [NN93, SSh08] express these loops using a fix point
operator, but we are not aware of any way to use this information to optimise
the program.

2.3. EFFECT TYPING 81

2.3.9 Constant regions and effect purification

Recall from §2.2.4 that the constraint Mutable r1 indicates that region r1 may
be updated, while Const r1 indicates that it will never be updated. During
type inference, once all the region constraints from a source program have
been processed, any regions that have not been constrained to be mutable are
assumed to be constant. This is the first source of Const constraints in our
system.

The second source is the use of lazy evaluation. In Disciple, lazy evaluation is
introduced by suspending particular function applications. We do this with the
suspension operator @. For example:

six = succ @ 5

This syntax is desugared into an application of the primitive arity-1 suspend
function:

six = suspend1 succ 5

Where suspend1 has type:

suspend1 :: ∀a b e1. (a
e1−→ b)→ a→ b

⊲ Pure e1

Note that as the two right most function arrows have no effect annotations,
they are taken to be ⊥ (pure). suspend1 takes a parameter of type a

e1−→ b, an
argument of type a and defers the application by building a thunk at runtime.
When the value of this thunk is demanded, the function parameter will be
applied to its argument, yielding the result of type b. Clearly, the function
parameter must not cause visible side effects. If it did then the value of its
result would depend on when the thunk is forced, which usually won’t be what
the programmer had intended. For this reason, the effect constraint Pure e1

requires the visible effect of the function parameter to be ⊥.

We now consider the type of succ including region and effect information:

succ :: ∀r1 r2. Int r1
e1−→ Int r2

⊲ e1 = Read r1

The type of succ includes an effect Read r1, and when suspend1 is applied
to succ we get the constraint Pure (Read r1). Now, Read r1 is not the ⊥
which this constraint requires. However, suppose r1 was constant. Read effects
on constant regions can be safely ignored because it does not matter when a
particular read takes place, the same value will be returned every time. During
type inference, purity constraints on read effects are discharged by forcing the
regions read to be constant. We call this effect purification.

If the region happens to already be mutable then it cannot additionally be made
constant. In this case the system reports a purity conflict and gives an error
message that includes the term in the program that caused the region to be
marked as mutable, along with the suspension that requires it to be constant.

82 CHAPTER 2. TYPE SYSTEM

For example:

succDelay ()
= do x = 5

y = succ @ x
. . .
x := 23
. . .

In this program we have suspended the application of succ, which will read the
integer bound to x. Later in the program, this integer will be updated to have
a new value, 23. The trouble is that the eventual value of y will depend on
when this result is demanded by the surrounding program. If it is demanded
before the update then it will evaluate to 6, but if it is demanded after it will
evaluate to 24.

The usual sense of an erroneous program is one that cannot be reduced to a
value because the reduction reaches a point where no further rule applies, such
as with True +42. Although succDelay does not have this problem, we argue
that its behaviour is non-obvious enough to justify rejection by the type system.
This is akin to compiler warnings about uninitialised variables in C programs.
Uninitialised variables per se will not crash a program, but the behavior of a
program which uses them can be so confusing that it is best to reject it outright.

Of course, in a particular implementation we can always add a trapdoor. Our
suspend1 function is primitive, but is not baked into the type system. In
our runtime system we have implemented suspend1 in C. We import it with
the foreign function interface, like any other primitive function. To allow
succDelay we would simply import the C implementation of suspend1 again
with a different name and leave the Pure e1 constraint out of the new type
signature. This would be akin to using the unsafePerformIO function with
GHC. unsafePerformIO allows a side-effecting function to be used in a context
that demands a pure one, leaving the burden of correctness on the programmer
instead of the compiler and type system.

2.3.10 Purification in higher order functions

Purity constraints can also be applied to the effects of function parameters. This
is common for higher order functions that work on lazy data structures. For
example, here is a definition of the lazy map function, which reads elements of
the input list only when the corresponding element of the output is demanded.

mapL f [] = []
mapL f (x : xs) = f x : mapL f @ xs

We will desugar the pattern match into a case-expression, use Nil and Cons in
place of [] and :, as well as using the equivalent suspend function in place of @.

mapL f xx
= case xx of

Nil → Nil
Cons x xs → Cons (f x) (suspend1 (mapL f) xs)

The effect of mapL includes the effect of inspecting the value of xx in the case-
expression, as well as the effect of evaluating the application f x. On the other

2.3. EFFECT TYPING 83

hand, the use of suspend1 requires (mapL f) to be a pure function. The fact
that mapL suspends its recursive call forces it to be pure.

We can purify the effect of the case-expression by requiring the cons cells of the
list to be in a constant region. We cannot purify the effect of f x locally, because
f is an unknown function, but we can require that callers of mapL provide a
guarantee of purity themselves. We do this by placing a purity constraint on
the effect of f , which gives mapL the following type:

mapL :: ∀a b r1 r2 e1

. (a
e1−→ b)→ List r1 a

e2−→ List r2 b
⊲ e2 = e1 ∨ Read r1

, Pure e1

, Const r1

This says that we can only use mapL with pure parameter functions, and with
constant lists. These constraints are sufficient to guarantee that the value re-
turned will not depend on when it is demanded.

The above type is the one produced by our current implementation. Note
that even though Read r1 and e1 are pure, we have retained these effects in
the constraint for e2. It would be “nicer” to erase them, but we have not yet
implemented a mechanism to perform the corresponding effect masking in the
core language, which is discussed in §4.3.1.

Alternatively, erasing these effects would produce the following type:

mapL :: ∀a b r1 r2 e1

. (a
e1−→ b)→ List r1 a→ List r2 b

, Pure e1

, Const r1

The two constraints Pure e1 and Const r1 express the implicit constraints on
functions and data present in lazy languages such as Haskell. In Haskell, all
functions are pure5 and all data is constant.6 By adding a single @ operator to
our strict version of map we have created the lazy version. This new version is
type compatible with the strict version, except for the added constraints that
ensure referential transparency.

5Bar some hacks when implementing IO.
6Though, not as far as the runtime system is concerned.

84 CHAPTER 2. TYPE SYSTEM

2.3.11 Strict, spine lazy and element lazy lists

Returning to the sugared version of mapL, note that this function is spine lazy.

mapL f [] = []
mapL f (x : xs) = f x : mapL f @ xs

A spine lazy map is one that only allocates cons cells for the output list when
they are demanded. Alternatively, we could move the @ operator and create a
version that allocated all of the cons cells as soon as it was called, but deferred
the evaluation of the actual list elements:

mapLE f [] = []
mapLE f (x : xs) = f @ x : mapLE f xs

We mention this because in our introduction we discussed the fact that in
Haskell, the functions map and mapM are conceptually similar, but require
different definitions and have different types. We argued that this created a
need to refactor lots of existing code when developing programs. Although
we have now introduced three different Disciple versions, map, mapL, mapLE
which are strict, spine lazy, and element lazy respectively, this is a different
situation.

In the types of these three functions, the value type portion remains the same.
If we cover up the region, effect and constraint information, we are left with an
identical type in each case:

map :: (a→ b)→ List a→ List b

The three versions map, mapL, mapLE are all interchangeable as far as their
value types are concerned. This is comparable to the difference between foldl
and foldl ′ in the standard Haskell libraries. foldl ′ is a stricter version of foldl ,
but it has the same type.

Of course, in Disciple we still want mapM when using monads such as parsers.
The fact that we can express side effecting programs without needing state
monads does not imply the monad abstraction is not useful for other purposes.

2.3.12 Lazy and Direct regions

Region classes are a general mechanism that allows us to express specific prop-
erties of data. We have already discussed the Mutable and Const classes that
are used to express whether an object may be updated or must remain constant.
We use the additional classes Lazy , LazyH and Direct to track the creation of
thunks due to the use of suspend functions. A Lazy constraint applied to the
primary region of a data type indicates that values of that type may be repre-
sented as thunks. LazyH applied to a type variable indicates that the top level
(head) region of that type may be a thunk. On the other hand Direct applied
to a primary region variable indicates that the object is guaranteed not to be
a thunk. This allows us to optimise the handling of boxed values in the core
language, as well as improve code generation for case expressions in the back
end.

Note that the concepts of directness and strictness are quite different. When
a function is strict in its parameter, if the evaluation of a particular argument

2.3. EFFECT TYPING 85

diverges then the application of the function to this argument also diverges. On
the other hand, when a function is direct in its parameter, it will not accept
values represented by thunks, and when it is direct in its result, it will not
produce thunks.

Here is a version of suspend1 that uses a LazyH constraint to indicate that this
function produces thunks:

suspend1 :: ∀a b e1. (a
e1−→ b)→ a→ b

⊲ Pure e1

, LazyH b

We will suspend an application of succ as an example:

x = suspend1 succ 5

To work out the type of x, we first instantiate the types of suspend1 and succ.
We have used primed variables for the instantiated names:

suspend1 inst :: (a′
e′1−→ b′)→ a′ → b′

⊲ Pure e′1, LazyH b′

succinst :: Int r′1
e2−→ Int r′2

⊲ e2 = Read r′1

Applying suspend1 inst to succinst gives:

(suspend1 succ) :: Int r′1 → Int r′2
⊲ Pure (Read r′1), LazyH (Int r′2)

By assigning the constant 5 the type Int r′1 we get:

(suspend1 succ 5) :: Int r′2
⊲ Pure (Read r′1), LazyH (Int r′2)

We reduce the Pure (Read r′1) constraint by requiring that r′1 is constant. The
constraint LazyH (Int r′2) tells us that r′2 may contain a thunk, so we reduce
it to Lazy r′2:

(suspend1 succ 5) :: Int r′2 ⊲ Const r′1, Lazy r′2

Although this type includes the constraint Const r′1, the region variable r′1 is
not present in its body. The region r′1 relates to the constant value 5, not to
the resulting value x, so we can drop it and get:

(suspend1 succ 5) :: Int r′2 ⊲ Lazy r′2

The region variable r2 cannot be quantified because it is material in this type.
The final type of x is:

x :: Int r′2 ⊲ Lazy r′2

This says that the outer-most constructor of this object may be a thunk, and
it certainly will be after the call to suspend1 :

@

code for
succ I 5

x:

1

r2

r

86 CHAPTER 2. TYPE SYSTEM

@

code for
succ I 5

x:

1

r2

r

As the application thunk represents a value of type Int r′2 we draw it as be-
longing to the region r2. This is opposed to thunks that represent partial ap-
plications. These thunks have no regions because they always represent objects
of function type, and function types are not annotated with region variables.

When the value of x is forced, the application succ 5 will be evaluated. Follow-
ing lazy evaluation, the thunk will then be overwritten by an indirection node
pointing to the result:

x: I 6
2r

During back end code generation, we must account for the fact that x may
point to a thunk or indirection. To extract the unboxed integer from x we must
first load the tag of the object pointed to. This allows us to identify the sort
of object it is, and decide whether to force the thunk, follow the indirection, or
load the value as required. On the other hand, if we knew that x was direct, as
with:

x :: Int r′2 ⊲ Direct r′2

Then we would be sure that x only pointed to a boxed integer. This would
save us from having to load the tag and do the test. Similarly to the way non-
mutable regions default to being constant, non-lazy regions default to being
direct.

2.3.13 Liftedness is not a capability

We should note that the constraint names Lazy and Direct have an operational
flavour because DDC uses this information to guide optimisations. We could
perhaps rename them to Lifted and Unlifted , which would reflect the fact that
a Lifted value represents a computation that may diverge.

A similar approach is taken in [LP96] and [PJSLT98], though they distinguish
between pointed and lifted types. In [LP96], the type of unlifted integers is

written Int#. The type of lifted integers is defined to be Int#
⊥

, with the ⊥ in
the subscript acting as a type operator that allows the bottom element to be
one of the “values” represented by the type. Note that with this formulation,
monotypes such as integers must be either lifted or unlifted.

Our method of attaching constraints to region variables allows us to reuse the
type class machinery to encode a similar property. However, type class con-
straints express a “supports” relationship, which doesn’t quite match up with
the concept of liftedness. For example, the constraint Eq a means that a is a
type whose values support being tested for equality. The constraint Mutable r
means that the objects in region r support being updated. Likewise, Const r

2.3. EFFECT TYPING 87

means that the objects in r can be safely read by a suspended computation,
that is, they support laziness. If an object is constrained to be neither Mutable
nor Const then we cannot assume it is safe to do either of these things.

Extensionally, if a type is completely unconstrained then we know nothing about
the values that inhabit that type. Each new constraint provides a new piece of
information, and that information gives us the capability to do something new
with the corresponding values.

If a region is Direct then we can generate faster code to read objects in that
region, because they are guaranteed not to be represented by thunks. However,
the fact that a region is Lazy doesn’t provide us with an additional capability.
Lazy constraints are used only to ensure that a region is not also treated as
Direct , as once we add thunks to a region we must test for them when reading
every object from that region. In this sense, Lazy is a sort of “anti-capability”
that indicates that a region has definitely been polluted by thunks and can no
longer be used “directly”.

For example, consider the following type:

fun :: ∀r1 r2. Int r1 → Int r2

As r1 is unconstrained, objects passed to this function may be represented by
thunks. If instead we had:

fun :: ∀r1 r2. Int r1 → Int r2 ⊲ Direct r1

Then objects passed to the function are guaranteed not to be represented by
thunks, and we can optimise the function using this information. On the other
hand, if we had:

fun :: ∀r1 r2. Int r1 → Int r2 ⊲ Lazy r1

The Lazy constraint says that objects passed to this function may be rep-
resented by thunks, but this isn’t new information compared with the first
version. However, during type inference, if we discover that a term has type:

Int r1 ⊲ Lazy r1, Direct r1

Then this could mean that a lazy object, which might be a thunk, was passed
to a function that can only accept a direct object, which cannot be a thunk.
This is invalid, and will be marked as a type error.

88 CHAPTER 2. TYPE SYSTEM

2.4 The problem with polymorphic update

A well known problem can arise when destructive update is added to a language
with a Hindley-Milner style polymorphic type system. The classic example is
as follows:

id :: ∀a. a→ a
succ :: Int → Int

broken ()
= do ref = newRef id

writeRef ref succ
(readRef ref) True

If we treated this function as though it were written in Standard ML, we could
argue that it is not type safe and would likely crash at runtime. The first line
creates a reference to a polymorphic function id , while the second updates it
to hold a less general function succ. This invalidates the original type of ref .
The problem appears to center on the type inferred for ref :

ref :: ∀a. Ref (a→ a)

The ∀-quantifier allows us to instantiate this type differently for each use of
ref . However, our static type system is unable to track the fact that once we
update the reference we can no longer treat it has having this general type.

2.4.1 Fighting the value restriction

After winning out over several other systems [Gar02] the standard way of ad-
dressing the problem with polymorphic update is to apply the value restriction
[Wri96]. The value restriction states that the type of a let-bound variable should
only be generalised if the right of the binding is a syntactic value, such as a
variable, literal, lambda abstraction, or application of a data constructor to
another value. These expressions are called non-expansive because their eval-
uation will neither generate an exception or extend the domain of the store
[MTHM97, Tof90].

The value restriction has the advantages that it is simple, easy to implement,
and does not require extra information to be attached to the structure of types.
This last point is especially important for ML-style languages in which the
programmer must write full type signatures when defining module interfaces.

The down side is that a class of expressions that were previously assigned poly-
morphic types lose their polymorphism. For example:

f = map id

The type of f is not generalised because the right of the binding is not a
syntactic value. To regain polymorphism we must η-expand it to give:

f = λx. map id x

or equivalently, write it as a function binding:

f x = map id x

2.4. THE PROBLEM WITH POLYMORPHIC UPDATE 89

In [Wri96] it was argued that as the number of modifications needing to be
performed to existing ML programs was small compared to the overall size of the
code, the value restriction does not place an undue burden on the programmer
in practice. However, in light of more recent languages such as Haskell [PJ03a],
the value restriction would interfere with applications such as parser combinator
libraries, which make heavy use of polymorphic values [LM01].

More recently, a variant named the relaxed value restriction [Gar02] uses a
subtyping based approach to recover some of the polymorphism lost by the
simpler restriction. Unfortunately, straight-forward examples like (map id)
remain monomorphic.

2.4.2 Don’t generalise variables free in the store typing

In [Tof90] Tofte uncovers the crux of the problem with polymorphic update by
attempting to prove the soundness of an ML-style type system with mutable
references, and showing where the proof breaks down.

Unsurprisingly, the offending case is the one for let-bindings. The dynamic rule
is as follows:

s ; E ⊢ t1 −→ v1 ; s1 s1 ; E + {x 7→ v1} ⊢ t2 −→ v ; s′

s ; E ⊢ let x = t1 in t2 −→ v ; s′
(MLEvLet)

The judgement form s ; E ⊢ t −→ v ; s′ is read: starting with store s and
environment E, the expression t evaluates to value v and a (perhaps changed)
store s′. The store s maps locations to values while the environment E maps
variables to values. Store locations are created when we allocate a new reference
cell, and modifying the contents of a reference cell corresponds to changing the
value bound to a particular location. The corresponding type rule is:

Γ ⊢ t1 :: τ1 Γ, x : Gen(Γ, τ1) ⊢ t2 :: τ

Γ ⊢ let x = t1 in t2 :: τ
(MLTyLet)

Here, Gen(Γ, τ1) performs generalisation and is short for ∀a1..an. τ1, where
a1...an are the type variables in τ1 that are not free in Γ.

In general, t1 may contain location variables, so we need to know the types of
the values bound to these locations before we can check the type of the whole
expression. This information is held in the store typing which maps locations
to types.

If we have an expression t1 of type τ1, then reducing it relative to a particular
store s1 should yield a value v1. We desire this value to have the same type as
the original expression, and express this fact with the statement:

s1 :: ST1 |= v1 :: τ1

This statement reads: in store s1 with typing ST1, v1 has type τ1. Now the
trouble starts. Although we know that v1 has type τ1, when evaluating a let-
expression we must satisfy the the second premise of (MLTyLet).

90 CHAPTER 2. TYPE SYSTEM

This requires that we strengthen the previous statement to:

s1 :: ST1 |= v1 :: Gen(Γ, τ1)

This says that we’re now considering the value to have a more general type
than it used to. An example of this would be to first treat the term (λx. x) as
having the monomorphic type b → b, and then later deciding that it has the
more general, polymorphic type ∀b. b→ b. In a language without references, as
long as b is not free in the type environment then this generalisation is justified.

If b is not free in the type environment, then there is nothing stopping us
from α-converting any local uses of it, and thus eliminating all mention of this
particular variable from our typing statements. By doing this we could be sure
that no other parts of the program are treating b as being any specific, concrete
type, because they have no information about it.

However, when we introduce mutable references we must also introduce the
concept of a store and its associated store typing. This store typing includes
type variables, and when we try to strengthen the original statement the proof
falls apart. Consider again our broken example that creates a reference to the
polymorphic function id . Expanding out the definition of id gives:

let ref = newRef (λx. x)
in . . .

Once newRef (λx. x) has been reduced to a value, the statement we need to
strengthen is:

{loc1 7→ λx. x} :: {loc1 7→ (a→ a)} |= loc1 :: a→ a

Notice how the reduction of newRef (λx. x) has created a new location in the
store and bound the identity function to it. In the store typing this function
has the type (a→ a) which includes the free variable a.

However, during generalisation this fact is ignored and we end up with:

{loc1 7→ λx. x} :: {loc1 7→ (a→ a)} |= loc1 :: ∀a. a → a

This statement is clearly suspect because the type assigned to loc1 no longer
models its type in the store. When we update the reference to hold succ, the
type of the binding in the store changes. Unfortunately, the static typing rules
still treat loc1 as having the more general type:

{loc1 7→ succ} :: {loc1 7→ (Int → Int)} |= loc1 :: ∀a. a → a

If we were to then read the succ function back from the store and apply it to a
non-Int value like True, the runtime result would be undefined.

Tofte sums up the problem with the following observation:

The naive extension of the polymorphic type discipline [with mutable
references] fails because it admits generalisation on type variables that
occur free in the store typing.

2.4. THE PROBLEM WITH POLYMORPHIC UPDATE 91

2.4.3 Generalisation reduces data sharing in System-F

The value restriction does not solve the fundamental problem of a static analysis
being unable to track runtime changes in the type of data. What it does is to
limit polymorphism, and to prevent the user from writing a certain class of
programs.

Issues of soundness can only arise in relation to a well defined semantics. The
usual formulation being “Soundness = Progress + Preservation” [Pie02], mean-
ing that a well-typed expression must either be a value or be able to progress
to the next step in its evaluation; and that its well-typing is preserved during
evaluation.

With an ML style semantics, if we fail to deal adequately with the issue of
polymorphic update then the last line in broken from §2.4 reduces as:

(readRef ref) True
−→ succ True
−→ (λx. x + 1) True
−→ True +1

This term is not a value and cannot be evaluated further as there is no reduction
rule specifying how to add one to a boolean value. It is the combination of
operational and static semantics which is unsound.

On the other hand, if we consider a System-F style translation of broken which
has been typed without restricting generalisation then we would have:

broken = λ ().

let ref = Λb. newRef {b→ b} (id {b}) in

let = writeRef {Int → Int} (ref {Int}) succ in

readRef {Bool → Bool} (ref {Bool}) True

We have inserted type lambdas Λ and type arguments {} at generalisation and
instantiation points respectively. Notice that ref now binds a function value
instead of an application expression.

From the operational semantics of DDC’s core language §4.2.13 we have:

H ; t1 −→ H′ ; t′1

H ; let x = t1 in t2 −→ H′ ; let x = t′1 in t2
(EvLet1)

H ; let x = v◦ in t −→ H ; t[v◦/x] (EvLet)

When combined, these two rules say that to evaluate a let-expression we should
first reduce the right of the binding to a (weak) value and then substitute this
value into the body. While evaluating broken, as the right of the ref binding is
already a value we substitute and end up with:

let = writeRef {Int → Int} ((Λb. newRef ...) {Int}) succ in

readRef {Bool → Bool} ((Λb. newRef ...) {Bool}) True

Note the duplication of the term involving newRef and the fact that a new
reference containing id will be allocated at each occurrence. The re-evaluation

92 CHAPTER 2. TYPE SYSTEM

of polymorphic terms corresponds with polymorphism-by-name [Ler93]. Also
note that the first reference will be updated, but only the second one will
be read. Admittedly, the behavior of this expression could be confusing to the
programmer, but allowing it does not make our system unsound. Demonstration
of unsoundness would require that an expression was well typed, not a value,
and could not be reduced further. This expression can be reduced to True, and
is not a problem in this respect.

Although polymorphism-by-name keeps our System-F style core language sound
in the presence of polymorphic update, we expect it to be too confusing for
the programmer to use in practice. If a value appears to be shared in the
source program, then we do not want this sharing to be reduced depending on
whether it is assigned a polymorphic type by the type inferencer. As in [GL86]
we restrict generalisation to preserve the data sharing properties of programs
during translation to and from core. However, as mentioned earlier we don’t
want to use the value restriction. The next section discusses the possibility of
leveraging effect typing to control generalisation, but as we shall see in §2.5
we use another method, namely closure typing, to achieve this. Closure typing
will help us deal with the problem with polymorphic update, as well as more
accurately reason about the sharing properties of data.

2.4.4 Restricting generalisation with effect typing

As we don’t want to rely on the value restriction to control generalisation, we
must find another way of identifying variables that are free in the store typing.
In a language with ML-style references, the sole means of extending the store is
by explicitly allocating them with a function such as newRef . In this case, the
problem of identifying variables free in the store typing reduces to identifying
calls to newRef and collecting the types of values passed to it. If we treat
reference allocation as a computational effect, then we can use effect inference
to perform the collection [Wri92]. The rules for the polymorphic type and effect
system [TJ92a, TJ92b] are as follows:

Γ ⊢ t :: τ ; σ

Γ, x : τ ⊢ x :: Inst(τ) ; ∅ (Var)

Γ, x : τ1 ⊢ t2 :: τ2 ; σ

Γ ⊢ λ(x : τ1). t2 :: τ1
σ
→ τ2 ; ∅

(Abs)

Γ ⊢ t1 :: τ11
σ
→ τ12 ; σ1

Γ ⊢ t2 :: τ11 ; σ2

Γ ⊢ t1 t2 :: τ12 ; σ1 ∪ σ2 ∪ σ
(App)

Γ ⊢ t1 :: τ1 ; σ1

Γ, x : Gen(σ1, Γ, τ1) ⊢ t2 :: τ2 ; σ2

Γ ⊢ let x = t1 in t2 :: τ2 ; σ1 ∪ σ2
(Let)

Γ ⊢ t :: τ ; σ1 σ1 ⊆ σ2

Γ ⊢ t :: τ ; σ2
(Sub)

2.4. THE PROBLEM WITH POLYMORPHIC UPDATE 93

The judgement Γ ⊢ e :: τ ; σ reads: In the environment Γ the expression e
has type τ and effect σ. The environment Γ maps variables to types. In this
presentation effects are gathered together with the set union operator ∪ and
a pure expression is assigned the effect ∅. Also note the term Gen(σ1, Γ, τ1)
in the rule (Let). Generalisation is restricted to variables that are not free in
either the type environment or the effect caused by evaluating the body of a
let-binding.

These rules describe the “plumbing” of how effects are attached to types.
What’s missing is a description of how atomic effects are introduced to the
system via newRef .

In Wright’s system [Wri92], newRef is given the type:

newRef :: ∀a e. a
a e
−→ Ref a

Here, a is a type variable and its presence on the function arrow indicates that
it has the effect of allocating a new reference containing a value of that type.
The effect variable e combined with the subsumption rule (Sub) allows the
function to be treated as causing any effect so long as it includes a. This is
used when passing arguments to higher order functions, which is discussed in
§2.3.6. Although this system collects the requisite type variables, it is limited
by the fact that all the effects caused by the allocation of references appear in
a function’s type, even if they are used entirely locally to that function.

For example, with the following program:

id :: ∀a e. a
e
→ a

id = λx. x

idRef :: b
b
→ b

idRef = (λx. let ref = newRef x in readRef ref)

In the type for id , we can generalise a because it does not appear free in either
the type environment or the effect caused by the function. The second function
idRef behaves identically to id , except that it creates a reference to its argument
before returning it. Even though this reference is not accessible once idRef
returns, the effect caused by allocating it appears in its type, which prevents b
from being generalised. Although these two functions behave identically from a
callers point of view, they cannot be used interchangeably as they have different
types.

2.4.5 Observation criteria

In [TJ92b] Talpin and Jouvelot extend Wright’s effect system with regions. As
in Disciple, their regions denote sets of locations which may alias, but they at-
tach region variables to reference types only. In their system, effects are caused
when references are read and written to, but also when they are allocated. Each
effect carries with it the type of the reference being acted upon, as well as the
region it is contained within. The types of the primitive operators are:

newRef :: ∀a r e. (a
e
−→ Ref r a) ⊲ e ⊇ Init r a

readRef :: ∀a r e. (Ref r a
e
−→ a) ⊲ e ⊇ Read r a

writeRef :: ∀a r e. (Ref r a
e1−→ a

e2−→ ()) ⊲ e2 ⊇Write r a

94 CHAPTER 2. TYPE SYSTEM

Similarly to Wright’s system, newRef can be treated has having any effect,
so long as that effect includes Init r a. The effect Init r a records that a
reference in region r was initialised to contain a value of type a. However, in
this system the subsumption rule (Sub) is modified to include an observation
criterion which allows effects which are not visible to a caller to be masked.

Γ ⊢ e :: τ ; σ1 σ2 ⊇ Observe(Γ, σ1, τ)

Γ ⊢ e :: τ ; σ2
(Sub-Obs)

where

Observe(Γ, τ, e)

= { Init r τ1, Read r τ1, Write r τ1 ∈ σ | r ∈ fr(Γ) ∪ fr(τ) }

∪ { ς ∈ σ | ς ∈ fv(Γ) ∪ fv(τ) }

The function fv computes the free type, region and effect variables in its argu-
ment, while fr returns free region variables only.

With this system, when we type check the definition of idRef the body of the
λ-expression yields the statement:

Γ, x :: a ⊢ (let ref = newRef x in readRef r) :: a
; Init r1 a ∪ Read r1 a

Note that although the right of the let-binding allocates and then reads a ref-
erence, the region into which the reference is allocated is entirely local to the
binding. Applying (Sub-Obs) yields:

Γ, x :: a ⊢ (let ref = newRef x in readRef r) :: a
; ∅

This allows us to infer the same type for id as we do for idRef . Leaving the
formal proof of soundness in [TJ92b], we can see why the observation criteria
works by inspecting our original statement:

Γ, x :: a ⊢ (let ref = newRef x in readRef r) :: a
; Init r1 a ∪ Read r1 a

Notice that r1 is not present in the type environment, and is therefore not
visible to the expression’s calling context. Also, as the type of the expression
does include r1 there will be no “handle” on this region after the expression has
finished evaluating. Indeed, as the allocated reference is unreachable after this
evaluation, it could be safely garbage collected. Returning to Tofte’s (un)proof
in §2.4.2, this garbage collection corresponds to removing the associated binding
from the store and its store typing, which allows a to be safely generalised.

2.4.6 Effect typing versus arbitrary update

Talpin and Jouvelot’s system works well for a language with ML-style references.
As update is limited to a distinguished Ref type, it is easy for the type system
to decide when to introduce Read , Write and Init effects. However, in Disciple,
update is not restricted to data of a special type. In our system all data has
the potential to be updated.

2.4. THE PROBLEM WITH POLYMORPHIC UPDATE 95

For example the simple data type Maybe is defined as follows:

data Maybe r a = Nothing | Just a

Defining this type furnishes us with a data constructor which can be used to
allocate a Just .

Just :: ∀ a r. a→ Maybe r a

Once a Just has been allocated, we can then use the field projection syntax
of §2.7 to update it, or not, as we see fit. If we were to use an effect system
to control generalisation, how would we know whether this constructor should
cause an Init effect? Only the allocation of a mutable value should cause an
effect, but mutability depends on whether or not the value may ever be updated,
not vice versa. The mutability of the object will be inferred by our type system,
but this property is not immediately visible at the point where the object is
allocated.

96 CHAPTER 2. TYPE SYSTEM

2.5 Closure typing

Leroy’s closure-typing [LW91, Ler92] is a system for modeling data sharing due
to the inclusion of free variables in the bodies of functions. We use closure
typing as an alternate solution to the problem of polymorphic update, as well
as to reason about the sharing properties of regions.

Consider the following function:

addT = λx. λy. (x + y, x)

If we take addition (+) to operate on values of type Int , then we could give
addT the following type:

addT :: Int → Int → Pair Int Int

If we then partially apply addT to the value 5, the first argument of its type is
satisfied and we end up with a function that accepts an integer and produces a
pair:

addFive :: Int → Pair Int Int
addFive = addT 5

addFive can be further applied to yield the pair, but what happened to the
first value we provided? Assume evaluation proceeds via template instantiation
after the pure lambda calculus. In this case we could reason that the argument
5 was bound to the formal parameter x and then substituted into the body of
the outer lambda abstraction, that is:

addFive −→ addT 5
−→ (λx. λy. (x + y, x)) 5
−→ λy. (5 + y, 5)

This call-by-name reasoning is applicable to a pure language such as Haskell,
but as we intend to use destructive update we must take a more operational
approach. If we instead consider an implementation based on super-combinators
[Hug83], we would treat addT as a single supercombinator, and the partial
application (addT 5) as the construction of a thunk containing pointers to the
supercombinator code and argument value:

addT

@

I 5

addFive:

code for

When addFive is applied to its final argument, the code for addT is called di-
rectly. addT ’s first argument comes from the thunk, and the second is supplied
by the application. This is how DDC operates.

With this system, every use of addFive shares the same ‘5’ object. Using
region annotations on data types and closure annotations on functions7, we
give addFive a type which makes the sharing explicit.

7We modify Leroy’s syntax for closures to be similar to the one used for effects.

2.5. CLOSURE TYPING 97

addFive :: ∀r1 r2 r3

. Int r1
c1−→ Pair r2 (Int r3) (Int r4)

⊲ c1 = x : Int r4

On the left of the function arrow, the argument type Int r1 says that addFive
accepts an integer from a region which we name r1. On the right of the arrow, we
see that the function produces a pair of integer components. As r3 is quantified,
we infer that the first component has been freshly allocated into a new region
(addition returns a fresh result). The data constructor representing the pair is
also fresh, so r2 is quantified as well. On the other hand, r4 is not quantified,
which indicates that the second component of the pair will be in the same region
each time addFive is called.

The closure variable c1 attached to the function arrow indicates that the defini-
tion of addFive creates a shared value, and the term x : Int r4 records its type.
The “x :” portion of x : Int r4 is called the closure tag, and we treat it as an
operator that lifts the type term Int r4 into a closure term. In this example, the
variable x corresponds to the occurrence that is free in the innermost lambda-
abstraction in the definition of addFive. For the types of primitive functions
such as data constructors, although there is no associated source code we still
use names such as x, y, z for consistency.

Note that our type system tracks variable names such as x as a notational
convenience, but does not make use of them for checking purposes. We have
found it useful for such variables to be included in the types presented to the
user, as without them it can be very difficult to determine why an inferred
type signature includes a particular closure term. However, if desired we could
replace all such variables with an underscore to indicate they are ignored by
the type system proper.

2.5.1 Dangerous type variables

In [Ler92] Leroy defines dangerous variables to be the ones that are free in a
live reference type. For Disciple this is equivalent to being free under a mutable
type constructor.

Consider the following type:

thing :: Maybe r1 (a→ a)
⊲ Mutable r1

with

data Maybe r1 a
= Nothing
| Just {x :: a}

In the type of thing , a is dangerous because it corresponds to a value that
we are able to update at runtime. For example, the following code creates a
Just constructor containing the function id , updates it to hold the less general
function succ, then tries to apply that function to a string. This example is
similar to one from §2.4, except that we are using the Disciple projection syntax
to update the mutable object. The term thing ⊙# x creates a reference to the x
field in the Just constructor. If we view references as being akin to pointers, then
thing ⊙# x has a similar meaning to the C expression &(thing.x). Projections
are discussed further in §2.7.

98 CHAPTER 2. TYPE SYSTEM

Once the reference is created, we use the :=# operator to update the field (via
the reference):

do thing = Just id

thing ⊙# x :=# succ

trouble = case thing of Just f → f “die!”

When generalising the type of thing we must hold a monomorphic. If we were
to give it the following polymorphic type, then the above code would pass the
type checker, but would have an undefined result at runtime.

thingbad :: ∀a. Maybe r1 (a→ a)
⊲ Mutable r1

In general, to determine the dangerous variables in a type we must inspect the
definitions of the data types involved.

For example, the following type has three separate region variables, which gives
us three places to attach mutability constraints:

data TwoThings r1 r2 r3 a b
= Thing1 (Maybe r2 a)
| Thing2 (Maybe r3 b)

Here is an example signature that uses TwoThings:

foo :: TwoThings r4 r5 r6 (d→ Int r7) (Char r8)
⊲ Const r4

, Mutable r5

, Const r6

In this case, as r5 is mutable we must hold d and r7 monomorphic. Note that
region, effect and closure variables can be dangerous as well. As r5 is mutable
we cannot generalise r7 because the associated Maybe object might be updated
to hold a function that does not allocate a fresh return value. On the other
hand, we can allow r8 to be polymorphic as r6 is constant. If r4 was mutable
then all of r5, r6, d, r7 and r8 would have to be monomorphic, because this
would let us update either of the Thing objects to hold a different Maybe.

A formal description of which variables are dangerous is given in §3.2.

2.5.2 Closure typing and hidden communication

Consider the following function, also from [Ler92]:

makeGetSet x
do ref = newRef x

get () = readRef ref
set z = writeRef ref z
Pair get set

This function allocates a reference to the supplied value x, and then returns a
pair of functions to get and set the value in the reference.

2.5. CLOSURE TYPING 99

In Disciple, without closure information and before generalisation, the type of
makeGetSet is:

makeGetSet :: a→ Pair r1 (()
e1−→ a) (a

e2−→ ())
⊲ e1 ⊒ Read r2

, e2 ⊒Write r2

, Mutable r2

There are two problems with this type. Firstly, as r2 is not mentioned in the
body (or the type environment), the read and write effects will be masked as per
§2.3.7. This is invalid because the order in which these applications take place
at runtime certainly matters, so they must retain their effect terms. Secondly,
if we were to allow a to be generalised then we would have an unsound system
once again.

For example:

makeGetSetbad :: ∀a r1. a→ Pair r1 (()→ a) (a→ ())

broken ()
do getset = makeGetSetbad id

set2 = snd getset
set2 succ

get2 = fst getset
get2 () “die!”

By allowing the mutable object ref to be free in the closure of the get and set
functions, we have created a communication channel between them that is not
visible in their types. This is not a problem in itself, but the addition of let-
polymorphism allows each function to gain a different understanding of what
type of data is being sent across the channel. Note that with the bad type for
makeGetSet , the inferred type of getset includes a quantifier for b:

getset :: ∀b. Pair r1 (()→ (b→ b)) ((b→ b)→ ())

As we have used a let-binding to define get2 and set2 , the types of the two
components are re-generalised and we end up with:

get2 :: ∀c. ()→ (c→ c)
set2 :: ∀d. (d→ d)→ ()

The use of set2 updates the shared reference to contain a function, succ, that
only accepts integers. Unfortunately, with get2 we can then read it back and
pretend that it accepts a string.

Adding closure information to our types remedies this problem. Here is the
new type of makeGetSet , with closure information, and before generalisation:

makeGetSet :: a→ Pair r1 (()
e1 c1−→ a) (a

e2 c2−→ ())
⊲ e1 ⊒ Read r2

, e2 ⊒ Write r2

, c1 ⊒ ref : Ref r2 a
, c2 ⊒ ref : Ref r2 a
, Mutable r2

The constraints on c1 and c2 show that the get and set functions returned in
the pair can access a shared mutable value, and that the type of this value

100 CHAPTER 2. TYPE SYSTEM

contains a variable a. Note that the lattice structure for closures is identical to
that for effects, which was discussed in §2.3.1. For closures we take ⊒ as being
a synonym for the superset operator ⊇, and use ∨ as a synonym for ∪. There is
no ⊤ element for closures, but we stick with the lattice notation for consistency
with effect types.

Returning to makeGetSet , note that this function allocates the reference itself.
This can be determined from the fact that the primary region variable of the
reference, r2, is not reachable from the closure annotation on the outermost
(leftmost) function arrow. Once we apply makeGetSet to its argument, the
reference is created and subsequently shared. In our example this is done in
the binding for getset .

After generalisation, the new type of getset is:

getset :: ∀e1 e2 c1 c2

. Pair r1 (()
e1 c1−→ (b→ b)) ((b→ b)

e2 c2−→ ())
⊲ e1 ⊒ Read r2

, e2 ⊒ Write r2

, c1 ⊒ ref : Ref r2 (b→ b)
, c2 ⊒ ref : Ref r2 (b→ b)
, Mutable r2

In this type we have two “outermost” function arrows, which are the two in the
Pair . The type (b→ b) is in the closure of these outermost functions, and the
type variable b lies underneath a region variable r2 that is constrained to be
Mutable. This means that b is dangerous and cannot be generalised. Note that
r2 is not generalised either, though this restriction is due to the fact that r2 is
present in the outermost closure. This point is discussed in the next section.

Returning to our example, after performing the fst and snd projections, our
new types for get2 and set2 are:

get2 :: ∀e1 c1. ()
e1 c1−→ (b→ b)

⊲ e1 ⊒ Read r2

, c1 ⊒ ref : Ref r2 (b→ b)
, Mutable r2

set2 :: ∀e2 c2. (b→ b)
e2 c2−→ ()

⊲ e2 ⊒ Write r2

, c2 ⊒ ref : Ref r2 (b→ b)
, Mutable r2

The effect information in the types of these functions ensures that uses of them
will not be reordered during optimisation. The closure annotations capture the
fact that they can communicate via a shared mutable value, and ensures that
both functions agree on its type.

2.5. CLOSURE TYPING 101

2.5.3 Material regions and sharing

Recall from section §2.2.3 that material region variables are the ones that repre-
sent objects that are shared between all uses of a bound variable. For example:

five :: Int r
five = 5

Here, r is clearly material, because every use of five references the same ‘5’
object. On the other hand, consider:

addTwo :: ∀r1 r2. Int r1 → Int r2

addTwo x = succ (succ x)

Neither r1 or r2 are material in the type of addTwo. These variables represent
the locations of objects passed to, and returned from, the function. They do
not represent locations of objects that are shared between uses of it. Without
further information, we take regions in the argument positions of function types
to be immaterial.

Note that with the constructors at hand, we cannot be sure that no function
objects are shared between calls to addTwo. If succ was defined as the partial
application of some more primitive function, then every use of succ would refer
to the same thunk. However, for our purposes sharing only matters if the shared
objected has the potential to be destructively updated, and thunks cannot be
updated.8

The following example defines a function that references a shared data object:

makeFive ()
= do x = 5

retFive () = x
retFive

If we wrote down a type for makeFive which included region variables but not
closure information then we would have:

makeFive :: ∀r. ()→ ()→ Int r

As r is quantified, makeFive should return a freshly allocated Int object each
time it is called. This is certainly true if we apply both arguments, but we
can invalidate the meaning of the quantifier by supplying only one. To see this
more clearly, consider the supercombinator translation:

makeFive ′ ()
= do x = 5

retFive ′ x

retFive ′ x′ () = x′

makeFive ′ and retFive ′ are the result of lambda-lifting [Joh85] our original
function. Note that the free variable in the definition of retFive is passed
explicitly to its lifted version. As makeFive ′ returns the value retFive ′ x, which
evaluates to a thunk, the same ‘5’ object will be returned each time makeFive ′

is provided with its final argument.

8They can be overwritten by the runtime system during lazy evaluation, but this is not

visible in the programming model.

102 CHAPTER 2. TYPE SYSTEM

Consider then a binding that partially applies makeFive:

makeFiveUnit :: ∀r. ()→ Int r
makeFiveUnit = makeFive ()

Although the type of makeFiveUnit says that its return value should be freshly
allocated, we have just seen that the evaluation of makeFive () will produce a
function that returns the same ‘5’ object every time. Following the standard
restriction for generalisation, we have not quantified over variables free in the
type environment. This environment consists of the type of makeFive, which
has no free variables, so that does not help us here. The standard restriction
prevents types from becoming out of sync with their context, but it does not
model sharing due to free variables in the body of function definitions.

Once again, closure typing comes to our rescue. When we include closure
information, the types of makeFive and makeFiveUnit become:

makeFive :: ∀r. ()→ ()
c
→ Int r

⊲ c = x : Int r

makeFiveUnit :: ()
c
→ Int r

⊲ c = x : Int r

The type of makeFive now includes the fact that when the first () is applied, it
allocates an object in a region it names r, and this object is shared by all calls
to the returned function.

The type of makeFiveUnit preserves this sharing information. Region variables
that are reachable from the closure annotation on the outer most function arrow
of a type are material, and material region variables are not generalised.

2.5.4 Material regions and algebraic data types

When we come to generalise the type of a binding, and the type contains only
simple constructors like Int and →, then we can determine which region vari-
ables are material directly from the type. However, when dealing with algebraic
data types, we also need their definitions.

Consider the following:

data IntFun r1..4 e1 c1

= SInt (Int r2)

| SFun (Int r3
e1 c1−→ Int r4)

This definition implicitly generates the following constructors. Note that we use
r1..r4. as shorthand for r1 r2 r3 r4. Also, r1 is used as the primary region variable
of the type, but is not present in the types of the constructor arguments.

SInt :: ∀r1..4 e1 c1

. Int r2 → IntFun r1..4 e1 c1

SFun :: ∀r1..4 e1 c1

. (Int r3
e1 c1−→ Int r4)→ IntFun r1..4 e1 c1

The SInt constructor creates an object containing a pointer to an Int . The
region variable r1 is primary as it is first in the list, so we take the outer SInt

2.5. CLOSURE TYPING 103

constructor to be in this region. The Int component is in region r2, so an
application of SInt would produce:

someFive = SInt 5

Int 5

SInt
1

2

someFive: r

r

As the outer constructor always appears in the primary region, the primary
region variable is material. Because an SInt object contains an Int in a region
named r2, this variable is also material.

On the other hand, when we use SFun, the constructed object will contain a
pointer to either the code for the function argument, or a thunk, depending on
whether the argument was partially applied:

someSucc = SFun succ someAdd = SFun ((+) 2)

Int 2code for
’(+)’

@

SFun SFun

code for

1 1

’succ’

someAdd:someSucc: r r

5
r

Note that with the constructors at hand, there no way to create an IntFun
object that actually includes data in the r3 or r4 regions. Because of this, they
are immaterial, and the generalisation of immaterial regions is not restricted as
per the previous section. The type of someSucc above is:

someSucc :: ∀r3 r4 e1. IntFun r1..4 e1 ⊥
⊲ e1 ⊒ Read r3

Note that although our someSucc object does not include data in region r2,
that region is not quantified here. In general, if a particular value has type
IntFun r1..4 e1 c1 then we will not know what data constructor was used to
create it. We must rely on the data type definition to determine which regions
are material.

The type of someAdd is similar, except that its closure variable is constrained
to contain the type of the argument in the partial application of (+):

someAdd :: ∀r3 r4 e1 c1. IntFun r1..4 e1 c1

⊲ e1 ⊒ Read r3 ∨ Read r5

, c1 ⊒ Int r5

The material regions of a type are defined formally in §3.2.4.

104 CHAPTER 2. TYPE SYSTEM

2.5.5 Strong, mixed and absent region variables

When an algebraic data type is defined we do not restrict the ways in which
region variables are used. Due to this, a particular variable may occur in both
a material and immaterial position. For example:

data IntFunMixed r1..5 e1 c1

= SIntX (Int r2)
| SCharX (Int r4)

| SFunX (Int r2
e1 c1−→ Int r3)

In the first constructor, r2 is used as the primary region variable of Int , which
makes it material. In the third constructor, r2 is used as part of the type of a
function parameter, so it is also immaterial. In this situation we say that r2 is
mixed material.

If a region variable is only ever used in a material position, then it is strongly
material. In the above definition, r1 is strongly material because it is used as
the primary region variable for IntFunMixed , and not in the type of a function
parameter. The variable r4 is also strongly material. We will use this concept
when we discuss the polymorphic copy function in §2.6.

If a region variable is present as a parameter of the type constructor being
defined, but not one of the data constructors, then we say it is absent. The
variable r5 is absent in the above definition. As absent region variables cannot
correspond to real regions in the store, all absent variables are also immaterial.
The reverse is not true, as r3 is immaterial, but not absent.

2.5.6 Pure effects and empty closures

In the previous two sections, the definitions of IntFun and IntFunMixed include
effect and closure variables as arguments to the type constructor. This allows
these data types to be polymorphic in the effect and closure of the contained
function. Alternatively, we could omit these variables as long as we constrained
the types of SFun and SFunX so that the effect of the contained function was
pure, and its closure contained no elements.

A closure that has no elements is said to be empty. Emptiness of closures is
related to purity of effects. Recall from §2.3.9 that a pure effect is written ⊥
and we can require an effect to be pure with the Pure constraint. Likewise, we
write empty closures as ⊥ and require a closure to be empty with the Empty
constraint. We sometimes annotate ⊥ with its kind, such as ⊥! and ⊥$ to
distinguish between its two readings, but the kind is usually clear from context.

By omitting effect and closure variables, and restricting ourselves to a single
region we will now define a diet version of IntFun that has a single parameter
instead of six. This new data type can still contain an Int or function value,
but the set of functions it could hold is reduced:

data IntFunDiet r1

= SIntD (Int r1)
| SFunD (Int r1 → Int r1)

This modified data type definition generates the following constructors:

2.5. CLOSURE TYPING 105

SIntD :: ∀r1. Int r1 → IntFunDiet r1

SFunD :: ∀r1 e1 c1

. (Int r1
e1 c1−→ Int r1)→ IntFunDiet r1

⊲ Pure e1

, Empty c1

Note that although r1 is repeated in the first parameter of SFunD , this doesn’t
require its argument to be a function which simply passes the Int through
unchanged. The type of a function like succ can be instantiated so that both its
region variables are the same. Due to this we can still construct (SFunD succ)
as per the figure in §2.5.4, though the single region will be forced Const due to
purification of the function’s Read effect. On the other hand, we can no longer
construct (SFunD ((+) 2)) as its type would include a closure term due to the
partial application, rendering it non-empty. See §5.2.4 for a possible way of
addressing this limitation.

2.5.7 Closure trimming

The closure annotation attached to a function type lists the types of all free
variables in that function’s definition. However, not all of this information is
useful to our analysis. As we only restrict the generalisation of material region
variables, we only need to retain closure terms that contain them. The rest
of the closure information can be trimmed out, and doing so is an important
optimisation in practice.

Consider the following program:

x = 5
fun () = x + 1
fun2 () = fun
fun3 () = fun2
fun4 () = fun3

This is a simple program, but as each successive binding refers to the binding
above it, the closure terms in their types can become very large.

If x has type Int r1, then fun has the following signature:

fun :: ∀r2. ()
e1 c1−→ Int r2

⊲ e1 = Read r1

, c1 = x : Int r1

This says that fun accepts a unit value and produces a freshly allocated integer.
The closure constraint c1 = x : Int r1 says that the function refers to this
object via the free variable x. When it evaluates, the addition operator reads
the integer bound to x, hence the Read r1 effect. It also reads the constant
integer 1, but as this constant is local to the function the effect is masked.

106 CHAPTER 2. TYPE SYSTEM

Here is the type for fun2 :

fun2 :: ∀r2. ()
c2−→ ()

e1 c1−→ Int r2

⊲ e1 = Read r1

, c1 = x : Int r1

, c2 = (fun : ∀r3. ()
e3 c3−→ Int r3

⊲ e3 = Read r1

, c3 = x : Int r1)

Note that fun2 refers to fun, so the full type of fun appears in its closure.
However, as we only use closure terms to reason about the sharing properties
of data, we gain no benefit from carrying around information about the effects
associated with a variable like fun. We also gain no benefit from retaining its
argument and return types. We extend the concept of materiality to value types,
and say that the argument and return positions of functions are immaterial
because they do not represent objects in the store. Lastly, if we erase the return
type Int r3 then we do not need the quantifier ∀r3. The only information about
fun that we do need to keep is that it references a material object of type Int r1.
Using these observations we trim the type of fun2 to get:

fun2 :: ∀r2. ()
c2−→ ()

e1 c1−→ Int r2

⊲ e1 = Read r1

, c1 = x : Int r1

, c2 = fun : Int r1

Trimming closures prevents the types of functions from “blowing up”. With-
out closure trimming the closure term of a top level function like main would
include all the types of all functions used in the program. In practice, most
closure terms can be erased totally. For example, the definition of our addTwo
function references the free variable succ. As succ contains no material closure
components, neither does addTwo.

addTwo :: ∀r1 r2. Int r1 → Int r2

addTwo x = succ (succ x)

In our current implementation we only trim out closure information concerning
immaterial region variables. Section §5.2.4 presents some ideas for also trim-
ming out information concerning region variables that are constrained to be
constant.

2.6. TYPE CLASSING 107

2.6 Type classing

In this section we discuss value type classes in Disciple. The general mechanism
is similar to that used in Haskell, except that we need a special Shape constraint
on types to be able to write useful class declarations.

As our current implementation does not implement dictionary passing, we limit
ourselves to situations where the overloading can be resolved at compile time.
For this reason, none of our class declarations have superclasses, and we do not
support value type classes being present in the constraint list of a type. This
in turn allows us to avoid considering most of the subtle issues discussed in
[PJJM97]. We have made this restriction because we are primarily interested
in using the type class mechanism to manage our region, effect and closure
information. Exploring the possibilities for interaction between the various
kinds of constraints represents an interesting opportunity for future work. There
is also the possibility of defining multi-parameter type classes that constrain
types of varying kinds.

2.6.1 Copy and counting

The need for a Shape constraint arises naturally when we consider functions
that copy data. For example, the copyInt function which copies an integer
value has type:

copyInt :: ∀r1 r2. Int r1
e1−→ Int r2

⊲ e1 = Read r1

We will assume that this function is defined as a primitive. As r2 is quantified
we know that copyInt allocates the object being returned, which is what we
expect from a copy function.

In Disciple programs, copyInt can be used to initialise mutable counters. For
example:

startValue :: Int r1 ⊲ Const r1

startValue = 5

fun ()
= do count = copyInt startValue

. . .
count := count −1
. . .

startValue is defined at top level. In Disciple, if a top level value is not explicitly
constrained to be Mutable then Const constraints are added automatically. We
have included this one manually for the sake of example.

In the definition fun we have a counter that is destructively decremented as the
function evaluates. As the type of (:=) (sugar for updateInt) requires its argu-
ment to be mutable, we cannot simply initialise the counter with the binding
count = startValue. This would make the variable count an alias for the object
bound to startValue. This in turn would require both count and startValue to
have the same type, creating a conflict between the mutability constraint on
count and the constancy constraint on startValue. We instead use copyInt to
make a fresh copy of startValue, and this use object to initialise count .

108 CHAPTER 2. TYPE SYSTEM

2.6.2 Type classes for copy and update

After integers, another common data type in functional programs is the list. In
Disciple we can declare the list type as:

data List r1 a
= Nil
| Cons a (List r1 a)

This declaration introduces the data constructors Nil and Cons which have the
following types:

Nil :: ∀r1 a. List r1 a

Cons :: ∀r1 a. a→ List r1 a
c1−→ List r1 a

⊲ c1 = x : a

Note that in the type of Nil , the region variable r1 is quantified. This indicates
that Nil behaves as though it allocates a fresh object at each occurrence.9 On
the other hand, in the type of Cons the region variable r1 is shared between the
second argument and the return type. This indicates that the returned object
will contain a reference to this argument.

Using our list constructors, and the copyInt function from the previous section,
we define copyListInt which copies a list of integers:

copyListInt :: ∀r1 r2 r3 r4

. List r1 (Int r2)
e1−→ List r3 (Int r4)

⊲ e1 = Read r1 ∨ Read r2

copyListInt xx
= case xx of

Nil → Nil
Cons x xs → Cons (copyInt x) (copyListInt xs)

Once again, the fact that both r3 and r4 are quantified indicates that the
returned object is freshly allocated. Note that e1 includes an effect Read r1

due to inspecting the spine of the list, as well as Read r2 from copying its
elements.

As copyInt and copyListInt perform similar operations, we would like define a
type class that abstracts them. If we ignore effect information for the moment,
we could try something like:

class Copy a where
copy :: a→ a

Unfortunately, this signature for copy does not respect the fact that the returned
object should be fresh. Our copyInt function produces a freshly allocated object,
but Int instance of the type in the class declaration would be:

copyInt :: ∀r1. Int r1 → Int r1

This would prevent us from using our overloaded copy function to make local,
mutable copies of constant integers as per the previous section. As the argument

9However, if the returned object is constrained to be constant then the compiler can reuse

the same one each time and avoid the actual allocation.

2.6. TYPE CLASSING 109

and return types include the same region variable, any constraints placed on
one must be compatible with the other. On the other hand, the following class
declaration is too weak:

class Copy a where
copy :: ∀b. a→ b

If the argument of copy is an integer, then we expect the return value to also
be an integer. What we need is for the argument and return types of copy to
have the same overall shape, while allowing their contained region variables to
vary.

We enforce this with the Shape constraint:

class Copy a where
copy :: ∀b. a→ b

⊲ Shape a b

Shape a b can be viewed as functional dependency [Jon00] between the two
types a and b. The functional dependency is bi-directional, so if a is an Int
then b must also be an Int , and if b is an Int then so must a. As we do not
provide any mechanism for defining Shape from a more primitive structure, it
is baked into the language.

This handles the argument and return types, though we still need to account
for the effect of reading the argument. We do this with the ReadT (read type)
effect:

class Copy a where

copy :: ∀b. a
e1−→ b

⊲ e1 = ReadT a
, Shape a b

In the class declaration, ReadT a says that instances of the copy function
are permitted to read any region variable present in the type a. Once this
declaration is in place, we can add the instances for each of our copy functions:

instance Copy (Int r1) where
copy = copyInt

instance Copy (List r1 (Int r2)) where
copy = copyListInt

Along with ReadT , there is a related WriteT that allows a function to have a
write effect on any region variable in a type. Similarly, MutableT and ConstT
place constraints on all the region variables in a type.

Next, we will use WriteT and MutableT to define the type class of objects that
can be destructively updated:

class Update a where

(:=) :: ∀b. a→ b
c1 e1−→ ()

⊲ e1 = WriteT a ∨ ReadT b
, c1 = x : a
, Shape a b
, MutableT a

This declaration says that instances of (:=) may write to the first argument,
read the second argument, hold a reference to the first argument during partial

110 CHAPTER 2. TYPE SYSTEM

application, require both arguments to have the same overall shape, and require
regions in the first argument to be mutable.

Note that the types in class declarations are upper bounds of the possible types
of the instances. Instances of (:=) must have a type which is at least as poly-
morphic as the one in the class declaration, and may not have an effect that is
not implied by WriteT a ∨ ReadT b. Nor may they place constraints on their
arguments other than Shape a b and MutableT a. Importantly, after a partial
application of just their first arguments, they may not hold references to any
material values other than these arguments. This last point is determined by
the closure term x : a.

2.6.3 Shape and partial application

We now discuss how the Shape constraint works during partial application. We
will use the overloaded equality function as an example. Here is the Eq class
declaration:

class Eq a where

(==) :: ∀b r1. a→ b
e1 c1−→ Bool r1

⊲ e1 = ReadT a ∨ ReadT b
, c1 = x : a
, Shape a b

This declaration says that instances of (==) accept two arguments, and return
a fresh boolean. Instances are permitted to read their arguments and hold a
reference to the first one when partially applied. The arguments may also be
required to have the same shape.

Consider the following binding:

isEmpty = (==) []

This binding partially applies (==), resulting in a function that tests whether
a list is empty. To determine the type of isEmpty we first instantiate the type
of (==):

(==) :: a′ → b′
e1 c1−→ Bool r′1

⊲ e1 = ReadT a′ ∨ ReadT b′

, c1 = x : a′

, Shape a′ b′

Taking [] to have the type List r2 c, we bind it to a′ and eliminate the outer
function constructor:

((==) []) :: b′
e1 c1−→ Bool r′1

⊲ e1 = ReadT (List r2 c) ∨ ReadT b′

, c1 = x : List r2 c
, Shape (List r2 c) b′

The Shape (List r2 c) b′ constraint requires b′ to have the same shape as
List r2 c. We satisfy this by giving b the type List r3 d, where r3 and d
are fresh:

2.6. TYPE CLASSING 111

((==) []) :: List r3 d
e1 c1−→ Bool r′1

⊲ e1 = ReadT (List r2 c) ∨ ReadT (List r3 d)
, c1 = x : List r2 c
, Shape (List r2 c) (List r3 d)

The effect ReadT expresses a read on all region variables in its argument type.
As we now know what this argument type is we can reduce the ReadT effect to a
simpler form. Here, ReadT (List r2 c) can be reduced to Read r2∨ReadT c and
ReadT (List r3 d) can be reduced to Read r3∨ReadT d. As both arguments to
our Shape constraint are list types, this constraint is partially satisfied, though
we still need to ensure that c has the same shape as d:

((==) []) :: List r3 d
e1 c1−→ Bool r′1

⊲ e1 = Read r2 ∨ ReadT c ∨ Read r3 ∨ ReadT d
, c1 = x : List r2 c
, Shape c d

This type can be reduced no further, so we will generalise it to create the scheme
for isEmpty :

isEmpty :: ∀c d r1 r3

. List r3 d
e1 c1−→ Bool r1

⊲ e1 = Read r2 ∨ ReadT c ∨ Read r3 ∨ ReadT d
, c1 = x : List r2 c
, Shape c d

Note that as per §2.5.3 we have not generalised r2 because it appears in the
outermost closure of the function. At runtime, the application of (==) to []
will build a thunk containing a pointer to the function and the empty list. This
empty list is shared between all uses of isEmpty .

2.6.4 Shape constraints and rigid type variables

Consider the following Haskell type class declaration:

class Foo a where
foo :: ∀b. a→ [b]→ [b]

An instance of this class is:

instance Foo Bool where
foo x y = if x then tail y else reverse y

The locally quantified type variable b is called a rigid type variable. This high-
lights the fact that every instance of foo must have a similarly general type.
For example, the following instance is invalid:

instance Foo Char where
foo x y = if x == ‘a‘ then tail y else [x]

This non-instance tries to assign foo the following type:

fooChar :: Char → [Char]→ [Char]

This is strictly less general than the one in the type class declaration, because
we cannot apply it to lists whose elements do not have type Char .

112 CHAPTER 2. TYPE SYSTEM

The Copy type class declaration also contains a rigid type variable. Here it is
again:

class Copy a where

copy :: ∀b. a
e1−→ b

⊲ e1 = ReadT a
, Shape a b

Note the local ∀b quantifier. We have said that copyInt is a valid instance of
copy because it produces a freshly allocated object. Recall that copyInt has the
following type:

copyInt :: ∀r1 r2. Int r1
e1−→ Int r2

⊲ e1 = Read r1

On the other hand, the following instance is not valid:

instance Copy Char where
copy x = x

This is so because it does not actually copy its argument. We can see this fact
in its type:

copyChar :: ∀r1. Char r1 → Char r1

This situation is very similar to the one with fooChar , because the signature of
copyChar is not sufficiently polymorphic to be used as an instance for copy .

We now discuss how to determine the required type of an instance function from
the type class declaration. The subtle point is in dealing with Shape constraints
on rigid type variables.

Here is the Copy class declaration again. For the sake of example we have
added the outer quantifier for a.

∀a. class Copy a where

copy :: ∀b. a
e1−→ b

⊲ e1 = ReadT a
, Shape a b

Say that we wish to determine the required type of copyInt . To do this we
instantiate the type class declaration with Int r1, where r1 is fresh. We can
then re-generalise the declaration for r1, to get a ∀r1 quantifier at top level:

∀r1. class Copy (Int r1) where

copy :: ∀b. Int r1
e1−→ b

⊲ e1 = ReadT (Int r1)
, Shape (Int r1) b

Reducing the ReadT effect and the Shape constraint gives:

∀r1. class Copy (Int r1) where

copy :: ∀r2. Int r1
e1−→ b

⊲ e1 = Read r1

, b = Int r2

Reduction of the shape constraint has introduced the new type constraint b =
Int r2 where r2 is fresh. This makes b have the same shape as the function’s

2.6. TYPE CLASSING 113

first argument. We have also replaced ∀b with ∀r2. Every time the reduction
of a Shape constraint on a quantified type variable introduces a new region
variable, we quantify the new variable instead of the old one. Substituting for
b completes the process:

∀r1. class Copy (Int r1) where

copy :: ∀r2. Int r1
e1−→ Int r2

⊲ e1 = Read r1

We can now extract the required type for copyInt by appending the outer quan-
tifier, and the top-level Copy (Int r1) constraint:

copyInt :: ∀ r1 r2. Int r1
e1−→ Int r2

⊲ e1 = Read r1

, Copy (Int r1)

If we are performing this process to check whether a given instance function is
valid, then we have already satisfied the Copy (Int r1) constraint. Discharging
it gives:

copyInt :: ∀ r1 r2. Int r1
e1−→ Int r2

⊲ e1 = Read r1

This is the expected type for an Int instance of copy . If the type of a provided
instance function cannot be instantiated to this type, then it is invalid.

2.6.5 Shape constraints and immaterial regions

Consider the IntFun type from §2.5.4:

data IntFun r1..4 e1 c1

= SInt (Int r2)

| SFun (Int r3
e1 c1−→ Int r4)

Using the class instantiation process from the previous section, the type of a
copy instance function for IntFun must be at least as polymorphic, and no more
effectful, closureful10 or otherwise constrained than:

copyIntFun

:: ∀r1..8 e1 c1

. IntFun r1..4 e1 c1
e2−→ IntFun r5..8 e1 c1

⊲ e2 = Read r1 ∨ Read r2 ∨ Read r3 ∨ Read r4

Unfortunately, we don’t have any way of writing a copy function for IntFun
that has this type. We could try something like:

copyIntFun xx
= case xx of

SInt i → SInt (copyInt i)
SFun f → SFun f

For the SInt alternative we have just used copyInt to copy the contained integer.
However, we have no way of copying a function value, nor are we sure what
it would mean to do so. Instead, we have simply reused the variable f on

10The author bags new word credit for “closureful”.

114 CHAPTER 2. TYPE SYSTEM

the right of the second alternative. Unfortunately, this gives copyIntFun the
following type:

copyIntFun

:: ∀r1..6 e1 c1

. IntFun r1..4 e1 c1
e2−→ IntFun r5..6 r3..4 e1 c1

⊲ e2 = Read r1 ∨ Read r2

Note that in the return type of this function, r5 and r6 are fresh but r3 and
r4 are not. The first two parameters of IntFun are material region variables
that correspond to actual objects in the store. We could reasonably expect an
instance function to copy these. On the other hand, the second two parameters
are immaterial. For the SFun alternative, the best we can do is to pass f
through to the return value, but doing this does not freshen the region variables
in its type.

Our solution is to modify the reduction rule for Shape so that all value type
and region variables that are not strongly material are identified. That is, if
a particular variable in a data type definition does not always correspond to
actual data in the store, then we will not freshen that variable when reducing
Shape.

We also define the rule for reducing ReadT so that read effects on immaterial
region variables are discarded. Immaterial regions do not correspond with real
data in the store, so reading them does nothing.

Using these new rules, and the instantiation process from the previous section,
the required type for copyIntFun becomes:

copyIntFun

:: ∀r1..6 e1 c1

. IntFun r1..4 e1 c1
e2−→ IntFun r5..6 r3..4 e1 c1

⊲ e2 = Read r1 ∨ Read r2

This is the same type as our instance function, so we can accept it as valid.

2.7. TYPE DIRECTED PROJECTIONS 115

2.7 Type directed projections

In §1.3.2 we discussed how references (and pointers) are used to update values
within container structures, without knowledge of the surrounding container.
We also discussed how they are used to update values that are shared by several
different parts of the program, without needing information about how they are
shared. On the other hand, in §1.7 we saw how the use of ML style references
can lead to a large amount of refactoring effort when writing programs. This is
because the reference appears in the value types of terms that use them, and
we must use an explicit function call to read a reference when we want the
contained value.

The Disciple projection system provides a mechanism to create references on
the fly, so we can use them for shared update without the need to change the
structure of value types. The fact that we can provide this mechanism while
still tracking enough information to perform compile type optimisations is the
primary reason we have developed the type system discussed in this chapter.
We also provide a separate name space associated with each type constructor,
and projection functions are placed in the name space corresponding to the type
of value they project. This avoids the problem with Haskell style records, also
discussed in §1.3.2, where the names of projection functions pollute the top-
level scope of the program. In this thesis we restrict ourselves to associating
namespaces with constructors instead of general types. This is to avoid issues
with overlapping types such as List a and List Int .

Projections are complementary to type classes. For example, when performing
type inference for an expression like show x, the variable x may have a poly-
morphic type. As the instance function to use for show may be resolved at run
time via a dictionary passing mechanism11, the compiler itself will not know
which instance function will be used. Due to this, the type of show in the class
definition must be an upper bound of the types of all possible instances.

On the other hand, when performing type inference for the projection x⊙ field1 ,
we require the type of x to resolve to something that includes an outer construc-
tor. We use this constructor to determine how to implement the projection of
field1 . This in turn allows each of the projections named field1 to return values
of different types.

11At least it can in a mature compiler like GHC. Our prototype implementation does not

yet support dictionary passing, though we are not aware of any barrier to adding it.

116 CHAPTER 2. TYPE SYSTEM

2.7.1 Default projections

Consider the following data type definition.

data Vec2 r a = Vec2 { x :: a; y :: a }

x and y are the field names of the constructor. In Haskell, this definition would
introduce x and y as record selectors in the top level scope. In Disciple, we
instead get two projections ⊙ x and ⊙ y that can be applied to values of type
Vec2 r a, for any r or a. As our type expressions may contain commas, we
use a semicolon as a field separator instead of a comma. Also, ⊙ is an infix
operator, and ⊙ x is written .x in the concrete syntax. Here is an expression
which uses the two projections:

do vec = Vec2 2.0 3.0
angle = sqrt (square vec⊙ x + square vec⊙ y)

The projection operator ⊙ binds more tightly than function application, so
square vec⊙ x should be read as square (vec⊙ x). If we do not have a handy
object of the required type then we can refer to the projection functions in
a particular namespace directly with the & operator. For example, we could
rewrite the above expression as:

do vec = Vec2 2.0 3.0
angle = sqrt (square (Vec2 &x vec)

+ (square (Vec2 &y vec))

The projections associated with field names are called default projections. These
are introduced automatically by the language definition. For Vec2 the two
projection functions are:

Vec2 & x :: ∀r1 a. Vec2 r1 a
e1−→ a

⊲ e1 = Read r1

Vec2 & x (Vec2 x y) = x

Vec2 & y :: ∀r1 a. Vec2 r1 a
e1−→ a

⊲ e1 = Read r1

Vec2 & y (Vec2 x y) = y

This syntax is similar to the use of :: in C++ to define class methods. For
example, the name of a method in a class named Vec2 would be Vec2 :: x.

2.7. TYPE DIRECTED PROJECTIONS 117

2.7.2 Ambiguous projections and type signatures

Ambiguous projections arise when we project a value whose type is not con-
strained to include an outer constructor. For example, the projections in the
following code are ambiguous:

tupleOfVec = λ vec . (vec ⊙ x, vec ⊙ y)

Without further information, the type of vec in this code is just a variable. If
our program included more than one data type that had an x or y field, then
there would be no way of knowing which projection function to use.

The programmer can resolve this problem by providing a type signature that
constrains the type of vec. For example:

tupleOfVec :: Vec2 a→ (a, a)
tupleOfVec = λ vec . (vec ⊙ x, vec ⊙ y)

Note that we do not need to provide region, effect or closure information in type
signatures. The fact that this information is missing from the above signature
can be determined from the kind of Vec2 , and it can be filled in by the type
inference process.

2.7.3 Pull back projections

Pull back projections allow the programmer to create references to the fields
of a record. For example, a reference to the x field of our Vec2 type can be
created with vec ⊙# x, pronounced “vec pull x”. If the type of vec is Vec2 r1 a
then the type of vec ⊙# x is Ref r1 a. If we imagine Ref types being equivalent
to pointers in C, then vec ⊙# x has the same meaning as the C expression
&(vec.x). The :=# function (pronounced “update ref”) is then used to update
the value of the field. Note that vec ⊙# x and :=# are written as vec#x and
#= in the concrete syntax.

Here is the type of :=#

(:=#) :: ∀r1 a. Ref r1 a −→ a
e1 c1−→ ()

⊲ e1 = Write r1

, c1 = x : Ref r1

, Mutable r1

Here is an example that creates a vector then updates one of its components:

do vec = Vec2 2.0 3.0
ref = vec ⊙# x
. . .
ref :=# 5.0
. . .

After the update statement has been executed, the projection vec ⊙ x will
return the value 5.0 instead of 2.0. Pull back projection functions can also be
accessed directly. Here are the names and types of the pull back projections for
the x and y fields:

Vec2 & xpull :: ∀r1 a. Vec2 r1 a→ Ref r1 a

Vec2 & ypull :: ∀r1 a. Vec2 r1 a→ Ref r1 a

118 CHAPTER 2. TYPE SYSTEM

Note that the created reference shares the same region variable as the projected
value. Also note that as Vec2 only has a single data constructor, the functions
xpull and ypull are pure. This is because when we evaluate an expression like
vec ⊙# x, we do not need to access the vec object at all. We simply allocate
a new reference that contains a pointer into it. This can be done based on the
address of the vec object, the object itself is not needed. For example, if we
say:

vec :: Vec2 r1 (Float r2) (Float r3)
vec = Vec2 2.0 3.0

then we would have:

ref :: Ref r1 (Float r2)
ref = vec ⊙# x

which produces the following objects in the store:

F 2.0 F 3.0

Vec2

r r

r1

2 3

RefPref:

vec:

We use the tag RefP to record the fact that the ref object is a pull back
reference that points into another object, as opposed to a regular ML style
reference. When we execute the statement ref :=# 5.0, it is the pointer inside
the vec object that is updated, not the Float object itself:

F 3.0

F 2.0
r2

Vec2

r

r1

3

RefP

F 5.0

ref:

vec:

This leaves the old 2.0 object to be reclaimed by the garbage collector.

The benefit of this system over ML style references is that we are able to update
data structures without needing Ref in their type definitions, which addresses
the refactoring problem discussed in §1.7. Note that in the above diagram, both
the Vec2 and RefP objects are in the same region, r1. This means that when
we use a function like (:=#) to update the vector via the reference, the vector
object will also be marked as mutable.

2.7. TYPE DIRECTED PROJECTIONS 119

Although we don’t need ML style references, Disciple does support them, and
we can equally define:

data Vec2 r1 a = Vec2 { x :: Ref r1 a; y :: Ref r1 a }

In this case we would construct a vector with:

vec :: Vec2 r1 (Float r2) (Float r3)
vec = Vec2 (Ref 2.0) (Ref 3.0)

This produces the following objects in the store:

r2

F 3.0
r3

F 2.0

Ref Ref

r1

Vec2vec:

Here, the reference objects include the constructor tag Ref , instead of RefP as
before. This indicates that to update these references, the pointer in the object
itself should be modified, not the word that is pointed to.

2.7.4 Custom projections

Along with the default field projections introduced by data type declarations,
the programmer can also define their own custom projection functions. In fact,
any variables they desire can be added to the name space associated with a type
constructor, whether they are bound to functions that perform true projections,
or not. For example, we can add a magnitude function to the Vec2 name space
with:

project Vec2 where
magnitude (Vec2 x y)

= sqrt (square x + square y)

We use ⊙ magnitude to invoke this new projection. For example:

do vec = Vec2 2.0 3.0
putStr (“The magnitude is:” ++ (show vec⊙magnitude))

Unlike default projections, custom projections can be defined to take extra
arguments. For example, here is a projection to determine the dot product of
two vectors:

project Vec2 where
dot (Vec2 x1 y1) (Vec2 x2 y2)

= x1 ∗ x2 + y1 ∗ y2

We can then use it as:

do vec = Vec2 2.0 3.0
vec2 = Vec2 4.0 5.0
putStr (“The product is:” ++ (show vec ⊙ dot vec2))

120 CHAPTER 2. TYPE SYSTEM

This allows a style of programming similar to using local methods in object
oriented languages. For example, in Java we would write vec.dot(vec2). With
Disciple code, we find it helpful to view the projection⊙ dot as a single operator.
This highlights the similarities with the equivalent expression in vector calculus,
v1 • v2.

Disciple also provides a punning syntax for adding variables to projection
namespaces. This allows the programmer to add variables defined elsewhere
in the module, and helps reduce the level of indenting in the code. For exam-
ple, we could define our magnitude and dot projections with:

project Vec2 with {magnitude, dot}

magnitude (Vec2 x y)
= sqrt (square x + square y)

dot (Vec2 x1 y1) (Vec2 x2 y2)
= x1 ∗ x2 + y1 ∗ y2

We find this syntax useful when writing library code. Our usual approach is to
define all the “helper” functions for a particular data type in the same module
that declares it. These helper functions are present in the top level scope of
the module, but are not exported from it directly. We use the punning syntax
to add the helper functions to the projection namespace for the data type. We
then export the data type name, and the projection namespace along with it.
This allows us to write the majority of our program in the familiar Haskell style,
while reducing the opportunity for name clashes between modules.

2.8. COMPARISONS WITH OTHER WORK 121

2.8 Comparisons with other work

2.8.1 FX. 1986 – 1993.
Gifford, Lucassen, Jouvelot and Talpin.

Although Reynolds [Rey78] and Popek et al [PHL+77] had discussed the ben-
efits of knowing which parts of a program may interfere with others, Gifford
and Lucassen [GL86] were the first to annotate a subroutine’s type with a de-
scription of the effects it may perform. This allowed reasoning about effects
in languages with first class functions, whereas previous work based on flow
analysis [Ban79] was limited to first order languages. A refined version of their
system is embodied in the language FX [GJSO91], which has a Scheme-like
syntax. We consider FX to be a spiritual predecessor of Disciple.

In Gifford and Lucassen’s original system [GL86], the types of subroutines are
written τ →C τ where C is an “effect class” and can be one of Procedure,
Observer, Function or Pure. Subroutines marked Procedure are permit-
ted to read, write and allocate memory. Observer allows a subroutine to read
and allocate memory only. Function allows a subroutine to allocate memory
only. A subroutine marked Pure may not read, write or allocate memory. Cor-
rectness dictates that subroutines marked Pure cannot call subroutines marked
Function, those cannot call subroutines marked Observer, and they cannot
call subroutines marked Procedure.

In this system, the concept of purity includes idempotence, and a subroutine
that allocates its return value is not idempotent. Although such a subroutine
cannot interfere with other parts of the program, the fact that it might allocate
memory must be accounted for when transforming it. We will return to this
point in §4.4.5. Note that in Disciple we use quantification of region variables to
track whether a function allocates its return value, and our definition of purity
includes functions that do so.

In [LG88] Gifford and Lucassen introduce the polymorphic effect system. This
system includes region variables, quantification over region and effect variables,
and effect masking. The primitive effects are Read r, Write r and Alloc r,
and e1∨e2 is written maxeff e1 e2. Their language uses explicit System-F style
type, region and effect abstraction and applications, which makes their example
programs quite verbose. Their system also includes region unions, where the
region type union r1 r2 represents the fact that a particular object may be in
either region r1 or region r2. Disciple does not yet include region unions as they
complicate type inference. This point is discussed in §5.2.2.

In [JG91] Jouvelot and Gifford describe an algebraic reconstruction algorithm
for types and effects. They separate type schemes into two parts, the value type
and a set of effect constraints, which gives us the familiar ∀a. τ ⊲ Ω for type
schemes. Here, a is a collection of type variables, τ is the body of the type and Ω
are the constraints. On the other hand, the left of the constraints in their work
can be full effect terms, not just variables. They present a proof of soundness,
but only a single example expression. They also remark that they were still
working on the implementation of their system in FX, so its practicality could
be assessed.

In [TJ92a] Talpin and Jouvelot abandon the explicit polymorphism present
in previous work, require the left of effect constraints to be a variable, and

122 CHAPTER 2. TYPE SYSTEM

introduce sub-effecting. This allows their new system to have principle types.
Sub-effecting is also used to type if-expressions, as the types of both alternatives
can be coerced into a single upper bound. Finally, in [TJ92b] they present the
Type and Effect Discipline and address the problem of polymorphic update
§2.4. They use effect information to determine when to generalise the type of
a let-bound variable, instead of relying on the syntactic form of the expression
as they did in [JG91]. We have based Disciple on this work.

2.8.2 C++ 1986
Bjarne Stroustrup.

The C++ language [Str86, Cpp08] includes some control over the mutability
of data. In C++ a pointer type can be written *const, which indicates that
the data it points to cannot be updated via that pointer. Pointers can also be
explicitly defined as mutable. Fields in structures and classes can be defined as
either mutable or constant, though they default to mutable due to the need to
retain backwards compatibility with C. C++ also provides some limited control
over side effects whereby a const qualifier can be attached to the prototype of
a class method. This indicates that it does not (or at least should not) update
the attributes of that class. However, this can be circumvented by an explicit
type cast, or by accessing the attribute via a non-const pointer.

const annotations are also supported in C99 [C05]. Some C compilers including
GCC [GCC09] provide specific, non-standard ways to annotate function types
with mutability and effect information. For example in GCC the programmer
can attach a purity attribute to a function that allows the optimiser to treat
it as being referentially transparent. Attributes can also be added to variables
to indicate whether or not they alias others. Of course, these attributes are
compiler pragmas and not checked type information, and neither C++ or C99
has type inference. With DDC we can infer such information directly from
the source program, and the type system for our core language ensures that it
remains valid during program transformation.

More recent work based on Java [BE04] can ensure that const qualified ob-
jects remain constant, and [FFA99] presents a general system of type qualifiers
that includes inference. However, neither of these systems include region or
effect information, or discuss how to add qualifiers to Haskell style algebraic
data types. In [FFA99] the authors mention that some effect systems can be
expressed as type qualifier (annotation) systems, but state that the exact con-
nection between effect systems and type qualifiers was unclear. In this chapter
we have shown how to re-use Haskell’s type classing system to qualify both
region and effect information, which brings regions, effects and qualifiers into
single framework.

2.8.3 Haskell and unsafePerformIO. 1990
Simon Peyton Jones et al.

The Haskell Foreign Function Interface (FFI) [Cha02] provides a function
unsafePerformIO that is used to break the monadic encapsulation of IO actions.
It has the following type:

unsafePerformIO :: IO a→ a

2.8. COMPARISONS WITH OTHER WORK 123

Use of this function discards the guarantees provided by a pure language, in
favour of putting the programmer in direct control of the fate of the program.
Using unsafePerformIO is akin to casting a type to void* in C. When a pro-
grammer is forced to use unsafePerformIO to achieve their goals, it is a sign
that the underlying system cannot express the fact that the program is still
safe. Of course, this assumes the programmer knows what they’re doing and
the resulting program actually is safe.

As Disciple includes an effect system which incorporates masking, the need for a
function like unsafePerformIO is reduced. As discussed in §2.3.7, if a particular
region is only used in the body of a function, and is not visible after it returns,
then effects on that region can be masked. In this case the system has proved
that resulting program is actually safe.

On the other hand functions like unsafePerformIO allow the programmer to
mask top level effects, such as FileSystem. For example, we might know that
a particular file will not be updated while the program runs, so the effect of
loading the file can be safely masked. In these situations the type system must
always “trust the programmer”, as it cannot hope to reason about the full
complexity of the outside world.

2.8.4 Behaviors and Trace Effects. 1993
Nielson and Nielson et al

In [NN93] Nielson and Nielson introduce behaviours, which are a richer version
of the FX style effect types. As well as containing information about the actions
a function may perform, behaviours include the order in which these actions
take place. They also represent whether there is a non-deterministic choice
between actions, and whether the behaviour is recursive. Having temporal in-
formation in types can be used to, say, enforce that files must be opened before
they are written to. Skalka et al ’s recent work [SSh08] gives a unification based
inference algorithm for a similar system. For Disciple, we have been primarily
concerned with optimisation and have so far avoided adding temporal informa-
tion to our effect types. However, we expect that Disciple’s main features such
as mutability inference and purity constraints are reasonably independent of
temporal information, and adding it represents an interesting opportunity for
future work.

2.8.5 λvar . 1993 – 1994
Odersky, Rabin, Hudak, Chen

In [ORH93] Odersky, Rabin and Hudak present an untyped monadic lambda
calculus that includes assignable variables. Interestingly, their language in-
cludes a keyword pure that provides effect masking. pure is seen as the oppo-
site of the monadic return function. This work is continued in Rabin’s thesis
[Rab96]. The Imperative Lambda Calculus [SRI91, YR97] is a related system.

In [CO94] Chen an Odersky present a type system for λvar to verify that uses
of pure are safe. This is done by stratifying the type system into two layers,
that of pure expressions and that of commands. Their inference algorithm
uses a simple effect system that does not distinguish between pure and impure
lambda bound functions. They note that using the region variables of Talpin
and Jouvelot’s system [TJ92a] would give better results.

124 CHAPTER 2. TYPE SYSTEM

2.8.6 MLKit. 1994
Tofte, Talpin, Birkedal

MLKit [TBE+06], uses regions for storage management, whereas DDC uses
them to help reason about the mutability and sharing properties of data. In
MLKit, region annotations are only present in the core language. As in DDC,
MLKit supports region polymorphism, so functions can be written that accept
their arguments from any region, and output their result into any region. Unlike
DDC, MLKit adds region annotations to function types, as the runtime objects
that represent functions are also allocated into regions.

MLKit performs type inference with a two stage process [TB98]. The SML
typing of the program is determined first, and region annotations are added in
a separate analysis. This helps when performing type inference in the presence
of polymorphic recursion, which is important for storage efficiency. Although
polymorphic recursion of value types is known to make the general type in-
ference problem undecidable [Myc84], in MLKit it is supported on the region
information only, via a fixed point analysis. As DDC does not use regions for
storage management, polymorphic recursion is not as important, and we do not
support it.

2.8.7 Functional Encapsulation. 1995. Gupta

In [Gup95] Gupta presents a system to convert mutable objects to constant ones
for the parallel language Id. As discussed in §2.3.7 this is needed for objects
that are constructed imperatively, but are used functionally thereafter. Like
our own system, Gupta’s is based on Leroy’s closure typing §2.5. He presents a
term close t1 whose result has the same value as t1, except that the type system
statically enforces that it will no longer be updated. The type of close t1 can
also be generalised, because the return value is guaranteed not to suffer the
problem of polymorphic update §2.4. close is interesting because it serves as
the dual of the effect masking operator, pure, which appears in λvar [ORH93].

As in our own system, Gupta uses region variables to track the mutability of
objects. Instead of using region constraints, region variables are only attached
to the types of mutable objects. All constant objects are annotated with the
null region ǫ.

In his conclusion, Gupta laments that close had not yet been implemented in
the Id compiler, and it still relied on “hacks”. The Id language was reincarnated
as a part of pH [NAH+95], but close did not make it into the language specifi-
cation. Being based on Haskell, it ended up using state monads to provide its
impure features. Although we have not yet implemented mutability masking in
DDC, it is a highly desirable feature and is first in line for future work §5.2.1.

2.8.8 Objective Caml. 1996
Leroy, Doligez, Garrigue, Rémy and Jérôuillon.

As well as Ref types, O’Caml [LDG+08] supports mutable record fields. In
fact, the Ref constructor is expressed as a record with a single mutable field.
Mutable fields are declared with the mutable keyword. Fields that are not
declared as mutable default to constant. Mutable fields are updated with the
← operator.

2.8. COMPARISONS WITH OTHER WORK 125

The following example is from the O’Caml 3.11 manual:

type mutable point = {mutable x : float ; mutable y : float}; ;

let translate p dx dy = p.x ← p.x + dx; p.y ← p.y + dy; ;

One of the benefits of mutable record fields over Ref types is that we do not need
to sprinkle calls to readRef throughout our code. This reduces the refactoring
effort required when the mutability of an object is changed. However, unlike
Disciple, O’Caml does not support mutability polymorphism, so two records
that have the same overall structure but differ in the mutabilities of their fields
have incompatible types. A constant list has a different type to a mutable
list, and the standard O’Caml libraries only provide the constant version. This
point was also discussed in §1.7.

2.8.9 Ownership Types. 1998
Clarke, Potter and Noble

Ownership typing provides a mechanism to prevent references to the internal
representation objects from being inadvertently “leaked” to clients. For exam-
ple, consider the following class:

class SavingsAccount {

private:

Integer balance;

public:

Integer getBalance() { return balance; }

void accumulateInterest() { balance = balance * 1.1; }

}

In a language such as Java, boxed integers of type Integer are passed by
reference. Although balance has been marked as private, client classes are able
to change this field by destructively updating the value returned by getBalance.
Note that we cannot simply add a const annotation to the balance field, as
this would also prevent accumulateInterest from changing its value. Possible
solutions to this problem include returning a physical copy of the balance

value from getBalance. We could also mark getBalance as returning a const

Integer, and perform a type cast in its return statement. However, both of
these solutions rely on the programmer actually noticing the problem in the
first place.

With the system described in [CPN98], the programmer can mark the balance
field as belonging to the internal representation of SavingsAccount (and pos-
sibly its super classes). The type system then ensures that methods outside
this class cannot gain a reference to this field. Ownership typing is related to
region typing because both systems provide control over the possible aliasing
of data. For example, for the SavingsAccount example we must also handle
the case where a reference to balance is written into an array, then read out,
then returned to some client method. Although both region and ownership
typing systems share some ideas, the system in [CPN98] is based around a first
order object oriented language, instead of a higher order functional language
like ours. In DDC we use region typing to reason about aliasing, but do not
have an object oriented class system, and make no attempt to enforce similar
ownership properties.

126 CHAPTER 2. TYPE SYSTEM

2.8.10 Calculus of Capabilities and Cyclone. 1999
Crary, Walker, Grossman, Hicks, Jim, and Morrisett

Cyclone [JMG+02] is a type-safe dialect of C which uses regions for storage
management. Its type system derives from Crary, Walker and Morrisett’s work
on the Calculus of Capabilities [CWM99]. The Vault [DF01] and RC [GA01]
languages are related.

Cyclone’s type safety is achieved in part by using region typing to track the
lifetimes of objects, and to ensure that programs do not dereference dangling
pointers [GMJ+02]. Cyclone has region polymorphism and parametric value
polymorphism [Gro06], but not mutability polymorphism. Being an imperative
style language, programs tend to be expressed using update and pointer ma-
nipulation. Allocation is explicit, though deallocation can be performed via the
region system, or implicitly via garbage collection.

As in C, higher order functions can be introduced using function pointers. Cy-
clone supports existential types, and these can be used to express type safe
function closures. Cyclone does not support full Hindley-Milner style type re-
construction, but instead relies on user provided type annotations. Region an-
notations are attached to pointer types in the source language, though many an-
notations can be elided and subsequently reconstructed by using intra-function
type inference and defaulting rules.

The main technical feature that the Calculus of Capabilities (CC) has over the
DDC core language is that the capability to perform an action can be revoked.
The CC can then statically ensure that that a revoked capability is no longer
used by the program. This mechanism is used in Cyclone’s region system,
where the capability to access a particular region is revoked when the region
is deallocated. In contrast, in DDC a capability such as the ability to update
a region cannot be revoked by the programmer. We have discussed mutability
masking in §2.3.7, but have not implemented it. On the other hand, DDC
supports full type inference (apart from ambiguous projections, which are an
orthogonal issue).

Although Cyclone is an imperative language, its use of regions in the source
language means that it shares some common ground with Disciple. For example,
here is the type of sets from [GMJ+02]:

struct Set<α, ρ> {
list t <α, ρ> elts;

int (*cmp)(α, α; regions of(α));
}

The ρ annotation is the primary region variable and α is a type variable. The
term regions of(α) is an effect that represents the fact that the comparison
function cmp on two values of type α could access any region contained in
that type. In this respect regions of(α) has the same meaning as ReadT a ∨
WriteT a from §2.6. Note that as Cyclone is based on C, most data is mutable.
In such a language there is less to be gained by separating effects on regions
into reads and writes. A general region access effect suffices.

2.8. COMPARISONS WITH OTHER WORK 127

2.8.11 BitC. 2004
Shapiro, Sridhar, Smith, Doerrie

BitC [SSD08a] is a Scheme-like language targeted at systems programming. One
of its stated aims is to offer complete mutability, meaning that any location –
whether on the stack, heap or within unboxed structures – can be mutated
[SSS08]. BitC supports the imperative variables that we decided not to in §2.1.

The operational semantics of BitC includes an explicit stack as well as a heap,
and the arguments of functions are implicitly copied onto the stack during
application. This allows the local copies to be updated in a way that is not
visible to the caller, a behaviour demonstrated by the following C program:

int fun(int x)

{

x = x + 1;

return x;

}

BitC includes mutability inference, and inferred type for the BitC version of
fun will be:

(mutable int) -> (mutable int)

Note that the fact that x is updated locally to fun has “leaked” into its type.
We do not actually need to pass a mutable integer to fun, because only the
fresh copy, located in the stack frame for the call, will be updated. For this
reason, BitC introduces the notion of copy compatibility, which is similar to
the property expressed by our Shape constraint from §2.6.2. We can pass a
const int to a function expecting a mutable int, because the first will be
implicitly copied during the call.

Although [SSD08b] discusses adding effect typing to BitC, it does not mention
region variables, so the possible effects are limited to the coarse-grained pure,
impure and unfixed. Exploiting effect information during program optimisation
is not discussed, and the more recent formal specification of the type system in
[SSS09] does not include it.

2.8.12 Monadic Regions. 2006
Fluet, Morrisett, Kiselyov, Shan

In [FM06] Fluet and Morrisett draw on the MLKit and Cyclone work to express
a version of the region calculus in a monadic framework. Once again, they focus
on using regions for storage management. They trade complexity of the original
region type system for complexity of encoding, though the result could serve as
a useful intermediate language.

128 CHAPTER 2. TYPE SYSTEM

Chapter 3

Type Inference

Desugar Annot ToCore

Source

Type
Constraints Type Graph

Solved

Export

Program
Source Core

ProgramAnnotated Simple Source

SolveSlurp Flat Types

Simple

The above diagram gives an overview of our compilation process. The source
program is first desugared into a simpler language, and then annotated with
type variables that serve as “hooks” for type constraints. Type constraints
relating these hook variables are extracted (slurped) from the annotated pro-
gram. The constraints are solved, which produces a solution in the form of
a type graph. The solution is a graph because it can contain cycles through
effect and closure information due to the definitions of recursive functions. This
was discussed in §2.3.8. We then extract flat, non-graphical types for each of
the hook variables, and use this information to translate the annotated source
program into the core language.

This chapter concerns the annotation, constraint slurping, solving and export
stages. We give the motivation for our overall approach in §3.1, and discuss the
use of type graphs. We define the simplified source language in §3.2, and go on
to discuss the annotation process and constraint slurping. Constraint solving is
outlined in §3.3 and §3.4, where §3.3 deals with the reduction of monomorphic
constraints, and §3.4 discusses type generalisation and the extraction of flat
types. In practice we also keep track of how type schemes are instantiated.
This information is used when translating the source program to core, but we
do not discuss this or other details of the translation in this thesis.

Section §3.5 extends the source language and inference algorithm with support
for type directed projections, and §3.6 discusses how to handle mutual recursion
in the presence of such projections. Section §3.7 discusses the built-in type
class constraints such as Pure and Shape, and §3.8 considers how to produce
reasonable error messages.

129

130 CHAPTER 3. TYPE INFERENCE

3.1 Binding order and constraint based inference

When performing type inference for Haskell, a binding dependency graph is
used to determine which groups of bindings are mutually recursive. This graph
is also used to sort the binding groups so that their types are generalised before
they need to be instantiated [Jon99]. Unfortunately, due to the inclusion of
type directed projections, a similar dependency graph cannot be extracted from
Disciple programs before type inference proper.

Consider the following program:

fun1 x = 1 + fun2 x 5
fun2 x y = x + y

As the body of fun1 references fun2 , we should generalise the type of fun2
before inferring the type of fun1 . It is easy to extract such dependencies from
Haskell programs because at each level of scope, all bindings must have unique
names. However, in Disciple programs, projections associated with different
type constructors can share the same name. For example:

project T1 where
field1 x = (x, 5)

project T2 where
field1 x = (x, “hello”)

We have defined two projections named field1 , one for constructor T1 and one
for constructor T2 . Now consider what happens when we perform a field1
projection in the program:

fun x = . . . x⊙ field1 . . .

This x⊙field1 projection will be implemented by one of the instance functions
above, but we cannot determine which until we know the type of x. For Disciple
programs, there is no easy way to determine the binding dependency graph, or
to arrange the bindings into an appropriate order before inferring their types.
Instead, we must determine how the bindings depend on each other on the fly,
during inference.

This implies that our inference algorithm cannot be entirely syntax directed.
When inferring the type of fun, once we determine which instance function
to use for the ⊙field1 projection, we may discover that this type hasn’t been
inferred yet either. We must then stop what we’re doing and work out the
type of the instance function, before returning to complete the type of fun. In
general, this process is recursive. Work on the types of several bindings may
need to be deferred so that we can first determine the type of another.

We manage this problem with a constraint based approach, similar to that used
by Heeren in the Helium compiler [HHS02, HHS03, Hee05]. We extract type
constraints from the desugared source program, solve them, and then use the
solution to translate the desugared code into the core language, while adding
type annotations. By approaching type inference as the solution of a set of
constraints instead of a bottom-up traversal of the program’s abstract syntax
tree, we make it easier to dynamically reorder work as the need arises. This

3.1. BINDING ORDER AND CONSTRAINT BASED INFERENCE 131

framework also helps to manage our extra region, effect and closure information.
Once we have a system for expressing and solving general type constraints, the
fact that we have constraints of different kinds does not add much complexity
to the system. Constraint based systems also naturally support the graphical
effect and closure terms discussed in §2.3.8, as well as providing a convenient
way to manage the information used to generate type error messages.

Our system has some similarity to the one use by MLF [RY08], though we do
not consider higher rank types. We believe our system could be extended to
support them, but we have been mainly interested in the region, effect and
closure information, and have not investigated it further. We also derive in-
spiration from Erwig’s visual type inference [Erw06], and the graphs used by
Duggan [DB96] to track the source of type errors. However, unlike their work
we do not draw our type graphs pictorially. We have found that the addition
of region, effect and closure information, along with the associated type class
constraints, tends to make these two dimensional diagrams into “birds nests”
with many crossing edges, which hinders the presentation. Instead, we simply
write down the constraints as equations, and try to imagine the graph being
separated into several two dimensional layers, one for each kind. Such graphs
might make an interesting target for work on computer aided visualisation as
we know of no tool to generate a suitably pleasing diagram.

132 CHAPTER 3. TYPE INFERENCE

3.2 Source language and constraint slurping

This section presents the formal description of our desugared source language
and discusses how to generate type constraints. The typing rules given in this
chapter serve as inspiration when generating constraints, but correctness for
our overall system relies on the proof of soundness for the core language given
in the appendix.

Any errors in constraint generation or type inference will be detected when
checking the program once it has been translated to core. We believe this is a
fair approach, because new type systems are usually presented for a cut down,
desugared language anyway. We view the core type system as the “real” type
system for Disciple, with the system presented in this chapter being part of the
compiler implementation.

Declarations

pgm → decl ; t (program)

decl → data T :: %→ κ→ ∗ where K : ϕ (data type declaration)

Programs consist of a list of declarations followed by a term to be evaluated.
Data type declarations introduce a new type constructor T , and give its kind.
All type constructors T , and data constructors K defined in a program must
be distinct. We define the meta-function ctorTypes(T) to get the list of data
constructors K : ϕ corresponding to a particular type constructor T .

The set of allowable types for data constructors is more restrictive than indi-
cated here. These restrictions are introduced by the typing rules presented in
§3.2.8.

Kinds

κ → (κ1 → κ2) (kind function)
| ∗ | % | ! | $ (atomic kind constructors)

Kinds consist of kind functions and the atomic kinds ∗, %, ! and $ which are
the kinds of value types, regions, effects and closures respectively.

3.2. SOURCE LANGUAGE AND CONSTRAINT SLURPING 133

Types

ϕ, τ , σ, ς
→ aκ (type variables)
| ϕ ⊲ Ω (constrained type)
| ∀(a : κ). ϕ (unbounded quantification)
| ϕ1 ∨ ϕ2 (least upper bound)
| ⊤κ | ⊥κ (top and bottom)

| τ1
σ ς
−→ τ2 (function type constructor)

| Tκ r ϕ (data type constructor)
| Read r | ReadH τ | Write r (effect type constructors)
| x : ϕ (closure constructor)

We do not make a rigid syntactic distinction between polytypes and monotypes,
or constrained and unconstrained types. For this we are inspired by the pure
type system approach of the lambda cube and the Henk intermediate language
[PJM97]. We also do not make a syntactic distinction between value types,
regions, closures and effects. We have found maintaining these distinctions to
be cumbersome in both the presentation and implementation. However, we
will hint at the intended kind of a particular type by using the variables ϕ,
τ , σ and ς. We intend τ to be an unquantified value type, σ and ς to be
unquantified effect and closure types respectively, and allow ϕ to be any type.
ak are type variables tagged with their kind, though we tend to elide their kinds
in this presentation. As type variables contain their kinds, we can determine the
kind of an arbitrary type expression without needing an auxiliary environment.
When a specific kind is intended we use s, r, e and c as value type, region,
effect and closure variables respectively.

Ω is a set of constraints. The term ϕ ⊲ Ω is a constrained type whose general
meaning is similar to Ω⇒ ϕ in Haskell style systems deriving from type classes
[WB89] and Jones’s work on general qualified types [Jon92]. The expression
ϕ ⊲ Ω is pronounced “ϕ with Ω”. We use the ϕ ⊲ Ω form because we find it
easier to read when there are a large number of constraints, and the order of
constraints in the source language is irrelevant. Although Ω is a set, we usually
write ϕ⊲ χ1, χ2 instead of ϕ⊲ {χ1, χ2}. We take ϕ⊲ ∅ as being equivalent to
ϕ.

We use only unbounded quantification in the source language. In the type
∀(a : κ).ϕ we usually elide the kind term when it is obvious from the name of the
variable. For example, ∀r1.ϕ quantifies a region variable and ∀e1.ϕ quantifies
an effect variable. We treat ∀a : κ. ϕ as short for ∀a : κ. ϕ. We also treat
expressions like ∀r1..3. ϕ as short for ∀r1 r2 r3. ϕ. The operator ⊲ binds more
tightly than ∀, so the type ∀(a : κ). ϕ⊲ Ω should be read as ∀(a : κ). (ϕ⊲ Ω).
We do not consider higher ranked types, and assume that all quantified types
are in prenex form.

The least upper bound ϕ1 ∨ ϕ2 is defined on effect and closure types only. ⊤κ

and ⊥κ include their kinds and ⊤ may only be an effect. In the types presented
to the user, ⊥κ may be an effect or closure only, but during type inference we
abuse the notation and use it as a value type and region type as well. The
function type τ1

σ ς
−→ τ1 contains effect and closure annotations, but if these

are not present we will assume they are ⊥. Due to the form of the data type
definitions, data type constructors Tκ r ϕ always have their primary region

134 CHAPTER 3. TYPE INFERENCE

variable as as their first parameter. The κ in the subscript is the constructor’s
kind.

Read r, ReadH τ and Write r are our initial effect types, though we will add
more later. ReadH τ expresses a read on a data constructor’s primary region,
and we use it when generating type constraints for case expressions. x : ϕ
is a closure term tagged with a usefully named value variable. See §2.5 for a
discussion of this.

Constraints

χ → τ1 = τ2 (type equality)
| ϕ1 ⊒ ϕ2 (effect or closure constraint)

Our initial type constraints are τ1 = τ2 and ϕ1 ⊒ ϕ2, though we will add type
class constraints later. Equality constraints like τ1 = τ2 are used to constrain
value types and type variables of all kinds. Inequality constraints like ϕ1 ⊒ ϕ2

are used to constrain effects and closures. When performing type checking we
must allow the left of these constraints to be a full type, though in annotations
and type schemes it is always a variable. When performing type inference and
checking, all effect and closure constraints must be in the weak form discussed
in §2.3.6. Types are strengthened only when presenting them to the user or
converting them to the core language.

Terms

t → x (term variable)
| K (data constructor)
| λx. t (term abstraction)
| t1 t2 (term application)
| let x = t in t′ (let bindings)

| case t of p→ t′ (case expression)

Patterns

p → (wild card)
| K x (constructor pattern)

Derived Forms

if t1 then t2 else t3
def
= case t1 of {True → t2; False → t3}

do bindstmt ; t
def
= let mkBind(bindstmt) in t

where bindstmt → x = t | t

mkBind(x = t)
def
= x = t

mkBind(t)
def
= x = t, x fresh

Our term language is standard, with let bindings being mutually recursive.
This is only a simple desugared language. Full Disciple is sweeter and includes
pattern guards, kind inference, monadic do notation, and other features — but
we do not discuss them here.

3.2. SOURCE LANGUAGE AND CONSTRAINT SLURPING 135

3.2.1 Normal types

Although the language definition provides a high degree of freedom when writ-
ing type expressions, the types presented to the programmer are all normal.

Consider the following type:

succ :: ∀e1 r1 r2. Int r1
e1−→ Int r2

⊲ e1 ⊒ Read r1

We could also write this as:

succ :: ∀e1 r1 r2. s1
e1−→ s2

⊲ s1 = Int r1

, s2 = Int r2

, e1 ⊒ Read r1

or:

succ :: ∀e1 r1 r2. (s1 ⊲ s1 = Int r1)
e1−→ s2

⊲ s2 = Int r2

, e1 ⊒ Read r1

All three of these types are equivalent, and perfectly valid in our system, though
only the first is normal. The last two can appear as intermediate forms during
type inference. Normal types obey the following rules:

1. Normal types are of the form ∀a : κ. ϕ ⊲ Ω where ϕ is not another con-
strained type like ϕ1 ⊲ Ω. When this restriction is in place we refer to ϕ
as the body of the type.

2. There are no τ1 = τ2 constraints, and the left positions of all ϕ1 ⊒ ϕ2

constraints are variables.

3. For every constraint set Ω in the type, there is only one constraint per
variable. For example, we write ϕ⊲e ⊒ σ1∨σ2 instead of ϕ⊲e ⊒ σ1, e ⊒
σ2.

4. Normal types do not contain nested closure terms of the form x1 : x2 : ϕ.
The value variables are used for documentation only, so we keep just the
first one and write x1 : ϕ instead.

136 CHAPTER 3. TYPE INFERENCE

3.2.2 Free variables of types

The function for computing the free variables of a type is unsurprising:

fv(a) = {a}

fv(ϕ⊲ Ω) = fv(ϕ) \ {a | (a = ϕ′) ∈ Ω}

fv(∀(a : κ). ϕ) = fv(ϕ) \ {a}

fv(ϕ ∨ ϕ′) = fv(ϕ) ∪ fv(ϕ′)

fv(⊥) = ∅

fv(⊤) = ∅

fv(τ
σ ς
−→ τ ′) = fv(τ) ∪ fv(τ ′) ∪ fv(σ) ∪ fv(ς)

fv(Tκ r ϕ) = {r} ∪ fv(ϕ)

fv(Read r) = {r}

fv(ReadH τ) = fv(τ)

fv(Write r) = {r}

fv(x : ϕ) = fv(ϕ)

3.2.3 Dangerous variables

Dangerous variables were discussed in §2.5.1. To compute the dangerous vari-
ables of a type we use a domain D, where a member of this domain can be
either a pair consisting of a set of constraints and a type expression 〈{χ}, ϕ〉,
or a dotted type variable a•.

D = {Constraint} × Type + DotVar

To compute the dangerous variables in a particular type ϕ, we start with the
set {〈∅, ϕ〉} then iteratively apply the relation dv : {D} → {D} until we reach
a fixpoint. In the resulting set, the dotted variables are the ones that are
dangerous in the initial type.

3.2. SOURCE LANGUAGE AND CONSTRAINT SLURPING 137

The relation dv is as follows:

dv : {D} → {D}

dv(µ) = µ ∪
⋃
{dv ′(x) | x ∈ µ}

where

dv ′ : D → {D}

dv ′(a•) = {a•}

dv ′(〈Ω, a〉) = ∅

dv ′(〈Ω, ϕ⊲ Ω′〉) = {〈Ω ∪ Ω′, ϕ〉}

dv ′(〈Ω, ϕ ∨ ϕ′〉) = {〈Ω, ϕ〉, 〈Ω, ϕ′〉}

dv ′(〈Ω, ⊥〉) = ∅

dv ′(〈Ω, ⊤〉) = ∅

dv ′(〈Ω, τ
σ c
−→ τ ′〉) = {〈Ω, ϕ〉}

where (c ⊒ ϕ) ∈ Ω

dv ′(〈Ω, Tκ r ϕ〉)
| Mutable r ∈ Ω = {a• | a ∈ fv(ϕ)}
| otherwise = {〈Ω, τ [r ϕ/a]〉 | ∀a. τ ∈ args(ctorTypes(T))}

dv ′(〈Ω, Read r〉) = ∅

dv ′(〈Ω, ReadH τ〉) = ∅

dv ′(〈Ω, Write r〉) = ∅

dv ′(〈Ω, x : ϕ〉) = {〈Ω, ϕ〉}

The ctorTypes function returns the types of the constructors associated with a
particular data type constructor T . The args function returns the arguments
of these constructors, retaining the outer quantifiers. As we only compute the
dangerous variables of a type before generalising it, there is no need to match
on the ∀(a : κ).ϕ form. If we take the sets {D} to be ordered by set inclusion,
the function dv is monotonic by construction, as it always returns its argument
as part of the result.

For example, suppose the type TwoThings is defined as:

data TwoThings r1..3 a b
= T1 (Maybe r2 a)
| T2 (Maybe r3 b)

In the desugared language this becomes:

data TwoThings r1..3 a b where
T1 :: ∀r1..3 a b. Maybe r2 a→ TwoThings r1..3 a b
T2 :: ∀r1..3 a b. Maybe r3 b→ TwoThings r1..3 a b

Now, if r1 was mutable, then we could update both alternatives, so both a and
b would be dangerous. However, if r2 was mutable then a would be dangerous
(but not necessarily b), and if r3 was mutable then b would be dangerous (but
not necessarily a).

With this definition, the value of args(ctorTypes(TwoThings)) is:

{∀r1..3 a b.Maybe r2 a, ∀r1..3 a b.Maybe r3 b }

138 CHAPTER 3. TYPE INFERENCE

Suppose we wish to determine the dangerous variables in the type:

TwoThings r4 r5 r6 (Int r7) (c→ d)⊲Mutable r5

The following is the sequence of states we get when computing the fixpoint. We
save space by writing ... in place of the elements of the previous state.

{〈∅,TwoThings r4 r5 r6 (Int r7) (c→ d)⊲Mutable r5〉}

⊢ {..., 〈{Mutable r5}, TwoThings r4 r5 r6 (Int r7) (c→ d)〉}

⊢ {..., 〈{Mutable r5}, Maybe r5 (Int r7)〉
, 〈{Mutable r5}, Maybe r6 (c→ d)〉 }

⊢ {..., r •
7 , c→ d}

Hence, only r7 is dangerous. The variables c and d would only be dangerous if
r6 or r4 were mutable.

Computing the dangerous variables of a type using a fixpoint allows us to deal
with recursive types. For example, the list type has the following desugared
definition:

data List r1 a where
Nil :: ∀r1 a.List r1 a

Cons :: ∀r1 a c1. a→ List r1 a
c1−→ List r1 a

⊲ c1 ⊒ x : a

Here is the sequence of states we get when determining the dangerous variables
in the type List r1 (Maybe r2 c)⊲Mutable r2

{〈∅, List r1 (Maybe r2 c)⊲Mutable r2〉}

⊢ {..., 〈{Mutable r2}, List r1 (Maybe r2 c)〉}

Note that when dv ′ is applied to the last element in this set, it yields the
following pairs:

{ 〈{Mutable r2}, List r1 (Maybe r2 c)〉
, 〈{Mutable r2}, Maybe r2 c〉 }

The second element here is new, but the first is was already present in the
previous set, and arises due to the recursiveness of the List type.

Continuing on with the process, we obtain the following states, with the last
one being the fixpoint.

⊢ {..., 〈{Mutable r2}, Maybe r2 c〉}

⊢ {..., c•}

This shows us that the type variable c is dangerous in this type, as expected.

3.2. SOURCE LANGUAGE AND CONSTRAINT SLURPING 139

Problems with nested data types

Note that a direct implementation of the definition of dv will diverge when
applied to a nested data type [BM98].1 For example, consider the following
type:

data Nest r1 a where
MkNest :: ∀r1 a.Nest r1 (List r1 a)→ Nest r1 a

This type is considered “nested” because the recursive application of Nest in
the first parameter of MkNest does not have the same form as that which is
being defined, that is, it’s not just another Nest r1 a. Here is what happens if
we try to compute the dangerous variables in the type Nest r1 a:

{〈∅, Nest r1 a〉}

⊢ {..., 〈∅, Nest r1 (List r1 a〉}

⊢ {..., 〈∅, Nest r1 (List r1 (List r1 a))〉}

⊢ {..., 〈∅, Nest r1 (List r1 (List r1 (List r1 a)))〉}

...

The application of dv to each successive state yields a larger state, which causes
our computation to diverge. However, in the limit, no dotted variables such as
r•1 will be produced, so there are no dangerous variables in the original type.
To say this another way: although dv is sufficient to define the set of dangerous
variables, it is not sufficient to compute it, if applied in a naive way.

As mentioned in [BM98], the use of nested data types in practice is rare. Also,
important generic functions that operate on them (such as fold) need to be as-
signed rank-2 types, which we do not support either. We expect that computing
the dangerous variables of a nested data type could be done using a reachability
analysis instead of direct substitution. However, as checking whether a type is
nested or not is straight forward, we have not investigated this further.

3.2.4 Material and immaterial variables

The difference between material and immaterial region variables was discussed
in §2.5.3. Recall that material region variables correspond to physical objects in
the store, whereas immaterial region variables are used to describe the locations
of the parameter and return values of functions. In §2.5.7 we discussed how
closure terms that do not contain material region variables can be trimmed
out. In §2.5.5 we defined strongly material region variables to be the ones that
appear in material positions, but not in immaterial ones. In §2.6.5 we discussed
how the immaterial portions of objects cannot be copied.

The following functions, mv , iv are used to compute the material and imma-
terial variables of a type. The strongly material variables are then obtained
by subtracting the second from the first. The type is required to be in normal
form, which is described in §3.2.1. The mv and iv functions are defined simi-
larly to the dv function from the previous section, and we use the same fixpoint
process. Note that we classify isolated value type variables as material because
they have the potential to be constrained to a type that contains material region
variables, such as Int r1.

1Thanks to one of my thesis examiners for pointing this out.

140 CHAPTER 3. TYPE INFERENCE

Material Variables

mv : {D} → {D}

mv(µ) = µ ∪
⋃
{mv ′(x) | x ∈ µ}

where

mv ′ : D → {D}

mv ′(a•κ) = {a•κ}

mv ′(〈Ω, aκ〉)
| κ ∈ {%, ∗} = {a•κ}
| otherwise = ∅

mv ′(〈Ω, Tκ r ϕ〉)
= {r•} ∪ {〈Ω, τ [r ϕ/a]〉 | ∀a. τ ∈ args(ctorTypes(T))}

... other cases as per dv ′

Immaterial Variables

iv : {D} → {D}

iv(µ) = µ ∪
⋃
{iv ′(x) | x ∈ µ}

where

iv ′ : D → {D}

iv ′(a•κ) = {a•κ}

iv ′(〈Ω, aκ〉)
| κ ∈ {%, ∗} = ∅
| otherwise = {a•κ}

iv ′(〈Ω, τ
e c
−→ τ ′〉)

= {a• | a ∈ fv(τ) ∪ fv(τ ′) ∪ fv(ϕ) ∪ {e, c}} ∪ {〈Ω, ϕ′〉}
where (e ⊒ ϕ) ∈ Ω, (c ⊒ ϕ′) ∈ Ω

iv ′(〈Ω, Tκ r ϕ〉)
= {〈Ω, τ [r ϕ/a]〉 | ∀a. τ ∈ args(ctorTypes(T))}

iv ′(〈Ω, Read r〉) = {r•}

iv ′(〈Ω, ReadH τ〉) = {a• | a ∈ fv(τ)}

iv ′(〈Ω, Write r〉) = {r•}

iv ′(〈Ω, x : ϕ〉) = 〈Ω, ϕ〉

... other cases as per dv ′

3.2. SOURCE LANGUAGE AND CONSTRAINT SLURPING 141

Examples:

τ material immaterial strongly material

Int r1 r1 ∅ r1

List r1 a r1 a ∅ r1 a

a→ Int r1 ∅ a r1 ∅

()
e1 c1−→ ()

⊲ e1 ⊒Write r3

, c1 ⊒ x1 : Int r3 ∨ x2 : Int r4

r3 r4 e1 c1 r3 r4

Int r1
e1 c1−→ Int r2

⊲ e1 ⊒ Read r1

, c1 ⊒ x : Int r2

r2 r1 r2 e1 c1 ∅

Maybe r1 (a
⊥ c1−→ Int r3)

⊲ c1 ⊒ x : Int r3

r1 r3 a c1 r3 r1

List r1 (Tuple2 r2 (Int r3) (a
e1 c1−→ b))

⊲ e1 ⊒ Read r3

, c1 ⊒ x : Int r3

r1 r2 r3 a b e1 c1 r3 r1 r2

3.2.5 The map example

We will use the following program as a running example:

data List :: %→ ∗ → ∗ where
Nil :: ∀(r : %).∀(a : ∗). List r a

Cons :: ∀(r : %).∀(a : ∗).∀(c : $). a→ List r a
c
−→ List r a

⊲ c ⊒ x : a

let map = λf. λ xx .
case xx of
Nil → Nil
Cons x xs → Cons (f x) (map f xs)

in map succ foo

This program defines the familiar List data type and map function, then applies
succ to all elements of the list foo. We will assume that succ and foo are defined
elsewhere and have the following types:

succ :: ∀r1..2 e1. Int r1
e1−→ Int r2

⊲ e1 ⊒ Read r1

foo :: List r5 (Int r6)

142 CHAPTER 3. TYPE INFERENCE

3.2.6 Annotated source language

The first step in type inference is to annotate the source program with fresh
type variables to serve as hooks for the type constraints. Formally, we consider
the annotated language to be an extension of the source language from the
previous section, with the following additional productions:

Terms

t → . . .
| λ(x : sx). t (annotated term abstraction)

| let (x : sx) = t in t′ (annotated let bindings)

Patterns

p → . . .

| K (x : sx) (annotated constructor pattern)

Annotations are placed on let and lambda bound variables, as well as variables
that are bound by a pattern match. Although the annotated language is con-
ceptually separate from the source language, in our practical implementation
we represent them with the same data type.

When we add fresh variables, the body of our example program becomes:

let (map : smap) = λ(f : sf). λ(xx : sxx).
case xx of
Nil → Nil
Cons (x : sx) (xs : sxs) → Cons (f x) (map f xs)

in map succ foo

Note that we have named the fresh type variables after the value variables they
represent. We can imagine that there is a mapping between corresponding value
and type variables, and any type variable named after a value variable in the
same example is assumed to map to it. We avoid introducing this mapping
explicitly to reduce clutter in the presentation. We will also assume that all
variables have unique names, so we can easily convert between the two.

When performing inference by hand, we draw the abstract syntax tree for the
annotated program. Each of the edges in the tree is given a unique number,
and we will use these numbers to name the type variables in the generated
constraints. For example, we will name the type of the whole case-expression
s3, and its effect e3.

3.2. SOURCE LANGUAGE AND CONSTRAINT SLURPING 143

The map example

=

NilNil Cons

xx

xs

@

@

map

foo

let

Cons

f map f

@

@

@@

@

13 17

18

0

19

20

21 22

23

2

3

4

5 6 7 8

9

10 11

12

14

15

16

λ(f:s)f

λ

case

x

x(x:s) xs(xs:s)

xx(xx:s)

map

1

succ

(map:s)

let (map : smap) = λ(f : sf). λ(xx : sxx).
case xx of
Nil → Nil
Cons (x : sx) (xs : sxs) → Cons (f x) (map f xs)

in map succ foo

144 CHAPTER 3. TYPE INFERENCE

3.2.7 Slurping and constraint trees

In DDC we call the process of extracting type constraints from the annotated
syntax tree slurping the tree. The function SLURP takes this syntax tree and
produces the corresponding constraint tree:

SLURP : SyntaxTree → ConstraintTree

If the syntax tree has already been annotated with type variables and edge
numbers, then the constraints for each node can be produced independently.
However, in our implementation we prefer to annotate the tree and generate
constraints in a single, bottom-up pass.

The type constraints extracted from the program’s syntax tree are represented
by another tree that mirrors its overall shape. We use φ to represent a branch
in this tree, and the branches have the following structure:

φ → INST x (instantiate this var)

| LAMBDA x φ (lambda or case bound var)

| LET x φ (let bound var)

| GROUP x φ (group of let bindings)
| a = ϕ (type equality)
| a ⊒ ϕ (effect or closure inequality)

INST x corresponds to an occurrence of a bound variable in the program source.
When extracting constraints we generate an INST x for every occurrence, irre-
spective of whether the variable was bound by a let binding, lambda abstraction
or pattern match. LAMBDA x φ contains constraints arising from a lambda
abstraction or pattern match. x is the list of bound variables and φ is a list
of constraint branches from the body of the abstraction. LET x φ contains
constraints arising from a let binding. GROUP x φ contains all the constraint
branches from a particular mutually recursive let expression. a = ϕ and a ⊒ ϕ
are individual constraints on type variables.

3.2. SOURCE LANGUAGE AND CONSTRAINT SLURPING 145

3.2.8 Types of programs and declarations

Γ ⊢ pgm :: ϕ

Γ ⊢ decl :: Γd Γ ⊢ t :: ϕ Γ = Γo, Γd

Γo ⊢ decl ; t :: ϕ
(Pgm)

Γ ⊢ decl :: Γ′

ValidCtor(T, %→ κ→ ∗, ϕ)

Γ ⊢ data T : %→ κ→ ∗ where K : ϕ :: (T : %→ κ→ ∗, K : ϕ)
(DeclData)

ValidCtor(T, %→ κ→ ∗, ϕ)
where ϕ = ∀(r : %) a : κ. T r a

ValidCtor(T, %→ κ→ ∗, ϕ)
where ϕ = ∀(r : %) a : κ. τ → T r a

fv(τ) \ {r, a} ⊆ ∅

ValidCtor(T, %→ κ→ ∗, ϕ)

where ϕ = ∀(r : %) a : κ (c : $). τ1 → τ2
c
−→ T r a ⊲ c ⊒ x1 : τ1

(fv(τ1) ∪ fv(τ2)) \ {r, a} ⊆ ∅

In (Pgm), we set the overall type of the program to be the type of its final
expression. As data type declarations can be mutually recursive, we add the
types and kinds generated by each one to the type environment used when
checking them.

In (DeclData) the predicate ValidCtor checks that each constructor has a type
appropriate to the data type being declared. We have given the first few cases
of ValidCtor, and leave the inductive generalisation to the reader. In our im-
plementation we generate the types of data constructors from Haskell style
algebraic type definitions, instead of requiring the programmer to give them
explicitly, but the checking rules are easier to present.

The definition of ValidCtor has several points of note: the type of a constructor
cannot have free variables; the type of the return value must have a primary
region variable; the types of parameters cannot contain variables that are not
present in the return type, and constructors do not have side effects. Also note
that the function arrows of constructor types must have appropriate closure
annotations, the last case of ValidCtor is an example. This is needed to support
the partial application of data constructors.

146 CHAPTER 3. TYPE INFERENCE

3.2.9 Kinds of types and constraints

ϕ :: κ

aκ :: κ (KiVar)

ϕ :: κ χ :: κ′ χ ∈ Ω

ϕ⊲ Ω :: κ
(KiConstr)

ϕ :: κ′

∀(aκ : κ). ϕ :: κ′
(KiAll)

ϕ1 :: κ ϕ2 :: κ κ ∈ { !, $ }

ϕ1 ∨ ϕ2 :: κ
(KiJoin)

κ ∈ { !, $ }

⊥κ :: κ
(KiBot)

⊤! :: ! (KiTop)

τ1 :: ∗ τ2 :: ∗ σ :: ! ς :: $

τ1
σ ς
−→ τ2 :: ∗

(KiFun)

r :: % ϕ :: κ

T%→κ→∗ r ϕ :: ∗
(KiData)

r :: %

Read r :: !
(KiRead)

ϕ :: ∗

ReadH ϕ :: !
(KiReadH)

r :: %

Write r :: !
(KiWrite)

ϕ :: κ κ ∈ { ∗, $ }

(x : ϕ) :: $
(KiClo)

χ :: κ

τ1 :: κ τ2 :: κ

(τ1 = τ2) :: κ
(KiCEq)

ϕ1 :: κ ϕ2 :: κ κ ∈ { !, $ }

(ϕ1 ⊒ ϕ2) :: κ
(KiCGeq)

3.2. SOURCE LANGUAGE AND CONSTRAINT SLURPING 147

Our kinding rules are mostly standard. In (KiConstr) we use the term χ :: κ′

to require each of the constraints to have a valid kind. The χ :: κ judgement
ensures that the types on both sides of a constraint have the same kind.

3.2.10 Types of terms

Γ ⊢ t :: ϕ⊲ Ω ; σ

The judgement form Γ ⊢ t :: ϕ ⊲ Ω ; σ reads: “with environment Γ the term
t has type ϕ, constraints Ω and effect σ.” We will assume that ϕ contains no
further constraint sets, and that the typing rules maintain this property. This
is a slight abuse of ⊲, but we find it more convenient than introducing another
operator. Our handling of constraints is based on Leroy’s closure typing system
[LW91], so the constraint set Ω is global. When building a type scheme we
will include only the constraints reachable from the body of the type. Leroy’s
approach can be contrasted with Jones’s system of qualified types [Jon92] which
encodes constraints as bounds on quantifiers, and uses separate rules to move
them between local types and the global set. Our core language uses this
second system instead, and we convert between the two representations when
translating the source program to core.

In our typing rules we make no attempt to keep the constraint set consistent or
satisfiable. Inconsistencies such as Int r ⊲Mutable r, Const r or ⊥ ⊒ Console
will be discovered when the program is converted to core. The core typing rules
ensure that witnesses to the mutability and constancy of a particular region
cannot exist in the same program, and effect constraints are checked during
type application. Attempting to translate a program that includes inconsistent
type constraints to the core language will result in a core type error. However,
if these problems are instead detected during type inference, then the compiler
would be in a better position to emit a helpful error message. Error handling
is discussed in §3.8.

The typing rules are presented in three parts, with the static rule in the center,
the associated node of the abstract syntax tree on the left, and the generated
type constraints on the right. The combination of node and type constraints
inductively defines the SLURP function mentioned in §3.2.7.

148 CHAPTER 3. TYPE INFERENCE

Var / Ctor
x : ∀a : κ. ϕ⊲ Ω ∈ Γ

Γ ⊢ x :: ϕ[ϕ′/a]⊲ Ω[ϕ′/a] ∪ Ω′ ; ⊥

x

1

s1 = INST sx

We assume that the source program’s syntax has already been checked, so x is
bound somewhere above its use. The rule for data constructors is identical to
the one above, with x replaced by K.

The type for x is required to be in the environment, and this type may include
quantifiers ∀a : κ and more constraints Ω. We instantiate this type scheme
by substituting new types b for the quantified variables in the body of the
type as well as its constraints. The extra constraint term Ω′ is needed to
match the constraints introduced by other parts of the program, and allows
the instantiated type to be weakened and treated as having a larger effect or
closure term than it does in the environment. This is required when typing the
higher order examples discussed in §2.3.6.

When generating constraints we defer the question of whether the variable was
introduced by a let binding, lambda binding, pattern match, or whether it is
part of a (mutually) recursive group. If a variable turns out to have been bound
by a lambda or pattern match there will be no corresponding generalisation of its
type, but we will use INST to instantiate it anyway. This makes the resulting
constraints easier to read, and simplifies discussion of how to work out the
binding dependency graph in §3.6. During type inference we can think of INST
as a function that blocks on the variable sx, waiting for the type scheme of x
to be become available.

Abs
Γ, x : τ1 ⊲ Ω1 ⊢ t2 :: τ2 ⊲ Ω2 ; σ2

Γ ⊢ λx. t2 :: τ1
e2 c1−→ τ2 ⊲ Ω1 ∪ Ω2; ⊥

where for all y ∈ fv(λx. t2) we have (c1 ⊒ y : Γ(y)) ∈ Ω2

and e2 ⊒ σ2 ∈ Ω2

λ(:)x sx

2t

1

2

LAMBDA {x}

s1 = sx
e2 c1−→ s2

c1 ⊒ y0 : sy0 ∨ y1 : sy1 ∨ . . .
where yn ← fv(λx. t2)

SLURP(t2)

An abstraction takes a term of type τ1 and produces a term of type τ2. When the
abstraction is applied it will have the effect σ2 of its body. In the typing rule we
give this effect the name e2 and bind it to σ2 in Ω2. When generating constraints
we can simply annotate the function constructor with e2, and the required
effect constraints will be generated when slurping the body. As evaluating the
abstraction itself causes no effect, we have ⊥ in the conclusion of the rule.

3.2. SOURCE LANGUAGE AND CONSTRAINT SLURPING 149

The closure of an abstraction contains the types of its free variables. In the
typing rule we can read these types directly from the environment using Γ(y).
When we’re generating constraints we won’t know what these types are yet, so
we use the the place holder variables sy0 , sy1 ... instead. These variables will be
bound to their real types during inference.

App

Γ ⊢ t2 :: τ3
σ4 ς4−→ τ1 ⊲ Ω; σ2

Γ ⊢ t3 :: τ3 ⊲ Ω ; σ3

Γ ⊢ t2 t3 :: τ1 ⊲ Ω ; σ2 ∨ σ3 ∨ σ4

t2 t3

@

1

2 3

s2 = s3
e4 c4−→ s1

e1 ⊒ e2 ∨ e3 ∨ e4

e4, c4 fresh
SLURP(t2)
SLURP(t3)

An application node applies a function of type τ3
σ4 ς4−→ τ1 to its argument of

type τ3, yielding a result of type τ1. The act of applying the function has an
effect σ4. The effect of evaluating the entire expression consists of the effect
of evaluating the function value, of evaluating the argument, and of applying
the function. In the terminology of [LG88], σ4 is the intrinsic effect of the
application and σ2 ∨ σ3 is the inherited effect. The closure of the function is
of no consequence when typing an application, so ς4 is only mentioned once in
the rule.

When generating type constraints we will not yet know what the effect of the
function will be. In our constraints we use e4 and c4 as local names for the
function’s effect and closure. These will be bound to the actual effect and
closure of the function during type inference.

150 CHAPTER 3. TYPE INFERENCE

Let-Poly

Γ, xn : ϕn ⊢ t :: τ ⊲ Ω ; σ

Γ, xn : τn ⊲ Ω ⊢ t′0 :: τ ′

0 ⊲ Ω ; σ′

0 ϕ0 = Gen(Γ, τ ′

0 ⊲ Ω)

Γ, xn : τn ⊲ Ω ⊢ t′1 :: τ ′

1 ⊲ Ω ; σ′

1 ϕ1 = Gen(Γ, τ ′

1 ⊲ Ω)

...
...

Γ ⊢ let xn = t′n in t :: τ ⊲ Ω ; σ ∨ σ′

0 ∨ σ′

1 ∨ . . .

t’0 t’1

=

0 x0(x :s)

=

(x :s)1 x1

let

a0 a1

1

2

t

GROUP {x0, x1, . . . }
s1 = s2

e1 ⊒ ea0 ∨ ea1 ∨ · · · ∨ e2

LET x0

sx0 = sa0

SLURP(t′0)
LET x1

sx1 = sa1

SLURP(t′1)
...

SLURP(t)

The function Gen generalises the types of each binding. This process is dis-
cussed in §3.4. Note that in the expression:

ϕ = Gen(Γ, τ ⊲ Ω)

The resulting type ϕ contains only the constraints from Ω that are reachable
from τ . The conclusion of (Let-Poly) includes the constraint set Ω, and the
same set is used in each of the premises. This means that constraints that are
conceptually local to a particular binding will “leak” into the global set. For
example:

Γ, succL : ∀r1 r2. Int r1 → Int r2 ⊲ Const r1

⊢ succL 3

:: Int r3 ⊲ Const r3, Const r4 ; ⊥

Γ, succL : Int r4 → Int r5 ⊲ Const r3, Const r4

⊢ λx. suspend1 succ x

:: Int r4 → Int r5 ⊲ Const r3, Const r4 ; ⊥

Γ ⊢ let succL = λx. suspend1 succ x in succL 3

:: Int r3 ⊲ Const r3,Const r4 ; ⊥

The function succL is a lazy version of succ that reads its argument only when
the result is demanded. The general type of succL is:

succL :: ∀r1 r2. Int r1 → Int r2 ⊲ Const r1

The constraint Const r1 arises from the use of suspend1 in the definition of
succL.

3.2. SOURCE LANGUAGE AND CONSTRAINT SLURPING 151

When checking this definition we give succL the monotype:

Int r4 → Int r5 ⊲ Const r4

Due to the formulation of the (Let-Poly) rule, the constraint Const r4 is actually
present in both premises, as well as the conclusion. Also, in the body of the
let-expression, the application of succL to the constant 3 requires that constant
to be (really) constant, hence the constraint Const r3. Although this constraint
only concerns the body of the let-expression, it is also present in the set used
when typing the bindings.

This behavior is unlike that of the (Let) rule presented by Leroy in [LW91].
Leroy’s rule uses Gen to split the constraint set arising from a let-binding into
two subsets: those that are reachable from the body of the type being gen-
eralised, and those that aren’t. If we were to use Leroy’s approach, the first
premise and conclusion of our example would not contain Const r4, and the sec-
ond premise would not contain Const r3. Leroy’s rule is “nicer” when drawing
proof trees, but we stick to the leaky version because it mirrors what happens
during type inference. Our inference algorithm adds all the type constraints
extracted from the program into a global graph, solves them, then returns the
whole graph. It does not section the graph into portions relating to individual
bindings, and it only removes constraints from the graph when dealing with
the type classes discussed in §3.7. Retaining information from all bindings also
makes it easy for the implementation to add type annotations to the desugared
program when converting it to core.

As we have not implemented polymorphic recursion [Myc84], we check the right
of each binding using the ungeneralised types for each let-bound variable. Due
to this, many useful programs are not directly typeable with this (Let-Poly)
rule. Consider this example from [Myc84]:

let map = λf. λ xx .
case xx of
Nil → Nil
Cons x xs → Cons (f x) (map f xs)

squarelist = λl.map (λx. x ∗ x) l

complement = λl.map (λx.not x) l

in . . .

This program will not be accepted as it stands. We need to use the gener-
alised, polymorphic type of map when applying it to (λx. x∗x) and (λx.not x)
because these expressions have different types. If we use the ungeneralised,
monomorphic type then we will get an error.

This highlights the fact that our source typing rules are only a guide for generat-
ing type constraints, and that we cannot use them to check the source program
directly. We must first perform type inference by extracting type constraints
and then solving them. As discussed in §3.6, our algorithm for solving type
constraints also builds a graph that records what bindings are mutually recur-
sive. Once we have this graph we can use it to split out the definition of map
from the above example, and convert the program to:

152 CHAPTER 3. TYPE INFERENCE

let map = λf. λ xx .
case xx of
Nil → Nil
Cons x xs → Cons (f x) (map f xs)

in
let squarelist = λl.map (λx. x ∗ x) l

complement = λl.map (λx.not x) l

in . . .

For this version, (Let-Poly) allows us to use the generalised type of map when
checking the body of the second let-expression. This new program will be
accepted without error.

Case

Γ ⊢ t :: T r ϕ⊲ Ω ; σ

Γ ⊢p p0 → t′0 :: T r ϕ→ τ ⊲ Ω ; σ′

0

Γ ⊢p p1 → t′1 :: T r ϕ→ τ ⊲ Ω ; σ′

1

...

Γ ⊢ case t of p→ t′ :: τ ′ ⊲ Ω ; Read r ∨ σ ∨ σ′

0 ∨ σ′

1 ∨ . . .

case

p p0 1t’0 t’1

a0p0 p1 a1t

2

1

s2 = sp0

s2 = sp1
...

s1 = sa0

s1 = sa1
...

e1 = ReadH s2 ∨ e2 ∨ ea0 ∨ ea1 ∨ . . .
SLURP(t)
SLURP(p0)
SLURP(p1)

...
SLURP(t0)
SLURP(t1)

...

A case expression requires the discriminant t to have the same type as the
patterns being matched against. For all alternatives, the types of the patterns
must be identical, and so must the types of the expressions. The type of the
entire case expression is the type of the right of the alternatives.

The effect of a case expression includes the effect of evaluating the discriminant
and examining it, as well as evaluating the alternatives. When type checking a
program in a bottom-up manner, when it’s time to apply the (Case) rule we will
already know the type of the discriminant. In this situation we can use Read r
as the effect of examining it. On the other hand, when generating constraints
we will not yet know the type of the discriminant. We instead use ReadH s2,
which represents a read effect on the primary region of the (currently unknown)
type s2. During inference, the type of s2 will resolve to the real type of the
discriminant. After this is done, ReadH s2 can be reduced to a Read effect on
the primary region of this new type.

3.2. SOURCE LANGUAGE AND CONSTRAINT SLURPING 153

Γ ⊢p p→ t :: τ1 → τ2 ⊲ Ω

Γ ⊢ t :: τ2 ⊲ Ω ; σ

Γ ⊢p → t :: τ1 → τ2 ⊲ Ω ; σ
(Pat-Wildcard)

T : %→ κ→ ∗ ∈ Γ

K : ∀(r : %) a : κ c : $. τ
c′
−→ T r a ⊲ Ω ∈ Γ θ = [r′/r ϕ/a]

Γ, xn : θ(τn) ⊲ θ(Ω)
n

⊢ t :: τ ′ ⊲ Ω′ ; σ

Γ ⊢p K x→ t :: T r′ ϕ→ τ ′ ⊲ Ω′ ; σ
(Pat-Constructor)

K
2

1

(x:s)x

s1 = T r′ a′

sx = τ ′

...

where τ ′ → · · · → T r′ a′

= Inst(∀(r : %) a : κ c : $. τ
c′
−→ T r a)

The judgement form Γ ⊢p p→ t :: τ1 → τ2 ⊲Ω reads: “with environment Γ an
alternative matching a pattern p and producing a term t has type τ1 to τ2 with
constraints Ω.”

Matching against a wildcard produces no constraints.

In (Pat-Constructor) we lookup the type of the constructor K from the en-
vironment. The (DeclData) rule from §3.2.8 introduces these types into the
environment and ensures that they have the particular form shown here.

The variables bound by the pattern are named x, and the types of these vari-
ables must have the same form as the types of the arguments of the constructor.
If the constructor produces a type containing variables a then all occurrences
of x must agree on the particular types used for a. For example with the
constructor:

Cons :: ∀r a c. a→ List r a
c
−→ List r a ⊲ c ⊒ x : a

Consider the alternative in:

case . . . of
Cons x xs → . . .

We cannot, say, use x at type Int r1, but xs at type Cons r2 (Bool r1) because
Int r1 6= Bool r1. This restriction is achieved by requiring the types of each
of the pattern bound variables to be related by the substitution θ.

The constraint generation rules given here only concern the pattern in a par-
ticular alternative. The job of matching up the types of all alternatives in a
case-expression is handled by the constraints for the (Case) rule on the previous
page.

When generating constraints for a pattern, we first take a fresh instance of the
constructor’s type scheme. The result type is the type of the overall pattern,
and the argument types are assigned to the variables bound by the pattern.

154 CHAPTER 3. TYPE INFERENCE

3.2.11 Example: type constraints

The following contraint tree is for our map example:

GROUP {map}
s0 = s19

e0 ⊒ e1 ∨ e19

LET map
smap = s1

LAMBDA {f}

s1 = sf
e2 c1−→ s2

c1 ⊒ map : smap

LAMBDA {xx}

s2 = sxx
e3 c2−→ s3 c2 ⊒ map : smap ∨ f : sf

s3 = s6 e3 ⊒ ReadH s4 ∨ e6 ∨ e7

s3 = s8

s4 = s5

s4 = s7

s5 = List r5 a5

s7 = List r7 a7

sx = a7

sxs = List r7 a7

s4 = INST sxx

LAMBDA ∅
s6 = INST sNil

LAMBDA {x, xs}

s9 = s14
e8a c8−→ s8 e8 ⊒ e9 ∨ e14 ∨ e8a

s10 = s11
e9a c9−→ s9 e9 ⊒ e10 ∨ e11 ∨ e9a

s10 = INST sCons

s12 = s13
e11a c11−→ s11 e11 ⊒ e12 ∨ e13 ∨ e11a

s12 = INST sf

s13 = INST sx

s15 = s18
e14a c14−→ s14 e14 ⊒ e15 ∨ e18 ∨ e14a

s16 = s17
e15a c15−→ s15 e15 ⊒ e16 ∨ e17 ∨ e15a

s16 = INST smap

s17 = INST sf

s18 = INST sxs

s20 = s23
e19a c19−→ s19 e19 = e20 ∨ e23 ∨ e19a

s21 = s22
e20a c20−→ s20 e20 = e21 ∨ e22 ∨ e20a

s21 = INST smap

s22 = INST sdouble

s23 = INST sfoo

3.2. SOURCE LANGUAGE AND CONSTRAINT SLURPING 155

The constraint tree echos the abstract syntax tree. We have retained the over-
all structure of the program, while dispensing with details such as distinction
between case alternatives and lambda abstractions, and the order of function
applications. Once constraints have been extracted, the inference algorithm can
ignore the source program entirely. In our real implementation we use a source
language that has more sugar than the one presented here, but the constraint
language is the same.

Before discussing how to actually solve the constraints, note that there are
several degrees of freedom in their ordering. Within a particular LAMBDA,
LET or GROUP block it is always safe to move = or ⊒ constraints earlier in
the block. It is also safe to move these constraints up and earlier in the tree,
such as moving smap = s1 so it appears directly after e0 ⊒ e1 ∨ e19. Moving
these constraints higher up in the tree means they will be considered earlier,
and such modifications will not degrade the final constraint solution. It is also
safe to change the order of LAMBDA or LET blocks at the same level. This
simply corresponds to changing the order of let-bindings or case-alternatives in
the original program. On the other hand, in general it is not safe to move INST
constraints as they control the order in which types are instantiated.

Although we will discuss recursion more fully in §3.6, the structure of the con-
straints reveals that map is recursively defined. This is evident from the fact
that s16 = INST smap , present in the lower quarter of the list, appears inside
the LET map block. This constraint corresponds to a recursive use of map.
This is in contrast to s21 = INST smap which appears outside the block and
corresponds to a non-recursive use. Without polymorphic recursion, all recur-
sive uses of let-bound variables should be at identical types, so we will change
s16 = INST smap to s16 = smap .

From the structure of tree we see that the INST constraints for s4, s12, s13, s17

and s18 all correspond to uses of lambda or pattern bound variables. This is
clear because they appear inside a LAMBDA block corresponding to the vari-
able they instantiate. For this example we will also simplify these constraints
by identifying the variables on the left and right, giving: s4 = sxx , s12 = sf ,
s13 = sx and so on.

We will assume that the types of Nil and Cons are known. This allows us to
replace the constraints for s6 and s10 with fresh instantiations of their type
schemes. Although the type of Cons includes a closure term, we store the
closure constraint in the graph instead of directly in its type. The form of our
reduction rules require that all constraints involve a single constructor only.

s6 = List r6 a6

s10 = a10
⊥ ⊥
−→ s10a

s10a = s10b
⊥ c10−→ s10c

s10b = List r10 a10

s10c = List r10 a10

c10 = x : a10

3.2.12 Constraint sets and equivalence classes

Now we can start building the type graph. In the graph our constraints are
organised into a set of equivalence classes. Each equivalence class contains a set
of types that must be equal, or constrained by an inequality. Equivalence classes

156 CHAPTER 3. TYPE INFERENCE

can be in one of three forms, depending on the kind of the types contained.
Value equivalence classes have the form κn ∼ s = τ , where κ is the kind of the
class, n is a unique integer identifying it, s is a list of type variables, and τ is
a set of non-variable types. The intention is for the variables on the left of the
= to be identified with the types on the right. Effect and closure classes use ⊒
instead of =, so we write them as κn ∼ a ⊒ τ . As there are no constructors of
region kind, we write region equivalence classes as κn ∼ s.

For example, when we construct an equivalence class from the following con-
straint set:

{ s1 = sf
e2 c1−→ s2, s16= s17

e15a c15−→ s15,
s16= smap, s1 = smap }

we get:

*0 ∼ smap, s1, s16 = sf
e2 c1−→ s2, s17

e15a c15−→ s15

This class has the kind of value types and is identified as class 0. The variable
that comes first in the list is the canonical name for the class. The canonical
name is the variable that we choose to represent the class, and when doing
inference by hand we choose the name that is most “interesting”. In this case
we have chosen smap as more interesting than s1 or s16, but this choice will not
affect the substance of our constraint solution. When a new type variable is
added to an equivalence class we substitute the canonical name for occurrences
of this variable in the graph. The two types on the right of the = come from
the s1 = sf

e2 c1−→ s2 and s16 = s17
e15a c15−→ s15 constraints.

We refer to the set of equivalence classes as “the type graph” to distinguish it
from the set of constraints which it is built from. Constraint sets and equiva-
lence classes express similar information, but are not completely interconvert-
ible. An equivalence class contains variables and type constructors from the
constraint set, but no information about how to match them up. For example,
from the equivalence class above we cannot tell if the original constraint set
contained s1 = smap, s1 = s16, or both. An equivalence class records a set of
types that are all equal, but not exactly why. The fact that this information
is is lost will not matter until we discuss error reporting in §3.8. Until then we
will use equivalence classes, as this notation is more compact.

3.2.13 Example: type graph

Continuing on with our map example, we will add all constraints up to the end
of the LET map block to the type graph. The result is shown on the next page.
Note that we have elided classes that contain only a single variable, such as for
r4 and e1.

The form of the type graph already suggests how we should proceed from here.
Note that the class for smap (*1) contains two type constructors sf

e15a c15−→ s15

and sf
e2 c1−→ s2. These represent the use and definition of map respectively.

Unifying these two types implies that the classes for s15 (*13) and s2 (*5)
should be merged. This induces the unification of sxx and sxs, which implies
that the input list must have the same type as its tail, as expected.

3.2. SOURCE LANGUAGE AND CONSTRAINT SLURPING 157

=

NilNil Cons

xx

xs

@

@

map

foo

let

Cons

f map f

@

@

@@

@

13 17

18

0

19

20

21 22

23

2

3

4

5 6 7 8

9

10 11

12

14

15

16

λ(f:s)f

λ

case

x

x(x:s) xs(xs:s)

xx(xx:s)

map

1

succ

(map:s)

*0 ∼ s0, s19 = ∅

*1 ∼ smap, s1, s16 = sf
e15a c15−→ s15, sf

e2 c1−→ s2

*2 ∼ sf , s17, s12 = sx
e11a c11−→ s11

*3 ∼ sx, s13, a7 = ∅

*4 ∼ sxs, s18 = List r7 a7

*5 ∼ s2 = sxx
e3 c2−→ s3

*6 ∼ s3, s6, s8 = List r6 a6

*7 ∼ sxx, s4, s5, s7 = List r5 a5, List r7 a7

*8 ∼ s9 = s14
e8a c3−→ s3

*9 ∼ s10 = s11
e9a c9−→ s9, a10

⊥ ⊥
−→ s10a

*10 ∼ s10a = s10b
⊥ c10−→ s10c

*11 ∼ s10b = List r10 a10

*12 ∼ s10c = List r10 a10

*13 ∼ s15 = sxs
e14a c14−→ s14

!0 ∼ e0 ⊒ e1 ∨ e19

!1 ∼ e3 ⊒ ReadH sxx ∨ e6 ∨ e8

!2 ∼ e8 ⊒ e9 ∨ e14 ∨ e8a

!3 ∼ e9 ⊒ e10 ∨ e11 ∨ e9a

!4 ∼ e11 ⊒ e12 ∨ e13 ∨ e11a

!5 ∼ e14 ⊒ e15 ∨ e18 ∨ e14a

!6 ∼ e15 ⊒ e16 ∨ e17 ∨ e15a

$1 ∼ c1 ⊒ map : smap

$2 ∼ c2 ⊒ map : smap ∨ f : sf

$3 ∼ c10 ⊒ x : a10

158 CHAPTER 3. TYPE INFERENCE

3.3 Constraint reduction

Our immediate goal is to determine a type for map. However, the equivalence
class corresponding to smap currently contains two different type expressions.
Although union typing systems [DP03] provide a join operator on value types,
we do not consider these systems here and will instead take the standard ap-
proach of unifying all the types in a particular equivalence class. Unifying all
types corresponds to a ML style system, which is usually expressive enough for
our needs. We will consider union typing again in §5.2.2.

The unification of types may generate more constraints. These new constraints
must be added back to the graph, possibly resulting in more unifications, which
may generate more constraints, and so on. In DDC we call this process grinding
the graph, and we take this to include performing unifications as well as reducing
type class constraints and compound effects.

3.3.1 Constraint entailment

We use entailment rules to describe operations on constraint sets. Entailment
rules have the form P ⊢⊢ Q, where P and Q are both sets. P ⊢⊢ Q can be read:
“P entails Q”, or perhaps “P produces Q”. If we have a constraint set R and
a rule P ⊢⊢ Q where P ⊆ R, then we can replace the constraints P in R by the
new constraints Q. Any variables present in P match the corresponding types
in R. For example, we could apply transitivity rule:

(trans) {s1 = s2, s2 = s3}
⊢⊢ {s1 = s2, s2 = s3, s1 = s3}

To the following constraint set:

{sa = sb, sb = Int r1}

to get:

{sa = sb, sb = Int r1, sa = Int r1}

When we apply an entailment rule P ⊢⊢ Q, we take any variables present in Q
but not P or R to be fresh.

Note that our entailment rules are expressed as operations on constraint sets,
not on type graphs. To apply a rule to the type graph we must imagine it being
converted to a constraint set and back again. As discussed in §3.2.12 the two
forms are not totally equivalent, but the fact that we lose information when
converting a constraint set to a type graph will only matter when we come
come to discuss type error messages in §3.8. We use the graph representation
until then as it is more compact and simplifies the presentation.

3.3. CONSTRAINT REDUCTION 159

3.3.2 Unification

The entailment rules for unification are:

(unify fun) { s = a1
e1 c1−→ b1, s = a2

e2 c2−→ b2 }

⊢⊢ { s = a1
e1 c1−→ b1, a1 = a2, b1 = b2, e1 = e2, c1 = c2 }

(unify data) { s = T1 a, s = T1 b }

⊢⊢ { s = T1 a, a = b }

The first rule is applicable when there are two function type constraints on
a particular variable s. Applying the rule causes the second constraint to be
discarded, while generating four new ones. These new constraints equate the
type variables for the argument, return value, effect and closure of each function.
The second rule is similar.

When we come to add a constraint like a1 = a2 to our type graph, if the
two variables are already in the same equivalence class then we just ignore the
constraint. If they are in separate classes then we add all the variables and
types in the first one to the second, and delete the first (or vice-versa). For
example, our graph for map includes the following:

*1 ∼ smap, s1, s16 = sf
e15a c15−→ s15, sf

e2 c1−→ s2

*2 ∼ sf , s17, s12 = sx
e11a c11−→ s11

*5 ∼ s2 = sxx
e3 c2−→ s3

*13 ∼ s15 = sxs
e14a c14−→ s14

!7 ∼ e15a ⊒ ⊥

!8 ∼ e2 ⊒ ⊥

$1 ∼ c1 ⊒ map : smap

$4 ∼ c15 ⊒ ⊥

Applying the unification rule to *1 allows us to delete the first function type,
while generating the new constraints sf = sf , s15 = s2, e15a = e2 and c15 = c1.
We can safely discard the trivial identity sf = sf .

To add s15 = s2 back to the graph we add the elements of *5 to *13 and discard
*5. Likewise, to add e15a = e2 we will add the elements of !7 to !8 and delete
!7. This yields:

*1 ∼ smap, s1, s16 = sf
e2 c1−→ s2

*2 ∼ sf , s17, s12 = sx
e11a c11−→ s11

*13 ∼ s15, s2 = sxs
e14a c14−→ s14, sxx

e3 c2−→ s3

!8 ∼ e2, e15a ⊒ ⊥ ∨⊥
$1 ∼ c1, c15 ⊒ map : smap ∨ ⊥

Note that when there are multiple types in a value type equivalence class we
separate them by a comma. On the other hand, multiple types in an effect or
closure equivalence class are separated by ∨. This follows naturally from the
fact that constraints on value types are always expressed with =, but constraints

160 CHAPTER 3. TYPE INFERENCE

on effects and closures are always expressed with ⊒. Using the definition of ∨
we can then go on to simplify ⊥ ∨ ⊥ to just ⊥. Note that in the constraint
set representation this simplification isn’t needed. If we have both e1 ⊒ ⊥ and
e1 ⊒ ⊥, then putting these constraints in a set automatically ‘merges’ them.

The application of (unify fun) to *1 has caused a new type to be added to *1.
We keep applying our unification rules until no further progress can be made,
and when this is done we have:

*0 ∼ s0, s19 = ⊥

*1 ∼ smap, s1, s16 = sf
e2 c1−→ s15

*2 ∼ sf , s17, s12 = sx
e11a c11−→ s11

*3 ∼ sx, s13, a7, a5 = ⊥

*6 ∼ s3, s6, s8, s14, s10b, s10c = List r6 s11

*7 ∼ sxx, s4, s5, s7, sxs, s18 = List r5 sx

*9 ∼ s10 = s11
e9a c9−→ s10a

*10 ∼ s10a s9 = s3
e8a c3−→ s3

*13 ∼ s15, s2 = sxx
e3 c2−→ s3

*14 ∼ s11, a10, a6 ⊒ ⊥
%0 ∼ r5, r7

%1 ∼ r6, r10

!0 ∼ e0 ⊒ e1 ∨ e19

!1 ∼ e3, e14a ⊒ ReadH sxx ∨ e6 ∨ e8

!2 ∼ e8 ⊒ e9 ∨ e14 ∨ e8a

!3 ∼ e9 ⊒ e10 ∨ e11 ∨ e9a

!4 ∼ e11 ⊒ e12 ∨ e13 ∨ e11a

!5 ∼ e14 ⊒ e15 ∨ e18 ∨ e3

!6 ∼ e15 ⊒ e16 ∨ e17 ∨ e2

!7 ∼ e2, e15a ⊒ ⊥

$1 ∼ c1 ⊒ map : smap

$2 ∼ c2 ⊒ map : smap ∨ f : sf

$3 ∼ c10 ⊒ x : a10

3.3.3 Head read

When unification is complete we have a constraint sxx = List r5 sx in *7. This
allows us to reduce the ReadH sxx effect in !1 that was generated by the case-
expression in the original program. In DDC we call the process of reducing
effect types or type class constraints crushing.

The entailment rule for ReadH is :

(read head) { e ⊒ ReadH s, s = T r s }
⊢⊢ { e ⊒ Read r, s = T r s }

This says that the effect of reading the primary region of a data type can be
reduced to a simple read of that region once the region is known. This lets us
reduce:

3.3. CONSTRAINT REDUCTION 161

*7 ∼ sxx, s4, s5, s7, sxs, s18 = List r5 sx

!1 ∼ e3, e14a ⊒ ReadH sxx ∨ e6 ∨ e8

to:

*7 ∼ sxx, s4, s5, s7, sxs, s18 = List r5 sx

!1 ∼ e3, e14a ⊒ Read r5 ∨ e6 ∨ e8

Recall that when applying an entailment rule, we must imagine the type graph
being converted to a constraint set and back. The two equivalence classes *7
and !1 correspond to the set:

{ sxx = s4, sxx = s5, sxx = s7, sxx = sxs,
sxx = s18, sxx = List r5 sx,
e3 = e14a, e3 ⊒ ReadH sxx, e3 ⊒ e6, e3 ⊒ e8 }

Expressing the graph in this form separates out the constraints e3 ⊒ ReadH sxx

and sxx = List r5 sx, which match the premise of the (read head) rule.

162 CHAPTER 3. TYPE INFERENCE

3.4 Generalisation

When no more types can be unified, and no more effects or type class constraints
can be reduced, the graph is said to be in normal form. We can now extract
the type for map from our graph and generalise it into a type scheme.

In DDC we refer to the complete process of building a type scheme from the
information in the type graph as “generalisation”. This process is broken down
into several stages, summarised below. Note that in a concrete implementation,
several of these stages can performed at the same time. For example, checking
for loops through the constraints can be done while tracing them, as tracing
corresponds to a simple reachability analysis.

1. Tracing: isolate the type information of interest.
2. Loop checking: check for infinite value type errors.
3. Packing: pack the graphical constraints into “flat” form.
4. Loop breaking: break loops through effect and closure constraints.
5. Cleaning: discard non-interesting effect and closure variables.
6. Quantification: introduce type quantifiers.

3.4.1 Tracing

The first step is to trace out the section of graph that is reachable from the
type variable we’re interested in. For this example we’re interested in map and
all equivalence classes except *0 are reachable from smap . This process makes
a copy of the information present in the “global” graph, and the operations
described in the rest of this section are performed on the copy.

3.4.2 Loop checking

We now check for loops through the value type portion of the copied sub-graph.
A classic example of a program with a looping type is:

x = Cons xNil

where Cons and Nil have the following types:

Nil :: ∀r a.List r a

Cons :: ∀r a c. a→ List r a
c
−→ List r a

⊲ c ⊒ x : a

After slurping and grinding constraints, this program has the following graph:

*1 ∼ sx, s1, s4, a3, a5 = List r3 sx

*2 ∼ s2, = s5
e1 c1−→ sx

*3 ∼ s3, sCons = s4
e2 c2−→ s2

*4 ∼ s5, = List r3 sx

$1 ∼ c3, c1 ⊒ x : sx

%1 ∼ r3, r5

The loop is through equivalence class *1. We cannot produce a flat, non-
graphical type for sx because if we tried to solve its constraint our algorithm
would diverge:

3.4. GENERALISATION 163

sx = List r3 sx

≡ sx = List r3 (List r3 sx)
≡ sx = List r3 (List r3 (List r3 sx))
≡ . . .

Unlike [CC91] we do not attempt to handle recursive value types, so we flag
them as errors instead. This is common to other compilers such as GHC, which
would emit a message “cannot construct infinite type”. Note that loops through
the effect or closure portions of a type graph are not counted as errors. We
deal with these in §3.4.4.

3.4.3 Packing

Packing is the process of converting a set of individual type constraints into the
normalised form of 3.2.1. When we pack the constraints from our map example
into this form we have:

smap = (sx
e11a c11−→ s11)

e2 c1−→ List r5 sx
e3 c2−→ List r6 s11

⊲ e3 ⊒ Read r5 ∨ e6 ∨ e8

, e8 ⊒ e9 ∨ e14 ∨ e8a

, e9 ⊒ e10 ∨ e11 ∨ e9a

, e11 ⊒ e12 ∨ e13 ∨ e11a

, e14 ⊒ e15 ∨ e18 ∨ e3

, e15 ⊒ e16 ∨ e17 ∨ e2

, c1 ⊒ map : (sx
e11a c11−→ s11)

e2 c1−→ List r5 sx
e3 c2−→ List r6 s11

, c2 ⊒ map : (sx
e11a c11−→ s11)

e2 c1−→ List r5 sx
e3 c2−→ List r6 s11

∨ f : sx
e11a c11−→ s11

Although the body of this type is now in the familiar form, there is still a hash
of effect and closure constraints. However, notice that there is only one use
each of the variables e8, e9, e11, e14 and e15, and they are not mentioned in the
body of this type. From a compiler optimisation point of view, the only effect
information that we need to preserve is the manifest effect of each function
arrow. The fact that, say, e3 includes e8 and e8 includes e9 does not matter, as
long as all of the appropriate variables are reachable from e3.

This means that we can inline the constraints on e8, e9 and so on into the
constraint for e3. We can also use the closure trimming process discussed in
§2.5.7 to simplify the constraints for c1 and c2. This produces:

smap = (sx
e11a c11−→ s11)

e2 c1−→ List r5 sx
e3 c2−→ List r6 s11

⊲ e3 ⊒ Read r5 ∨ e6 ∨ e8 ∨ e9 ∨ e14 ∨ e8a

∨ e10 ∨ e11 ∨ e9a ∨ e12 ∨ e13 ∨ e11a

∨ e15 ∨ e18 ∨ e3 ∨ e16 ∨ e17 ∨ e2

, c1 ⊒ map : c1

, c2 ⊒ map : c1 ∨ f : c11

164 CHAPTER 3. TYPE INFERENCE

3.4.4 Loop breaking

As discussed in §2.3.8, we can use the lattice structure of effects and closures to
break loops through effect and closure constraints. If the type of a particular
value variable contains looping constraints, then breaking these loops makes the
type simpler, and allows it to be exported to the core language. The following
diagram shows a loop through the effect portion of the type for map, as it was
after the first stage of packing:

e

e

e

e

e e

e e

9

9a

6 8Read r5

8a

11

13

e

e e e

e e e

e10

e12 16 17 2

15 18 3

14

e3

11a

Notice how the structure of this effect graph echos the original abstract syntax
tree for map. In the effect graph we can see two branches, headed by e9 and
e14, corresponding to the two alternatives of the original case expression. We
can also see the recursive call via e3. map applies itself, so the effect of map
includes the effect of map. Similarly, map references itself, so the closure of
map includes the closure of map.

However, although recursion in the function’s definition serves a useful purpose,
the fact that its effect and closure is also recursive is not exploited by our
analysis. We need to retain the set of effects caused by an application of map,
that is, the effects reachable from e3, but this information would not be lost if
we substituted ⊥ for its recursive occurrence. Finally, the constraints e3 ⊒ e3

and c1 ⊒ map : c1 are trivially satisfied, so can be discarded. This leaves us
with:

smap = (sx
e11a c11−→ s11)

e2 c1−→ List r5 sx
e3 c2−→ List r6 s11

⊲ e3 ⊒ Read r5 ∨ e6 ∨ e8 ∨ e9 ∨ e14 ∨ e8a

∨ e10 ∨ e11 ∨ e9a ∨ e12 ∨ e13 ∨ e11a

∨ e15 ∨ e18 ∨ ⊥ ∨ e16 ∨ e17 ∨ e2

, c2 ⊒ map : c1 ∨ f : c11

3.4.5 Cleaning

There are still a large number of effect and closure variables in our type that
don’t provide any useful information. For example, e6 is the effect of evaluating
the variable Nil , but evaluating a variable doesn’t have a visible effect. Also
consider e9, the effect of evaluating Cons (f x). The evaluation of (f x) itself has
the effect e11, which is interesting because it depends on the function argument
passed to map, but the partial application of Cons to the result does not have
an effect, so is boring. In any event, the constraint on e3 already contains e11,
so it doesn’t need to include e9 as well.

We define boring effect and closure variables to be the ones that are completely
unconstrained. Such variables are not mentioned in the type environment, in a

3.4. GENERALISATION 165

parameter of the type being generalised, or on the left of an (in)equality. If a
variable is in the type environment then it depends on a definition in a higher
scope of the program. In this case, a more interesting type may be unified into
the variable later in the inference process. If it is mentioned in a parameter
type then it may be different for each application of the function. If it is on
the left of an (in)equality then it depends on other types. For our example,
e11a, c11, e3 and c2 are interesting, and the rest are boring. We substitute ⊥
for boring variables, then use the definition of ∨:

smap = (sx
e11a c11−→ s11) −→ List r5 sx

e3 c2−→ List r6 s11

⊲ e3 ⊒ Read r5 ∨ e11a

, c2 ⊒ f : c11

3.4.6 Quantification

We can now add quantifiers to our type and create a type scheme. There are
several restrictions as to what variables can be quantified, which we will recall
in a moment, but for this example none apply. After quantification we have:

smap = ∀sx s11 r5 r6 e11a c11 e3 c2

. (sx
e11a c11−→ s11) −→ List r5 sx

e3 c2−→ List r6 s11

⊲ e3 ⊒ Read r5 ∨ e11a

, c2 ⊒ f : c11

We will also rewrite the quantified variables to use more familiar names:

smap = ∀a b r1 r2 e1 e2 c1 c2

. (a
e1 c1−→ b) −→ List r1 a

e2 c2−→ List r2 b

⊲ e2 ⊒ Read r1 ∨ e1

, c2 ⊒ f : c1

At this stage we could also apply the the effect masking rules from §2.3.7 and
§2.5.2, though none apply in this example. Once generalisation is complete we
update the smap equivalence class in the global graph so it contains this new
type scheme.

The non-generalisable variables

There are several reasons why a particular type variable may not be permitted
to be generalised. All but the first were discussed in the previous chapter.

Don’t generalise:

1. Variables free in the type environment. This is the standard restriction for
Hindley-Milner type systems [Mil78, DM82]. However, as we’re perform-
ing type inference instead of type checking, the real type environment is
not close at hand. We instead use the method discussed in §3.6 to deter-
mine the value variables that are free in the binding whose type is being
generalised. The types of these variables can be determined from the
graph, and we hold their free type variables monomorphic. This achieves
the same result.

166 CHAPTER 3. TYPE INFERENCE

2. Dangerous type variables, which were discussed in §2.5.1 and §3.2.3. These
are variables that appear free under type constructors whose regions
are constrained to be mutable. Dangerous type variables must be held
monomorphic to avoid the problem with polymorphic update that was
discussed in §2.1.

3. Material region variables, which were discussed in §2.5.4. Material regions
correspond with objects that are shared between all uses of the variable
whose type is being generalised. These must also be held monomorphic.

3.4.7 Late constraints and post-inference checking

The fact that mutability constraints influence what type variables are quantified
introduces a slight complication into the inference process. The type inferencer
might quantify a type variable while assuming that a particular region is con-
stant, but later discover a mutability constraint that indicates it shouldn’t have
quantified. We refer to such mutability constraints as late constraints. The
following example demonstrates the problem:

lateFun ()
= do ref = newRef id

f = λ(). readRef ref
writeRef ref succ
f () “oh noes”

with

id :: ∀a. a→ a

succ :: ∀r1 r2 e1. Int r1
e1−→ Int r2

⊲ e1 ⊒ Read r1

newRef :: ∀a r1. a→ Ref r1 a

readRef :: ∀a r1 e1.Ref r1 a
e1−→ a

⊲ e1 ⊒ Read r1

writeRef :: ∀a r1 e1 c1.Ref r1 a→ a
e1 c1−→ ()

⊲ e1 ⊒Write r1

, c1 ⊒ x : Ref r1 a
, Mutable r1

From the types of newRef , readRef and writeRef , we see that an object of type
Ref r1 a is only treated as mutable if we actually apply the writeRef function to
it. If we only ever read a reference, then there is no need to mark it as mutable
or restrict the type of the contained value. However, with our lateFun example,
the type inferencer will only discover that ref is mutable when it processes
the third line of the do-expression. If it considers the bindings in-order, and
generalises the type of ref while assuming constancy, it will get:

ref :: ∀a.Ref r1 (a→ a)

3.4. GENERALISATION 167

with this scheme, the type of f becomes:

f :: ∀b e1 c1. ()
e1 c1−→ b→ b

⊲ e1 ⊒ Read r1

, c1 ⊒ ref : Ref r1 (b→ b)

Later, the inferencer will discover the call to writeRef , which places a mutability
constraint on r1 and invalidates the previous type scheme for ref . Note that it
is not safe to simply change the scheme for ref to a less general one “on the
fly”, because the old scheme was instantiated when inferring the type of f , and
now that type is wrong as well.

A simple solution is to wait until type inference is complete, re-generalise the
types of all let-bound variables, and compare the resulting type schemes against
the previously inferred ones. Waiting until inference is complete ensures that all
the available mutability constraints have made their way into the type graph. If
a newly generalised scheme is different to its original version, then a mutability
constraint must have been added to the graph after the original was created.
This is reported as an error.

This solution has the disadvantage of requiring the types of polymorphic mu-
table objects to be given explicitly as signatures. For example, although the
following program will not cause a problem at runtime, it will be marked as
erroneous:

falseLate
= do ref = newRef id

writeRef ref succ
(readRef ref) 5

Adding a type signature ensures that the inferencer will treat ref as being
mutable when its type is generalised:

fixedLate ′

= do ref :: Ref r1 (a→ a)⊲Mutable r1

ref = newRef id
writeRef ref succ
(readRef ref) 5

An alternate solution would be to re-generalise the type of ref at each instan-
tiation point. If the newly generalised scheme was different to the previous
one, then we could backtrack to original definition and re-type the subsequent
program using the new scheme. We could also perform backtracking in a coarse
grained manner, by doing the post-inference check as before, but re-typing the
whole program if any schemes were different. However, backtracking adds extra
complexity, and we expect programs like the above to be rare, so we use the
simpler non-backtracking solution in our implementation.

The BitC compiler also checks for the late constraint problem [SSS08]. It does
not backtrack, but performs the check during type inference proper. It also
uses local heuristics to guess whether a particular variable is mutable, without
performing complete inference. Before generalising the type of a variable it
inspects how it is used later in the function. If the variable is updated locally,
its type is generalised using this information. This is possible in BitC because
the assignment operator := is baked into the language, instead of being defined
in the standard libraries.

168 CHAPTER 3. TYPE INFERENCE

3.5 Projections

This section gives the formal definition of type directed projections, which were
introduced in §2.7. Syntactically, projections are a clean extension of the lan-
guage described in §3.2. Type inference for projections is a mostly-orthogonal
extension to the system discussed thus far, though the handling of mutually
recursive definitions requires careful ordering of the constraints considered by
the inferencer. This section introduces type inference for projections, though
we defer further discussion of mutual recursion and constraint ordering to §3.6.

Declarations

decl → . . .

| project T with l ∼ x (projection declaration)

Terms

t → . . .
| t1 ⊙ l (projection)
| t1 ⊙ (l : c) (annotated projection)

Decl-Proj

Γ ⊢decl project T with l ∼ x :: l
T
∼ x

Proj

Γ ⊢ t :: T r τ ⊲ Ω ; e2 Γ ⊢ x :: T r τ
e3 c4−→ τ ′ ⊲ Ω ; ⊥ l

T
∼ x ∈ Γ

Γ ⊢ t⊙ l :: τ ′ ⊲ Ω ; e2 ∨ e3

t

3

4(l : c)

2

1

s3 = PROJ l s2

s3 = s2
e3 c4−→ s1

e1 ⊒ e2 ∨ e3

(projection) { s1 = PROJ l s2, s2 = T s }
⊢⊢ { s1 = INST sv, s2 = T s }

where l
T
∼ v

A projection dictionary project T with l ∼ x is associated with a particular
type constructor T . The dictionary lists the names of the instance functions
x that should be used to implement each of the projections labeled l. Recall
that the projection operator binds more tightly than function application, so
t1 t2 ⊙ field should be read as t1 (t2 ⊙ field) The annotated projection t1⊙(l : c)
contains a closure variable c, and we will discuss how this is used in a moment.

The (Decl-Proj) rule introduces the bindings l
T
∼ x from the projection dictio-

nary into the type environment.

3.5. PROJECTIONS 169

The (Proj) rule says that to assign a type to the projection t ⊙ l, the expression
t must have a data type that includes an outer constructor T . There must be

a binding l
T
∼ x in the type environment showing which instance function x to

use to implement the projection. This instance function must take a value of
the object type T r ϕ and return a value of the result type τ ′. We name the
effect and closure of the instance function e3 and c4 respectively. Evaluation of
the expression t ⊙ l causes the instance function to be applied, so we have e3

in the rule’s conclusion.

In the list of constraints, s3 = PROJ l s2 says that we need to wait until the
type of s2 is known before we look up the instance function for l from the
corresponding projection dictionary. When this is done we can bind the type of
the instance function to s3. The constraint s3 = s2

e3 c4−→ s1 requires the instance
function to have an appropriate type. The last constraint gives the effect of the
whole node.

We now discuss the meaning of the closure variable on an annotated projection.
Firstly, recall that when we generate constraints for λ abstractions, we need
to know what free variables lie in their bodies. For example, if we have an
annotated expression:

λ(x : sx). f x

With labeled syntax tree:

λ(:)x sx

0

1

@
2 3

f x

This would lead to the following constraints:

LAMBDA {x}

s0 = sx
e1 c0−→ s1

c0 ⊒ f : sf

s2 = sf

s3 = sx

The closure term f : sf is present because f is free in the body of the abstrac-
tion. At runtime f might be represented as a thunk which contains pointers to
shared objects, and we use the closure term to account for this.

Now, suppose that the body of the abstraction contained a projection instead:

λ(x : sx). x ⊙ l

Until we have inferred the type of x we won’t know what instance function
will be called, or what the closure of the body should be. If, during constraint
reduction, we discover that the projection x ⊙ l resolves to g x, then this tells us
that it is g that will be called at runtime. However, when generating constraints
we can’t use c0 ⊒ g : sg as the closure constraint for the surrounding lambda

170 CHAPTER 3. TYPE INFERENCE

abstraction, because we won’t know about g until the appropriate constraints
are solved. Instead, we annotate the projection label with a fresh variable c1,
and use this as a place holder until the type of x becomes known. Once the
type of x is known we can determine what instance function will be called, and
then bind its closure to c1.

λ(x : sx). x ⊙ (l : c1)

The final task is to modify the constraint generation rules for lambda abstrac-
tion to take account of these new closure variables:

Abs-Proj

λ(:)x sx

2t

1

2

LAMBDA {x}

s1 = sx
e2 c1−→ s2

c1 ⊒ y0 : sy0 ∨ y1 : sy1 ∨ . . .
∨ l0 : c0 ∨ l1 : c1 ∨ . . .

where yn ← fv(t2) \ x

ln : cn ← closAnnot(t2)

SLURP(t2)

The function closAnnot(t2) simply collects the (l : c) pairs from all expressions
of the form t⊙ (l : c) present in term t2.

3.5.1 Example: vectors

The following program defines data types for vectors of two and three dimen-
sions, along with projections that calculate their magnitudes. We have taken
the liberty of using floating point numbers and infix operators without formally
introducing them first, and have elided some insignificant details.

data Vec2 :: %→ ∗ where

MkVec2 :: ∀r1 c1.Float r1 → Float r1
c1−→ Vec2 r1

⊲ c1 ⊒ x : r1

data Vec3 :: %→ ∗ where
MkVec3 :: . . .

project Vec2 with magnitude ∼ vec2 magnitude

project Vec3 with magnitude ∼ vec3 magnitude

let vec2 magnitude = λv. case v of MkVec2 x y → sqrt (x ∗ x + y ∗ y)

vec3 magnitude = . . .

vec = MkVec2 2.0 3.0

in vec⊙magnitude

Note that our full source language contains sugar that allows us to combine the
projection dictionaries with the first two let-bindings. See §2.7 for a description
of this.

The point of this example is that the type inferencer will not be able to decide
whether to use vec2 magnitude or vec3 magnitude to implement vec⊙magnitude
until it determines whether vec is a Vec2 or a Vec3 .

3.5. PROJECTIONS 171

Here are the constraints for vec⊙magnitude, with s1 being the type of the
whole expression:

s3 = PROJ magnitude s2

s3 = s2
e1a c1a−→ s1

e1 = e2 ∨ e1a

s2 = INST svec

Adding these to the type graph yields the following equivalence classes:

*1 ∼ s3 = PROJ magnitude s2, s2
e1a c1a−→ s1

*2 ∼ s2 = INST svec

!1 ∼ e1 ⊒ e2 ∨ e1a

Note the dependency between the constraint on s3 and on s2. Before we can
crush PROJ magnitude s2, we must wait until s2 has been resolved to a concrete
type. This requires that we first infer the type scheme for vec. Suppose this
works out as:

vec :: Vec2 r0

Instantiating this scheme (which is a no-op in this case) and adding it to the
type graph gives:

*1 ∼ s3 = PROJ magnitude s2, s2
e1a c1a−→ s1

*2 ∼ s2 = Vec2 r0

!1 ∼ e1 ⊒ e2 ∨ e1a

Now that we have a constructor for s2, we can lookup what projection instance
function to use for magnitude from the corresponding dictionary:

project Vec2 with magnitude ∼ vec2 magnitude

This tells us that magnitude for Vec2 types is implemented by vec2 magnitude,
so we can crush the PROJ constraint into an appropriate INST:

*1 ∼ s3 = INST vec2 magnitude, s2
e1a c1a−→ s1

*2 ∼ s2 = Vec2 r0

!1 ∼ e1 ⊒ e2 ∨ e1a

Now we must wait until we have a type scheme for vec2 magnitude. Suppose
this scheme works out to be:

vec2 magnitude

:: ∀r1 r2 e1. Vec2 r1
e1−→ Float r2

⊲ e1 ⊒ Read r1

172 CHAPTER 3. TYPE INFERENCE

Instantiating this scheme and adding it to the graph gives:

*1 ∼ s3 = s5
e4−→ s6, s2

e1a c1a−→ s1

*2 ∼ s2 = Vec2 r0

*3 ∼ s5 = Vec2 r4

*4 ∼ s6 = Float r5

!1 ∼ e1 ⊒ e2 ∨ e1a

!2 ∼ e4 ⊒ Read r4

Performing the unification in *1 gives:

*1 ∼ s3 = s2
e4 c1a−→ s1

*2 ∼ s2, s5 = Vec2 r0

*4 ∼ s1, s6 = Float r5

%1 ∼ r0, r4

!1 ∼ e1 ⊒ e2 ∨ e1a

!2 ∼ e4, e1a ⊒ Read r4

Inspecting the constraint on s1 shows that the overall type of our program is
Float r5.

There are a few things we should note before moving on. Firstly, the type of a
projection instance function is not required to be the same as another bound to
the same label. For example, we could have defined vec3 magnitude to return an
Int or a List , instead of a Float like with vec2 magnitude. Secondly, in general
the inferencer must alternate between instantiating type schemes, performing
unifications, and crushing projection constraints. Each PROJ that is crushed
results in an INST constraint being added to the graph. This INST constraint
may need to be resolved, and some unifications performed, before we have the
type that another PROJ constraint is waiting for. This behaviour is common
when the program includes chains of projections such as:

exp⊙field1 ⊙field2 ⊙field3

The projections in this expression must be handled from left to right. We first
determine the type of exp, use that to determine what instance function to use
for field1 , add its type to the graph, and unify the resulting constraints. We
can then use the solution to determine which instance function to use for field2 ,
add its type to the graph, unify constraints, and so on.

In DDC we implement this behavior by maintaining several work sets of equiv-
alence class identifiers. We have a set for classes that contain types needing to
be unified; a set for projection constraints needing to be resolved, and a set for
type class constraints needing to be crushed. The inferencer alternates between
the various sets, working on one until nothing more can be done, then switch-
ing to another. If this process gets stuck, with one of the sets non-empty and
no further progress possible, then this is a symptom of having an ambiguous
projection constraint in the graph.

3.5. PROJECTIONS 173

3.5.2 Ambiguous projections and type signatures

Ambiguous projections are those that operate on values whose types are not
constrained to include an outer constructor. For example, the projection in the
following code is ambiguous:

let f = λx. x⊙magnitude
in . . .

The abstract syntax tree and constraints for the f binding are:

λ(:)x sx

.

3 4

2

=

f

1

let

x magnitude

LET x
sf = s1

s1 = sx
e2 c1−→ s2

s4 = PROJ magnitude s3

s4 = s3
e4 c5−→ s2

e2 ⊒ e3 ∨ e4

s3 = sx

Adding these constraints to the type graph gives:

*1 ∼ sf , s1 = sx
e2 c1−→ s2

*2 ∼ s4 = PROJ magnitude sx, sx
e4 c5−→ s2

*3 ∼ sx, s3 = ⊥
!1 ∼ e2 ⊒ e3 ∨ e4

Note that *2 contains two separate type constraints, PROJ magnitude sx and
sx

e5 c5−→ s2. As we have no type constructor for sx we cannot crush the PROJ
constraint, and as we cannot represent both the PROJ and function constraints
as a normal form type we cannot make a type scheme for f . We can proceed
no further, and in this situation our implementation reports an ambiguous
projection error.

In future work we plan to investigate the possibility of assigning f a type such
as the following:

f :: ∀a b e1 c1. a
e1 c1−→ b

⊲ HasProj magnitude a (a
e1 c1−→ b)

In this type, the constraint HasProj magnitude a (a
e1 c1−→ b) says that a can

be any type that supports a projection magnitude whose instance function has
type (a

e1 c1−→ b). Such constraints are discussed in [LL05], and provide some
aspects of a true record system [Rem94].

For now, the programmer can fix ambiguous projections by supplying a type
signature that constrains the type being projected. Importantly, they only
need to supply enough information to allow the projection to be resolved. For
example, the programmer could write:

let f :: Vec2 → Float
f = λx. x⊙magnitude

in . . .

174 CHAPTER 3. TYPE INFERENCE

This signature does not contain quantifiers, region variables, or effect and clo-
sure information. The source desugarer uses the kinds of Vec2 , Float , and
the function constructor to determine that this information is missing. It then
inserts fresh type variables in the appropriate positions:

f :: Vec2 r6
e7 c8−→ Float r9

This type is treated as a new constraint, and is added directly to the type graph:

*1 ∼ sf , s1 = sx
e2 c1−→ s2, s5

e7 c8−→ s6

*2 ∼ s4 = PROJ magnitude sx, sx
e5 c5−→ s2

*3 ∼ sx, s3 = ⊥
*4 ∼ s5 = Vec2 r6

*5 ∼ s6 = Float r9

!1 ∼ e1 ⊒ e3 ∨ e4

The new constraint gives us enough information to resolve the projection in *2,
though we need to perform the unification in *1 to expose it:

*1 ∼ sf , s1 = sx
e2 c1−→ s2

*2 ∼ s4 = PROJ magnitude sx, sx
e5 c5−→ s2

*3 ∼ sx, s3, s5 = Vec2 r6

*5 ∼ s2, s6 = Float r9

!1 ∼ e1 ⊒ e3 ∨ e4

!2 ∼ e2, e7 ⊒ ⊥
%1 ∼ c1, c8 ⊒ ⊥

Unifying the two function types in *1 has caused sx and s5 to be identified.
This in turn induces unification of classes *3 and *4. Class *3 now contains
Vec2 r6, which includes the constructor that the PROJ constraint in *2 was
waiting for. We can now lookup the type of the appropriate magnitude instance
function from the Vec2 projection dictionary, crush the PROJ constraint to an
INST of this type, and complete the inference process as per the example in
§3.5.1

3.6. CONSTRAINT ORDERING AND MUTUAL RECURSION 175

3.6 Constraint ordering and mutual recursion

Consider the following program:

project Int where
even i = if i == 0 thenTrue else (i− 1)⊙ odd
odd i = if i == 0 thenFalse else (i− 1)⊙ even

main () = print 5⊙ odd

This program defines two projections, then uses the second to determine whether
5 is odd. Now, although we can plainly see that these projection functions are
mutually recursive, the inference algorithm does not know this a priori. This
point should be clearer when we desugar the program into the simplified lan-
guage described in §3.2

project Int :: %→ ∗ with
even ∼ int even
odd ∼ int odd

let main = λx. case x of Unit → print 5⊙ odd
int even = λi1. if i1 == 0 then True else (i1 − 1)⊙ odd
int odd = λi2. if i2 == 0 then False else (i2 − 1)⊙ even

in . . .

In this program we have introduced new bindings for each of the projection
functions, expressed function bindings with λ-abstractions, added the kind sig-
nature for Int , and renamed the i variables so they have unique names. We
have also taken the liberty of moving the binding for main to the front of the
list, as it will make for a better example. Note that the projection labels even
and odd are not specific to the int even and int odd instance functions. We
could have easily reused these labels in projection dictionaries for other types,
so the inferencer really does need to infer that (i1 − 1) is an Int before it can
decide that (i1 − 1)⊙ even is implemented by int even.

This section gives an overview of how our type inference algorithm handles
programs such as this one, that define recursive projections. The main point is
that we must compute the binding dependency graph on the fly while we are
inferring the types of expressions. We must also reorder bindings on the fly, so
that the type of int odd will be known when we come to resolve the 5 ⊙ odd
projection in the main function.

The constraint tree for this program is shown on the following page, leaving
out the constraints that aren’t important to the discussion.

176 CHAPTER 3. TYPE INFERENCE

GROUP {main, int even, int odd}
LET main

LAMBDA x
s1 = PROJ odd s2

s2 = Int r1

. . .
LET int even

LAMBDA i1
s3 = INST i1
. . .
s4 = PROJ odd s5

s5 = . . .
LET int odd

LAMBDA i2
s6 = INST i2
. . .
s7 = PROJ even s8

s8 = . . .

For the remainder of this section we will draw our constraint trees graphically,
as it makes the presentation clearer. The above tree becomes:

= = = = = = =

LAM LAM

s

PROJ INST
i

s

PROJ ... INST PROJ ...

=

GROUP { main, int_odd, int_even}

LET LET LETmain

LAM x i i

s s s s s s s1 2 3 4 5 s6 7 8
i evenodd

int_even int_odd

odd r 2
s8

1

2

1 1
5

2

Int

During type inference we perform a left to right, depth first traversal over the
constraint tree. As we do this we delete constraints from the tree and add
them to the type graph. We start with a full tree and an empty type graph,
and finish with a empty tree and a full graph. Internal nodes such as GROUP,
LET and LAM organise the type constraints and represent the structure of
the original program. We refer to the sub-tree headed by a GROUP, LET or
LAM node as a GROUP, LET or LAM branch. Once we have added all the
constraints in a particular branch to the type graph we can delete the head-
node as well. Deleting a LET node also triggers type generalisation, which
we will discuss in a moment. Firstly, note that we when we arrive at an INST
node, we can determine how the contained variable was bound by examining its
parents. In the above example, we see that i1 is lambda bound. In our practical
implementation we maintain a stack of internal nodes for this purpose, pushing
them onto the stack as we enter a branch, and popping as we leave.

As mentioned earlier, deletion of a LET node invokes generalisation of the type
of the contained variable. However, recall from §3.4 that before we generalise
a type from the graph we must pack it into flat form, and this is only possible
when the graph is in normal form. The graph is in normal form when no

3.6. CONSTRAINT ORDERING AND MUTUAL RECURSION 177

further reduction rules apply, and when it contains no unresolved PROJ or
INST constraints. These two requirements ensure that we have solved all the
constraints from a particular binding before we generalise its type.

When performing type inference on a program whose bindings are not in depen-
dency order, or whose bindings are mutually recursive, there will be situations
when we wish to leave a LET branch but the graph is not in normal form.
This will be because we have no type scheme to satisfy an INST node, or no
type constructor to guide the reduction of a PROJ node. In these situations we
remove the offending node from the graph and place it back in the tree, then
restructure the tree so that further progress can be made before we need to per-
form the generalisation. This gives us time to infer the required type scheme,
or determine the required type constructor, before we have to generalise the
original type.

Both of these situations arise when typing the even/odd example on the previous
page, so we will work through it now. We use • to indicate where we are in the
traversal, and ε to represent an empty branch. After descending into the right
most branch and adding the s1 and s2 constraints we arrive at:

= = = = = =

LAM LAM

INST
i

s

PROJ ... INST PROJ ...

GROUP { main, int_odd, int_even}

LET LET LETmain

i i

s s s s s3 4 5 s6 7 8
i evenodd

int_even int_odd

2
s8

1

1
5

2
ε

The type graph is:

*1 ∼ s1 = PROJ odd s2

*2 ∼ s2 = Int r1

Now, we would like to leave the current branch and generalise the type of main,
but before we do that we must reduce the graph to normal form. This requires
that we resolve the projection constraint in *1. The projection constraint refers
to s2, which is constrained to be Int r1. This means that we can look up the
instance function to use from the corresponding dictionary. Here is the Int
dictionary again:

project Int :: %→ ∗ with
even ∼ int even
odd ∼ int odd

The odd instance for integers is int odd , so we can crush the PROJ node in the
graph into an INST of this function’s type. This yields:

*1 ∼ s1 = INST int odd
*2 ∼ s2 = Int r1

Now, we cannot actually instantiate the type for int odd yet because we haven’t
inferred it. Instead, we will defer further work on the type of main and focus

178 CHAPTER 3. TYPE INFERENCE

on int odd instead. We do this by removing the s1 = INST int odd constraint
from the graph and placing it back in the tree. We then move the LET int odd
branch under LET main, so we can work on that before returning to generalise
the type of main:

= = = = = =

LAM LAM

INST
i

s

PROJ ... INST PROJ ...

GROUP { main, int_odd, int_even}

LET LET

i i

s s s s3 4 5 s6 7 8
i evenodd

int_even int_odd

2
s8

1

1
5

2

LET

ε

s

=

INST
int_odd

s1

main

Note that the s1 = INST int odd constraint is placed after the LET branch, so
that the type for int odd will have been generalised before we need to instantiate
it. Completing the move yields:

s3 s4 s5
i1

INST

s5

PROJ
odd

i1LAM

LET int_evenmainLET

LET int_odd

LAM i2

s6 INST
i2

PROJ
even
s8

s s8 ...

= = =

s1 INST
int_odd

=

GROUP { main, int_odd, int_even}

...

= ==

7

We can now continue our depth first traversal into the int odd branch, adding
the constraints for s6, s7 and s8 to the type graph. Assuming s8 resolves to the
type Int r2, we end up with the following graph:

*1 ∼ s1 = ⊥
*2 ∼ s2 = Int r1

*3 ∼ s6 = si2

*4 ∼ s7 = PROJ even s8

*5 ∼ s8 = Int r2

Note that in our constraint tree, the constraint s6 = INST i2 appears under the
LAM i2 node, which tells us that i2 is lambda bound. As we do not support
higher rank types, lambda bound variables do not have polytypes. This means
that we do not have to instantiate them, and we can simplify the s6 constraint
to s6 = si2 .

3.6. CONSTRAINT ORDERING AND MUTUAL RECURSION 179

After the constraints from the int odd branch are added, our constraint tree is:

mainLET

LET int_odd

s4 s5

s5

PROJ
odd

i1LAM

LET int_even

i1
s3

s1

GROUP { main, int_odd, int_even}

ε

...

= ==

INST

=

INST
int_odd

And the graph is still:

*1 ∼ s1 = ⊥
*2 ∼ s2 = Int r1

*3 ∼ s6 = si2

*4 ∼ s7 = PROJ even s8

*5 ∼ s8 = Int r2

Now, the • shows that we are still inside the LET int odd branch. However,
we cannot leave it yet and generalise the type of int odd because the graph
contains an unresolved PROJ constraint, so is not in normal form. As before,
this constraint refers to s8 which an Int , so we can lookup the projection in-
stance function from the corresponding dictionary and crush PROJ even s8 to
INST int even. Note that crushing a PROJ constraint in this way corresponds
to discovering part of the program’s call tree, because we now know that int odd
calls int even. The new graph is:

*1 ∼ s1 = ⊥
*2 ∼ s2 = Int r1

*3 ∼ s6 = si2

*4 ∼ s7 = INST int even
*5 ∼ s8 = Int r2

We still cannot generalise the type of int odd since it is not in normal form. As
before, we will remove the offending s7 = INST int even constraint from the
graph and place it back in the tree, then reorganise the tree so we can make
further progress. This gives:

mainLET

LET int_odd

i1LAM

LET int_even

s4

s5

PROJ
oddi1

s3

= =

s5

=

...

s1

GROUP { main, int_odd, int_even}

=

INSTs2

=

INST

int_even

INST
int_odd

180 CHAPTER 3. TYPE INFERENCE

mainLET

LET int_odd

i1LAM

LET int_even

s4

s5

PROJ
oddi1

s3

= =

s5

=

...

s1

GROUP { main, int_odd, int_even}

=

INSTs2

=

INST

int_even

INST
int_odd

As before, we can continue our traversal by descending into the left of the tree,
and adding the constraints for s3, s4 and s5 to the graph. Once this is done we
have:

mainLET

LET int_odd

LET int_even
s1

GROUP { main, int_odd, int_even}

=

INSTs2ε int_even

=

INST
int_odd

After crushing the s4 = PROJ odd s5 constraint to s4 = INST int odd the
type graph becomes:

*1 ∼ s1 = ⊥
*2 ∼ s2 = Int r1

*3 ∼ s6 = si2

*4 ∼ s7 = ⊥
*5 ∼ s8 = Int r8

*6 ∼ s3 = si1

*7 ∼ s4 = INST int odd
*8 ∼ s5 = Int r5

Note that at this point, we have discovered that int odd and int even are mu-
tually recursive. This becomes clear when we place s4 = INST int odd back
in the tree:

mainLET

LET int_odd

LET int_even
s1

GROUP { main, int_odd, int_even}

=

=

s INST4

INST

=

s2

INST

int_even

int_odd

int_odd

3.6. CONSTRAINT ORDERING AND MUTUAL RECURSION 181

In this tree, the fact that the INST int odd constraint appears under LET int even
tells us that the binding for int even references int odd , likewise, int odd refer-
ences int even. As with Haskell [Jon99], in the absence of polymorphic recursion
we type mutually recursive bindings using monotypes for the bound variables.
This allows us to rewrite the s4 = INST int odd and s2 = INST int even
constraints to s4 = sint odd and s2 = sint even . These can be added directly to
the graph without needing to instantiate type schemes for int odd or int even.
Note that in this example we have elided the majority of the constraints from
the program. In practice, after adding the two constraints s4 = sint odd and
s2 = sint even we will need to perform unifications and other reductions to
return it to normal form.

Finally, when leaving the LET int even and LET int odd branches, we must
wait until we are outside all the branches of a binding group before we generalise
their types. This ensures that all constraints from all bindings in the group have
been processed, and that we treat the group as a single unit.

3.6.1 Comparison with Helium. 2002
Heeren, Hage, Swierstra.

There are many degrees of freedom to the order in which constraints are pro-
cessed. If a program contains multiple type errors, then solving constraints in a
different order affects which errors are encountered first. For all other programs,
changing the order should not affect the substance of the solution.

However, there is one overriding restriction. Before the type of a let-bound
variable can be generalised into a type scheme, all the constraints from the
right of the binding must have been added to the graph. If we fail to do this
then the resulting scheme may be instantiated at several different types before
we encounter a constraint that would have prevented part of it from being
generalised.

We handle this restriction by expressing the type constraints as a tree. Each
let-binding corresponds to a branch in the tree, and during our traversal we
use the structure of the tree to ensure that constraints from sub-branches are
added to the graph before the type of the binding is generalised. In contrast,
in the Helium [HHS03, HHS02] compiler, the type constraints fed to the solver
have a flat structure, and the requirement to process constraints from the right
of a let-binding before generalising the type of the bound variable is handled in
a different way.

Helium uses a constraint of the following form:

τ1 ≤M τ2

This constraint says that τ1 is obtained by first generalising τ2 with respect to
the set of monomorphic variables M , and then instantiating the resulting type
scheme. The restriction is enforced by requiring that all constraints involving
type variables that are present in τ2, but cannot appear in M , are processed
first. This requirement ensures that the form of τ2 cannot change once we
make the type scheme. We feel that this is a more elegant solution than our
own method of dynamically reordering constraint trees.

On the other hand we are unsure whether it is possible to adapt Helium’s
algorithm to deal with the mutually recursive projection definitions considered

182 CHAPTER 3. TYPE INFERENCE

in this section. In [HHS03], the rules given to extract type constraints from
the source program require the calculation of the binding dependency graph,
and we have seen that this is not possible with recursive projections. It would
seem that to calculate the binding dependency graph on the fly, we must retain
information about which projections appear in which bindings. It may well be
possible to construct a hybrid of Helium’s system and our own, but we have
not looked into it in detail.

We also wonder about the run time cost of determining which of the τ1 ≤M τ2

constraints in the graph are ready to be processed. Using a flat constraint tree
provides more freedom to choose the order in which constraints are considered,
but using a hierarchical one provides more direction. Chapter 4 of [Hee05]
contains further discussion of the pros and cons of several related approaches.

Besides the restriction outlined above, it is also important that enough type
information makes it into the graph before we are forced to resolve projection
constraints. In our current implementation, a particular type is only generalised
the first time we need to instantiate it. If there are no bound occurrences of a
variable in the module being compiled, which is common for library code, then
its type is generalised after all other information is added to the graph. We
are unsure whether our chosen approach admits edge cases where a particular
projection constraint “should have” been resolved, but wasn’t. This would
create spurious ambiguous projection errors, but we have not noticed any so
far.

3.6.2 Comparison with other constraint systems.
Pottier, Sulzmann, Odersky, Wehr et al

It is folklore that type inference can be treated as a constraint satisfaction
problem. In fact, we feel that a two-phase process of extracting type constraints
and then solving them is more natural than the “standard” syntax directed
algorithms W and M [Mil78, LY98]. These algorithms achieve the same result,
but combine the two phases into a single pass over the source code. The pseudo-
code for these algorithms is short and dense, but arguably harder to understand
if the reader is not already familiar with them.

Although constraint based inference for simple, monomorphic types is straight-
forward, complications arise when we add other features. In §3.6 we discussed
how the addition of type directed projections, combined with polymorphism
using type schemes, requires us to be mindful about the order in which the
constraints are handled.

In [Pot00] Pottier presents a system that includes subtyping, conditional con-
straints and row types. In [Pot95] he considers type inference for a language
including subtyping and recursively constrained types. Although these systems
use the same basic machinery as ours, namely sets of constraints and simplifi-
cation rules, their main focus is on managing subtyping relationships that we
do not have. Also, the system of [Pot95] is able to judge whether the constraint
set is consistent, meaning the program is well typed, but it does not actually
solve the constraints. In contrast, for DDC we need the complete solution, as
we use this information to annotate the program when converting between the
source and core languages.

In [SOW99] Sulzmann, Odersky and Wehr present HM(X), a general framework
for Hindley/Milner type systems with constraints. This system abstracts over

3.6. CONSTRAINT ORDERING AND MUTUAL RECURSION 183

the particular constraint domain being used, along with its reduction rules.
In [PR05] Pottier and Remy give a formal presentation of type inference for
HM(X). In this work the state of the constraint solver is expressed algebraically,
and the algorithm is given as a state rewriting system. The DDC type inferencer
can be seen as an extended instance of this system, though we only give a semi-
formal description of it in this thesis.

184 CHAPTER 3. TYPE INFERENCE

3.7 Type Classes

It is straightforward to add basic support for type class constraints to a graph
based inference algorithm. This includes support for “baked in” constraints
such as Mutable and Pure, as well as programmer defined constraints such as
Show and Eq .

The additions to the language are:

Declarations

decl → . . .
| class C a where x :: ϕ (type class declaration)

| instance C τ where x = t (type class instance)

Types

ϕ, τ , σ, ς
→ . . .
| ReadT τ | WriteT τ (effect constructors)

Constraints

χ → . . .

| C τ (value type classes)

| Shape τ τ ′ | LazyH τ

| ConstT τ | MutableT τ

| Const r | Mutable r (region classes)
| Lazy r | Direct r

| Pure σ (effect class)

| Empty ς (closure class)

The new declarations behave the same way as their Haskell counterparts. We
use C to represent the programmer defined type class constructors such as Show
and Eq . The meanings of Shape, ConstT and MutableT are discussed in §2.6.
The meanings of Lazy , LazyH and Direct were discussed in §2.3.12. Pure is
discussed in §2.3.9 and Empty is discussed in §2.5.6.

When performing inference we represent type class constraints as extra nodes
in the graph. For example, the type:

supdateInt = Int r1 → Int r2
e1 c1−→ ()

⊲ e1 ⊒ Read r2 ∨Write r1

, c1 ⊒ x : r1

, Mutable r1

Would be represented as:

*1 ∼ supdateInt = Int r1 → Int r2
e1 c1−→ ()

!1 ∼ e1 ⊒ Read r2 ∨Write r1

$1 ∼ c1 ⊒ x : r1

♦1 ∼ Mutable r1

3.7. TYPE CLASSES 185

In the type graph we use ♦ as an identifier for type class equivalence classes.2

Note that in ♦1 we have not used an = or ⊒ operator. Both of these operators
are binary and infix, but Mutable is unary and prefix. We store multi-parameter
type class constraints such as Shape in the same way.

Following on from the section on generalisation §3.4, when we trace a type
from the graph we must also include any type class constraints that reference
variables in the body of the type. For example, if we were to re-trace the type
of updateInt from the graph, we would need to include Mutable r1. In a real
implementation it would be a disaster if we had to inspect every equivalence
class in the graph to find all the appropriate constraints. In DDC we mitigate
this problem associating each value, region, effect and closure equivalence class,
with a set of type class equivalence classes that contain references to it.

Although the programmer defined type classes do not have super class con-
straints, there are implicit super class constraints on some of the built in ones.
We need to reduce these constraints when performing type inference, and the
rest of this section discusses how this is done.

3.7.1 Deep Read/Write

(deep read data) { s = Tκ a, e ⊒ ReadT s }
⊢⊢ { s = Tκ a, e ⊒ ReadT b ∨ Read r}

where b ∈ { b′ | b′ ← a, b′ :: ∗, b′ ∈ mv(∅, Tκ a) }
r ∈ { r′ | r′ ← a, r′ :: %, r′ ∈ mv(∅, Tκ a) }

A deep read effect such as ReadT a represents a read on any region variable
contained within the as-yet unknown type a. The ReadT constructor has kind
∗ → !, and the “T” in ReadT stands for “value type”. This distinguishes it
from the standard Read constructor that works on single regions.

When reducing a deep read on a data type T ϕ, we first separate the argument
variables a according to their kinds. Reads on region variables are expressed
with the Read constructor, and reads on value type variables are be expressed
with ReadT . Reads on effect and closure arguments can be safely discarded, as
there is no associated action at runtime.

It is only meaningful to read (or write) material variables, hence the clauses
b′ ∈ mv(∅, Tκ a) and r′ ∈ mv(∅, Tκ a). In these clauses, it is safe to use ∅ for
the constraint set. As mentioned in §3.2.4, the mv function expresses a simple
reachability analysis, but so does the (deep read data) reduction rule. The
appropriate read effects will be generated when we perform further reductions
on the resulting graph.

Deep writes are handled similarly to deep reads. Note that an implementa-
tion must be careful about applying these reduction rules when there are loops
through the value portion of the type graph. For example, if we had the fol-
lowing constraints:

{ s = List r s, e ⊒ ReadT s }

This graph cannot be reduced to normal form because each application of (deep
read data) to ReadT s generates Read r as well as another ReadT s effect.

2Perhaps the type theorist union should start a petition to introduce more synonyms for

“constraint”, and “class.”

186 CHAPTER 3. TYPE INFERENCE

(deep read fun) { s = τ1
σ ς
−→ τ2, e ⊒ ReadT s }

⊢⊢ { s = τ1
σ ς
−→ τ2, e ⊒ ⊥ }

The rule (deep read fun) shows that deep reads (and writes) on function types
can be removed from the graph. Function values do not contain material objects
that are capable of being updated.

3.7.2 Deep Mutable/Const

Deep mutability and constancy constraints are reduced in a similar way to deep
read and write effects.

(deep mutable) { s = T a, MutableT s }
⊢⊢ { s = T a, MutableT b, Mutable r }

where b ∈ { b′ | b′ ← a, b′ :: ∗, b′ ∈ mv(∅, Tκ a) }
r ∈ { r′ | r′ ← a, r′ :: %, r′ ∈ mv(∅, Tκ a) }

3.7.3 Purification

(purify) { e ⊒ Read r, Pure e }
⊢⊢ { e ⊒ Read r, Pure e, Const r}

(deep purify) { e ⊒ ReadT s, Pure e }
⊢⊢ { e ⊒ ReadT s, Pure e, ConstT s}

(purify trans) { e1 ⊒ e2, Pure e1 }
⊢⊢ { e1 ⊒ e2, Pure e1, Pure e2}

To purify a Read effect on a region r, we constrain that region to be constant by
adding Const r to the graph. Purification of deep reads is similar. As discussed
in §2.3.10, we choose to leave the original Read effect in the graph, though we
could equally remove it.

We must leave the Pure e constraint in the graph. If the equivalence class
containing e is unified with another, then these new effects need to be purified
as well.

For example, suppose we had the following constraint set:

(1)
{ s = a

e1−→ b, e1 ⊒ Read r1, Pure e1,

s = a
e2−→ b, e2 ⊒ Read r2, Mutable r2 }

If we were to set r1 constant while removing the Pure e1 constraint we would
get:

(2)
{ s = a

e1−→ b, e1 ⊒ Read r1,

s = a
e2−→ b, e2 ⊒ Read r2, Mutable r2,

Const r1 } (bad purify, 1)

3.7. TYPE CLASSES 187

Performing unification on s gives:

(3)
{ s = a

e1−→ b, e1 ⊒ Read r1,
e1 ⊒ Read r2, Mutable r2,

Const r1, e1 = e2 } (unify fun, 2)

Now, although we used to have a purity constraint on e1, this effect now in-
cludes a read of the mutable region r2. In addition, there is nothing left in the
constraint set to indicate that such an effect is in any way invalid. On the other
hand, if we were to take our original constraint set and perform the unification
first, then we would get:

(4)
{ s = a

e1−→ b, e1 ⊒ Read r1, Pure e1,
e1 ⊒ Read r2, Mutable r2,

e1 = e2 } (unify fun, 1)

Applying the bad purify rule to this new set yields:

(5)
{ s = a

e1−→ b, e1 ⊒ Read r1,
e1 ⊒ Read r2, Mutable r2,

e1 = e2, Const r1, Const r2 } (bad purify, 4)

In this case we have both Mutable r2 and Const r2 in the final constraint set,
which indicates a type error. Removing the purity constraint from the graph
has caused our reduction to be non-confluent.

3.7.4 Shape

(shape left) { s1 = Tκ a, Shape s1 s2 }

⊢⊢ { s1 = Tκ a, s2 = ϕ′ } ∪ addShape(∅, Tκ a, ϕ′)

where ϕ′ = freshen(∅, Tκ a)

(shape right) { s2 = Tκ a, Shape s1 s2 }

⊢⊢ { s2 = Tκ a, s1 = ϕ′ } ∪ addShape(∅, Tκ a, ϕ′)

where ϕ′ = freshen(∅, Tκ a)

freshen(SM , aκ)
| aκ ∈ SM and κ ∈ {∗, %} = a′κ fresh

freshen(SM , Tκ ϕ) = Tκ freshen(SM ∪ smv(∅, Tκ ϕ), ϕ)

freshen(SM , ϕ) = ϕ

addShape(SM , a∗, a′∗)
| a∗ ∈ SM and a∗ 6= a′∗ = { Shape2 a∗ a′∗ }

addShape(SM , Tκ ϕ, Tκ ϕ′) =
⋃

addShape(SM ∪ smv(∅, Tκ ϕ), ϕ, ϕ′)

addShape(SM , ϕ, ϕ′) = ∅

188 CHAPTER 3. TYPE INFERENCE

When reducing a constraint like Shape s1 s2, the choice of what rule to use
depends on whether we have a type constructor for s1 or s2. If we have a
constructor for s1, we can use this as a template to constrain the type of s2,
and vice versa. If we have a constructor for both s1 and s2, then it does not
matter which of the rules we use.

Example

We will use the FunThing type as an example. A FunThing can contain an
integer, a character, a function that takes an integer, or a thing of arbitrary
type.

data FunThing r1 r2 a1 a2 e1 c1

= FInt (Int r1)
| FChar (Char r2)

| FFun (Int r2
e1 c1−→ a1)

| FThing a2

Suppose we have constraints:

{ s1 = FunThing r1 r2 s2 s3 e1 c1

s2 = Int r3

s3 = Int r4

e1 ⊒ Read r2 ∨ Read r5

c1 ⊒ Int r5

Shape s1 s′1 }

As we have a constructor for s1 we can use the (shape left) rule. The material
variables of FunThing r1 r2 s2 s3 e1 c1 are:

mv(∅,FunThing r1 r2 s2 s3 e1 c1) = {r1, r2, a2}

Whereas the immaterial variables are:

iv(∅,FunThing r1 r2 s2 s3 e1 c1) = {r2, e1, c1, a1}

This means the strongly material variables are:

smv(∅,FunThing r1 r2 s2 s3 e1 c1) = {r1, a2}

Note that when reducing the Shape constraint, region variables that are only
reachable from the closure of a type, such as r5, are not counted as material.
Similarly to the example given in §2.6.5, the programmer cannot copy objects
in such regions, so we do not freshen the associated region variables. This is
achieved in part by passing ∅ as the first argument of freshen and addShape,
instead of the full set of constraints being reduced. This ensures that these
functions do not have information about the c1 constraint.

The alternative would be to freshen c1 as well, and create a new constraint
c′1 ⊒ Int r′5. We would also need to create a new version of the constraint
on e1, and ensure that this referred to the copied closure. Of course, actually
copying the objects in the closures of functions would require additional support
from the runtime system, so we have not considered it further.

Applying the freshen function to the type of s1 gives us the new type:

s′1 = FunThing r′1 r2 s2 s′3 e1 c1 with r′1, s
′
3 fresh

3.8. ERROR REPORTING 189

Applying the addShape function provides Shape constraints on the components
of this type:

addShape(∅, FunThing r1 r2 s2 s3 e1 c1, FunThing r′1 r2 s2 s′3 e1 c1)

≡ addShape(SM , r1, r′1) ∪ addShape(SM , r2, r2)
∪ addShape(SM , s2, s2) ∪ addShape(SM , s3, s′3)
∪ addShape(SM , e1, e1) ∪ addShape(SM , c1, c1)

where SM = {r1, s3}

≡ Shape s3 s′3

So our final result is:

{ s1 = FunThing r1 r2 s2 s3 e1 c1

s2 = Int r3

s3 = Int r4

e1 ⊒ Read r2 ∨ Read r5

c1 ⊒ Int r5

s′1 = FunThing r′1 r2 s2 s′3 e1 c1

Shape s3 s′3 }

Note that in the new type FunThing r′1 r2 s2 s′3 e1 c1, the fresh variables r′1
and s′3, correspond to just the components of the underlying FunThing values
that can potentially be coppied. r2 and s2 are not freshened because these
variables are used in the parameter and return types of an embedded function
value. Likewise e1 and c1 are not freshened because they do not represent data
objects.

3.8 Error Reporting

In a constraint based inference algorithm, the natural way to include error
reporting is to add justifications to each of the constraints extracted from the
source program. These justifications can be maintained as the graph is reduced,
and if we encounter an error we can use the justification to determine why the
conflicting constraints were added to the graph. This approach is outlined
by Wand [Wan86], and elaborated by Duggan [DB96], Stuckey [SSW04] and
Heeren [Hee05]. We will give an overview of the general ideas, and focus on
how we manage the constraints that are specific to Disciple.

Consider the succDelay program from §2.3.9

succDelay ()
= do x = 5

y = succ @ x
. . .
x := 23
. . .

This program has a purity conflict. The binding for y creates a suspension that
will read the value of x, but later in the program this value is updated. This
implies that the value of y will depend on when it is forced, which is a program
behaviour we take as being invalid.

190 CHAPTER 3. TYPE INFERENCE

Here are the syntax trees for the three statements in the do-block, after desug-
aring:

=

x 5

@

@y

x

succsuspend1

@

23@

updateInt x

1
=

2 7

8

109

1163

4 5

After extracting type constraints and solving them, we are left with a type
graph containing the following equivalence classes:

*1 ∼ sx, a, s1 s6, s10 = Int r1

*2 ∼ sy, b, s2 = Int r6

*3 ∼ s3 = sx
e2 c2−→ sy

*4 ∼ s4 = s5
e3 c3−→ s3

*5 ∼ s5 = sx
e5 c5−→ sy

. . .
!1 ∼ e5, e6 ⊒ Read r1

!2 ∼ e7, e9 ⊒ Read r10 ∨ Read r1

. . .
♦1 ∼ Pure e5

♦2 ∼ Const r1

♦3 ∼ Mutable r1

This graph contains an obvious type error. ♦2 contains a constraint that re-
quires r1 to be constant, while ♦3 contains a constraint that requires it to be
mutable. As discussed in §4.1, we cannot convert this example to a valid core
program because there is no way to construct witnesses for both of these con-
straints at once. Unfortunately, the reason for this error is not so obvious. It
would be unhelpful for a compiler to simply report that it “cannot create core
witnesses”, or that “Const r1 conflicts with Mutable r1”. Neither of these mes-
sages help us determine what part of the program caused the error, or suggest
how we might resolve it.

3.8.1 Constraint justifications

As mentioned previously, we track the source of type errors by attaching justi-
fications to each of the constraints from the program. For example:

s4u = s5
e3 c3−→ s3 | i1

s4d = INST ssuspend | i2

s4u = s4d | i3

s5 = INST ssucc | i4

s9 = INST supdateInt | i5

i1 = IApp 3 suspend succ
i2 = IVar 3 suspend
i3 = IUseDef 3 ∅

3.8. ERROR REPORTING 191

i4 = IVar 3 succ
i5 = IVar 5 updateInt
. . .

We now write value type constraints as s = τ | i, where s is a type variable, τ is
a type, and i is a source information variable. In this presentation we will refer
to source information as just “information”. We extend region, effect, closure
and type class constraints in a similar way. Information variables are bound
to information expressions in separate constraints. Information expressions are
built with information constructors such as IApp and IVar .

We give information constructors informal, descriptive kinds:

IApp :: num→ exp→ exp→ info
IVar :: num→ var→ info
IUseDef :: num→ Set info→ info

IApp takes a line number and two expressions. It produces information that says
a particular constraint is due to the application of these two expressions, on that
line of the source program. IVar produces information that says a constraint is
due to the use of a particular variable. IUseDef produces information that says
a constraint is due to the fact that the definition of a variable must match its
use. The first argument of IUseDef is a line number as before, but the second
argument is a set of other information expressions. We will see how this works
in a moment.

We now discuss how to record source information in the type graph represen-
tation. For constraints involving a constructor, we can take the information
variable from the constraint, and use it to annotate the constructor as it is
placed into an equivalence class. When performing an instantiation due to an
INST constraint, the information variable on the INST constructor is propa-
gated to all the new constructors created during the instantiation. For example,
after adding the above constraints to the type graph and performing the instan-
tiations we get:

*1 ∼ s4u = (s5
e3 c3−→ s3)

i1

*2 ∼ s4d = (s41
e4d c4d−→ s42)

i2

*3 ∼ s41 = (a
e41 c41−→ b)i2

*4 ∼ s42 = (a
e42 c42−→ b)i2

!1 ∼ e5 ⊒ (Read r1)
i2

♦1 ∼ (Pure e41)
i2

♦3 ∼ (Mutable r2)
i4

◦1 ∼ i1 = IApp 3 suspend succ
. . .

Note that we have used ◦ to identify the equivalence classes that hold source
information expressions. For a constraint of the form s4u = s4d | i3, assuming
that s4u and s4d are not already in the same class, adding this constraint to the
graph may result in types being unified.

192 CHAPTER 3. TYPE INFERENCE

As we wish to track the reason for this unification, we modify the reduction
rule for unification so that it combines the information about the types being
unified:

(unify fun info) { s1 = s2 | i1,

s1 = a1
e1 c1−→ b1 | i2, s2 = a2

e2 c2−→ b2 | i3
i1 = IUseDef n ∅

}

⊢⊢ { s1 = s2 | i1,

s1 = a1
e1 c1−→ b1 | i4

a1 = a2 | i4, b1 = b2 | i4
e1 = e2 | i4, c1 = c2 | i4
i1 = IUseDef n ∅
i4 = IUseDef n {i2, i3}

}

The rule for unification of data types is similar. The new information constraint
i4 = IUseDef n {i2, i3} records why the value, effect and closure constraints
in the conclusion of the rule were added to the graph. It also contains the
information variables from both types that were unified. Returning to our
example, we use this new unification rule to add the constraint s4u = s4d | i3
to the type graph:

*1 ∼ s4d, s4u = (s5
e3 c3−→ s3)

i6

*3 ∼ s41, s5 = (a
e41 c41−→ b)i2

*4 ∼ s42 = (a
e42 c42−→ b)i2

◦1 ∼ i1 = IApp 3 suspend succ
◦2 ∼ i2 = IVar 3 suspend
◦6 ∼ i6 = IUseDef 3 {i1, i2}

. . .

Unfortunately, although the set representation contains full information about
why a particular constraint is present, in our type graph representation some
of this information is lost. Since we attach source information to constructors
only, we have no way of adding a constraint like s1 = s2 | i1 to an empty graph
without losing the information variable i1. For example, doing so yields:

*1 ∼ s1, s2 = ⊥

On the left of the = we have the list of variables in this equivalence class,
with the canconical name s1 appearing first. This list represents a substitution,
where all occurrences of s2 in the graph should be replaced by s1. We have
recorded this bare fact, but have lost the reason why such a substitution should
take place. For this reason we will stick with the constraint set representation
for the rest of this section.

3.8. ERROR REPORTING 193

3.8.2 Tracking purity errors

Returning to the succDelay example from §3.8, we can track the source of the
purity error by modifying the reduction rules for purity constraints:

(purify info) { e1 ⊒ Read r1 | i1, Pure e1 | i2 }

⊢⊢ { e1 ⊒ Read r1 | i1, Pure e1 | i2,
i3 = IPurify r1 i1 i2, Const r1 | i3 }

(purify trans info) { e1 ⊒ e2 | i1, Pure e1 | i2}

⊢⊢ { e1 ⊒ e2 | i1, Pure e1 | i2,
i3 = IPurifyTrans e1 i2, Pure e2 | i3 }

The (purify info) rule is an extension of (purify) from §3.7. The resulting
Const r1 constraint is now tagged with an information variable i3. The con-
straint i3 = IPurify r1 i1 i2 says that Const r1 arose from the purification of
a read effect on region r1. It also includes the information variables from the
associated effect and purity constraints. We modify the (deep purify) rule in a
similar manner.

The (purify trans info) rule extends (purify trans) from §3.7. The resulting
Pure e2 constraint is tagged with a variable i3, and the information con-
straint i3 = IPurifyTrans e1 i2 records the variables in the premise of the
rule. IPurifyTrans constraints can be used by the compiler to find the original
source of a purity constraint. For example, consider the following set:

{ e1 ⊒ e2 | i1,
e2 ⊒ e3 | i2,
e3 ⊒ Read r1 | i3, i3 = IVar 3 succ,
Pure e1 | i4, i4 = IVar 3 suspend ,
Mutable r1 | i5, i5 = IVar 5 updateInt }

This constraint set contains a latent purity conflict, as the Pure constraint on
e1 will lead to a Const constraint on r1 when it is reduced. After reduction we
have:

{ e1 ⊒ e2 | i1,
e2 ⊒ e3 | i2,
e3 ⊒ Read r1 | i3, i3 = IVar 3 succ,
Pure e1 | i4, i4 = IVar 3 suspend ,
Pure e2 | i6, i6 = IPurifyTrans e1 i4
Pure e3 | i7, i7 = IPurifyTrans e2 i6
Const r1 | i8, i8 = IPurify r1 i3 i7
Mutable r1 | i5, i5 = IVar 5 updateInt }

This set contains an obvious type error. In fact, we have two separate symp-
toms. The first symptom is that r1 is constrained to be both mutable and
constant. The source of the mutability constraint can be obtained directly
from the information constraint on i5. The source of the constancy constraint
can be obtained by tracing up the chain of IPurifyTrans constraints to reach i4,

194 CHAPTER 3. TYPE INFERENCE

which tells us that it arose due to the use of suspend at line 3 in the program.
The second symptom is that e3 is constrained to be pure, but e3 includes a read
effect on a mutable region, which is not pure. This sort of error arises from
a three way interaction between the function reading the region, the function
writing to it, and the use of suspend. DDC reports the source location of all
three function calls.

The following page shows the error message obtained when compiling succDelay .
This message gives the exact reason for the error, though does not suggest how
to fix it. In future work we plan to adapt the techniques described in [HJSA02]
to estimate which expression in the program is most at fault, and suggest a
solution. For example, suppose the program contains several expressions that
update a particular object, but only one occurrence of a function that reads
it being suspended. In this case it is likely that the program is based around
destructive update, and that the suspension is “more wrong” than the mutabil-
ity of the object. The compiler could then suggest that the offending function
application is evaluated strictly, instead of being suspended, or that the object
is copied beforehand.

./test/Error/Purity/PurifyReadWrite1 /Main.ds :9:23

Cannot purify Read effect on Mutable region.

A purity constraint on a Read effect requires the

region it acts on to be Const , and it cannot be

Mutable at the same time.

the use of: succ

with effect: !Read %r1

at: ./Main.ds :9:18

is being purified by

the use of: suspend1

at: ./Main.ds :9:23

which conflicts with

constraint: Mutable %r1

from the use of: (:=)

at: ./Main.ds :10:16

Chapter 4

Core Language

Our core language is based on System-F, and includes a witness passing mech-
anism similar to one in System-Fc [SCPJD07] which is used in GHC. Our lan-
guage is typed, and these types are used as both an internal sanity check, and
to guide code optimisations. This thesis discusses a few optimisations, though
we do not offer any new ones. What we present is a framework whereby op-
timisations previously reserved for pure languages can be applied to ones that
include side effects and mutability polymorphism.

With regard to optimisation, transforms that do not change the order of func-
tion applications, and do not modify the sharing properties of data, are equally
applicable to both pure and impure languages. For example, the case-elimination
transform from [dMS95] is effect agnostic. Inlining function definitions into their
call sites also does not present a problem, provided the function arguments are
in normal form. This restriction prevents the duplication of computations at
runtime, and is also used in pure languages such as GHC [PJS98]. On the other
hand, we need effect information to perform the let-floating transform, as it
changes the order of bindings. We also need information about the mutability
of data to guide optimisations that have the potential to increase data sharing,
such as the full laziness transform.

In this chapter we present the main features of our core language, discuss how
to use the type information to perform optimisation, then compare our system
with other work. We also give highlights of the proof of soundness, though the
bulk of the proof is deferred to the appendix.

195

196 CHAPTER 4. CORE LANGUAGE

4.1 Constraints and evidence

4.1.1 Witness passing

Consider the Haskell function pairEq which tests if the two elements of a pair
are equal:

pairEq :: ∀a. Eq a⇒ (a, a)→ Bool
pairEq (x, y) = x == y

In the type signature, the constraint Eq a restricts the types that a can be
instantiated with to just those which support equality. This requirement arises
because we have used (==) to compare two values of type a.

As well as being a type constraint, a Haskell compiler such as GHC would treat
Eq a as the type of an extra parameter to pairEq . In this case, the parameter
will include an appropriate function to compare the two elements of the pair.
During compilation, the compiler will detect applications of pairEq and add an
extra argument appropriate to the type it is called at. For example, a GHC style
translation of pairEq to its core language [HHPJW96] would yield something
similar to:

pairEq
= Λ a : ∗.

λ comp : (a→ a→ Bool).
λ pair : (a, a).
case pair of

(x, y)→ comp x y

while an application of this function in the source language:

pairEq (2, 3)

would be translated to:

pairEq Int primIntEq (Pair Int 2 3)

where primIntEq is the primitive equality function on integers.

Returning to the translation of pairEq , the extra parameter comp binds evidence
[Jon92] that type a really does support the equality operation – and there is no
better evidence than the function which performs it.

With this in mind, suppose that we were only interested in the fact that pairEq
requires a to support equality, rather than how to actually evaluate this function
at runtime. In the above translation, we managed our evidence at the value
level, by explicitly passing around a comparison function. Alternatively, we
could manage it at the type level:

pairEq
= Λ a : ∗.

Λ w : Eq a.
λ pair : (a, a).
case pair of

(x, y)→ (==) w x y

4.1. CONSTRAINTS AND EVIDENCE 197

In this new translation the extra parameter, w, binds a proof term. One step
removed from value-level evidence, this type-level proof term serves as witness
that type a really does support equality, and this is recorded in its kind Eq a.
Now, the application of (==) to the elements of the pair requires type a to
support equality, and we satisfy this requirement by passing it our witness to
the fact.

How a particular calling function happens to manufacture its witnesses is of
no concern to pairEq , though they do need to enter the system somehow. In
the general case, a caller has three options: require the witness to be passed
in by an outer function, combine two witnesses into a third, or construct one
explicitly.

For this example, the third option suffices, and we can translate the call as:

pairEq Int (MkEq Int) (Pair Int 2 3)

The type level function MkEq is a witness constructor which takes a type, and
constructs a witness of kind Eq a. The expression (MkEq Int) is as an axiom
in our proof system, and it is valid to repeat it in the program when required.
In contrast, when we discuss witnesses of constancy and mutability in §4.1.3,
their construction will be restricted to certain places in the program, to ensure
soundness.

With this plumbing in place we can ensure our code is consistent with respect
to which types support equality (or mutability), simply by type checking it in
the usual way and then inspecting the way witnesses are constructed.

4.1.2 Dependent kinds

Dependent kinds are kinds that contain types, and in DDC we use them to
describe witness constructors. Dependent kinds were introduced by the Ed-
inburgh Logical Framework (LF) [AHM89] which uses them to encode logical
rules, and aspects of this framework are present in our core language. Types
are viewed as assertions about values, and kinds are viewed as assertions about
types.

Functions that take types to kinds are expressed with the Π binder, and we
apply such a function by substituting its argument for the bound variable, as
usual. For example:

∅ ⊢ MkEq :: Π(a : ∗). Eq a ∅ ⊢ Int :: ∗

∅ ⊢ MkEq Int :: Eq Int

Note that MkEq Int is a type term, and Eq Int is a kind term. In this chap-
ter we use the convention that type constructors starting with “Mk” produce
witnesses.

4.1.3 Witnesses of mutability

When optimising programs involving destructive update, it is of crucial impor-
tance that we do not lose track of which regions are mutable and which are
supposed to be constant. As mentioned earlier, DDC uses the witness passing

198 CHAPTER 4. CORE LANGUAGE

mechanism to keep track of this information, both to guide optimisations and
as a sanity check on the intermediate code.

Of primary concern are functions that destructively update objects in the store.
For example, ignoring effect and closure information, the updateInt function
from §2.3.2 has type:

updateInt :: ∀r1 r2. Mutable r1 ⇒ Int r1 → Int r2 → ()

Using ideas from §4.1.1, we treat the region constraint Mutable r1 as the kind
of an extra type parameter to this function. As we are now considering such
constraints to also be type parameters, we write them in prefix form with ⇒
instead of in postfix form with ⊲ as we did in the source language.

When we call updateInt we must pass a witness to the fact that r1 is indeed
mutable, and we now consider how these witnesses should be constructed. We
could perhaps construct them directly at call-sites as per our pairEq example.
However, unlike the type class situation, the various region class witnesses are
not necessarily compatible. For example, there is nothing wrong with MkEq a
and MkShow a existing in the same program, but if we have both MkMutable r1

and MkConst r1 then something has gone badly wrong.

If we were to allow region witnesses to be constructed anywhere in the interme-
diate code, then the compiler would need access to the whole program to ensure
that multiple incompatible witnesses are not constructed for the same region.
This would be impossible to implement with respect to separate compilation.

Instead, we require that all witnesses involving a particular region variable are
constructed at the same place in the code, namely the point where the variable
itself is introduced. As in [TBE+06], we use letregion to bring region variables
into scope. Here is an example program which creates and integer, updates it,
and then prints it to the console:

printMe :: ()→ ()
printMe
= λ().

letregion r1 with { w1 = MkMutable r1 } in
letregion r2 with { w2 = MkConst r2 } in
do

x = 5 r1

updateInt r1 r2 w1 x (23 r2)
printInt r1 x

Note that in the core language, literal values such as ‘5’ act as constructors that
take a region variable and allocate a new object. This gives x the type Int r1.
The only place the constructors MkMutable and MkConst may be used is in
the set of witness bindings associated with a letregion. In addition, we may
only create witnesses for the region variable being introduced, and we cannot
create witnesses for mutability and constancy in the same set. This ensures
that conflicting region witnesses cannot be created.

To call the updateInt function we must have a witness that r1 is mutable. Trying
to pass another witness, like the one bound to w2, would result in a type error.
With this encoding, it is easy to write code transformations that depend on
whether a particular region is mutable or constant. Such a transformation can
simply collect the set of region witnesses that are in scope while descending into
the abstract syntax tree. We will see an example of this in §4.4.5.

4.1. CONSTRAINTS AND EVIDENCE 199

4.1.4 Witnesses of purity

When translating a program which uses lazy evaluation to the core language,
we must also construct witnesses of purity. Recall from §2.3.9 that the type of
suspend is:

suspend :: ∀a b e1. Pure e1 ⇒ (a
e1−→ b)→ a→ b

suspend takes a function of type a
e1→ b, its argument of type a and builds a

thunk that represents the suspended function application. When the thunk is
forced, the function will be applied to its argument yielding a result of type b.
The Pure e1 constraint ensures that the function application being suspended
has no visible side effects, so the value of its result will not depend on when it
is forced.

We now consider how witnesses of purity are created in the core language.
Consider the following source program:

fun :: ∀a r1 r2 e1

. (Int r1
e1−→ a)→ Bool r2 → a

⊲ Pure e1, Const r2

fun f b
= do g x = if x then f 5 else f 23

suspend g b

fun causes its first parameter to be applied to either 5 or 23, depending on
whether its second is true or false. This is done by an auxiliary function, g,
and the application of this function is suspended. Because the application of g
is suspended it must be pure. Note that the purity of g relies on two separate
facts: that f is pure, and that x is constant.

Here is fun converted to the core language:

fun
= Λ a r1 r2 e1.

Λ (w1 : Pure e1).
Λ (w2 : Const r2).

λ (f : Int r1
e1−→ a).

λ (b : Bool r2).
do

g = λ(x : Bool r2). if x then f (5 r1) else f (23 r1)

suspend (MkPureJoin e1 (Read r2) w1 (MkPurify r2 w2))
g b

When we call suspend , the term (MkPureJoin e1 (Read r2) w1 (MkPurify r2 w2))
builds a witness to the fact that g is pure. Note that in this chapter we treat
suspend as a primitive, so we do not need applications for the argument and
return types, or the effect of the function. The typing rule for suspend takes
care of this parameterisation.

The witness to the purity of g is constructed from two simpler witnesses, one
showing that e1 is pure, and another showing that the read from r2 is pure.
The first is given to us by the calling function, and is bound to w1.

200 CHAPTER 4. CORE LANGUAGE

The second is constructed with the MkPurify witness constructor which has
kind:

MkPurify :: Π(r : %).Const r → Pure (Read r)

This kind encodes the rule that if a region is constant, then any reads from it
can be considered to be pure. When we apply MkPurify to r2, this variable is
substituted for both occurrences of r yielding:

(MkPurify r2) :: Const r2 → Pure (Read r2)

From the Λ-binding at the beginning of the function we have w2 :: Const r2,
so applying w2 as the final argument gives:

(MkPurify r2 w2) :: Pure (Read r2)

Which shows that a read from r2 is indeed pure.

What remains is to join the two simple witnesses together. This is done with
the MkPureJoin witness constructor which has kind:

MkPureJoin
:: Π(e1 :: !). Π(e2 :: !)
. Pure e1 → Pure e2 → Pure (e1 ∨ e2)

Applying the first two arguments gives:

(MkPureJoin e1 (Read r2))
:: Pure e1 → Pure (Read r2)→ Pure (e1 ∨ Read r2)

This says that if we have a witness that the effect e1 is pure and a witness that
the effect Read r2 is pure, the combination of these two effects is also pure.
Our final witness then becomes:

(MkPureJoin e1 (Read r2) w1 (MkPurify r2 w2))
:: Pure (e1 ∨ Read r2)

The effect e1∨Read r2 is exactly the effect of g, so the above witness is sufficient
to prove that we can safely suspend a call to it.

Note that we do not need witnesses of impurity. The fact that an expression
is pure gives us the capability to suspend its evaluation, and by constructing a
witness of purity we prove that this capability exists. In contrast, the fact that
an expression is impure is not a capability, because it does not allow us to do
anything “extra” with that expression.

4.2. SIMPLIFIED CORE LANGUAGE 201

4.2 Simplified core language

Symbol Classes

a, r, e, w → (type variable)
x → (value variable)
ρ → (region handles)
l → (store locations)

Super-kinds

ω ::= ♦ (super-kind of witness kinds)
| � (super-kind of non-witness kinds)
| κ→ ω (super-kind constructor)

Kinds

κ ::= Π(a : κ1). κ2 (dependent kind abstraction)
| κ ϕ (dependent kind application)
| ∗ | % | ! (atomic kinds)
| Const | Mutable | Pure (witness kind constructors)

Types

ϕ, τ , σ, δ, ∆
::= a (type variables)
| ∀(a : κ). τ (unbounded quantification)
| ϕ1 ϕ2 (type application)
| σ1 ∨ σ2 | ⊤ | ⊥ (least upper bound, top and bottom)
| () | (→) | Bool (value type constructors)
| Read | Write (effect type constructors)
| MkConst | MkMutable (region witness constructors)
| MkPure | MkPurify | MkPureJoin (effect witness constructors)
| mutable ϕ | const ϕ | pure σ (witnesses)

| ρ (region witness)

Terms

t ::= x (term variable)
| Λ(a : κ). t (type abstraction)
| t ϕ (type application)
| λ(x : τ). t (term abstraction)
| t1 t2 (term application)
| let x = t1 in t2 (let binding)

| letregion r with {wi = δi} in t (region introduction)
| if t1 then t2 else t3 (selection)
| True ϕ | False ϕ (boolean constructors)
| update δ t1 t2 (boolean update)
| suspend δ t1 t2 (suspension of function application)
| () (unit value)
| l (store location)

202 CHAPTER 4. CORE LANGUAGE

Derived Forms

κ1 → κ2
def
= Π(:: κ1). κ2

κ ⇒ τ
def
= ∀(:: κ). τ

do bindstmt ; t
def
= let mkBind(bindstmt) in t

where bindstmt → x = t | t

mkBind(x = t)
def
= x = t

mkBind(t)
def
= x = t, x fresh

The language described in this section is a cut-down version of the language
used in our real implementation. To simplify the presentation we have omitted
witnesses for direct and lazy regions, along with shape constraints. We have
also omitted bounded quantification, effect masking, algebraic data types and
case expressions.

Witnesses for direct and lazy regions are handled similarly to the ones for
mutable and constant regions. Shape constraints are handled similarly to purity
constraints. We will discuss bounded quantification in §4.3 and effect masking in
§4.3.1. We have included if-expressions as a simpler version of case-expressions,
and limit ourselves to booleans as the only updatable type.

Note also that closure information is not used in the core language, though we
discuss one of the benefits that would be gained from adding it in §4.3.2.

4.2.1 Symbol Classes

We use a to mean a type variable of arbitrary kind, r to mean a type variable
of region kind, e of effect kind, and w of witness kind. The distinction between
these symbols is for convenience only. We will use r when only a variable of
region kind makes sense, but an implementation must still check that r does
indeed have region kind with respect to the typing rules. We use x to mean a
value variable. Region handles ρ are terminal symbols that correspond to a set
of locations l, in the store.

Note that in a practical implementation it is desirable to attach type and kind
information to value and type variables. This allows us to reconstruct the
type or kind of an expression locally, without needing access to the information
attached to surrounding binders. In [JPJ08] this is known as the uniqueness of
types property.

4.2. SIMPLIFIED CORE LANGUAGE 203

4.2.2 Super-kinds

Starting at the top of the strata, we use super-kinds to classify witness kind
constructors, and to ensure that they are applied to the right kind of type. For
our three baked-in constructors we have the following super-kinds:

Const :: %→ ♦
Mutable :: %→ ♦
Pure :: ! → ♦

The first signature says that Const may only be applied to a region type, such
as with Const r1. Applying it to a type of differing kind would not make sense,
such as with Const (Read r1). We always use ♦, pronounced “prop”, as the
result of witness kind constructors. A signature such as Const :: % → ♦ can
be read “a witness classified by Const guarantees a property of a region”. We
use �, pronounced “box”, as the super-kind for kinds that do not encode such
a property, such as % and ∗ → ∗.

4.2.3 Kinds

As our system uses dependent kinds (types in kinds) we have the application
and abstraction forms Π(a :: κ1). κ2 and κ ϕ. The function kind κ1 → κ2 is
encoded as a sugared form of Π(:: κ1). κ2, where the underscore indicates that
the type variable is not present in κ2 and can be safely ignored. The symbols
∗, % and ! give the kinds of types, regions and effects respectively. The witness
kind constructors Const , Mutable and Pure are used to record the particular
program property that a type level witness guarantees.

4.2.4 Types

We use ϕ to range over all type-level information including value types, region
variables, effects and witnesses. When we wish to be more specific we use τ , σ
and δ to refer to value types, effect types and witness types respectively.

Note that ⊤ and ⊥ are effect types, and ∨ is only applied to effect types.

The types that are underlined, mutable ϕ, const ϕ, pure σ and ρ are
“operational” witnesses and do not appear in the source program. They are
constructed by the evaluation of a witness constructor, and we arrange the
typing rules so that their construction requires the heap to possess the associ-
ated property. The first three we have seen already, and we will discuss region
handles ρ in §4.2.7. We use ∆ to refer to witnesses.

Note that although our operational semantics manipulates witness terms, they
are not actually needed at runtime. We use witnesses to reason about how our
system works, and to track information about the program during optimisa-
tion, but they can be erased before code generation, along with all other type
information.

204 CHAPTER 4. CORE LANGUAGE

4.2.5 Terms

The majority of the term language is standard. Our let x = t1 in t2 term is not
recursive, but we include it to make the examples easier to write. The addition
of a letrec form can be done via fix in the usual way [Pie02, §11.11] but we do
not discuss it here. As per §2.3.3 we write our (non-monadic) do expressions
as a sugared version of let.

The term letregion r with {wi = δi} in t introduces a new region variable r
which is in scope in both the witness bindings wi = δi and the body t. The
witness bindings are used to set the properties of the region being created, and
introduce witnesses to those properties at the same time. If the region has no
specific properties then we include no bindings and write letregion r in t.

The use of letregion imposes some syntactic constraints on the program. These
ensure that conflicting region witnesses cannot be created:

Well-formedness of region witnesses: In the list of witness bindings wi = δi,
each δi must be either MkConst r or MkMutable r, and the list may not men-
tion both. In our full core language we also use the witnesses MkDirect r and
MkLazy r from §2.3.12, and these are also mutually exclusive.

Requiring such witnesses to be mutually exclusive rejects obviously broken
terms such as:

letregion r with {w1 = MkConst r, w2 = MkMutable r} in . . .

Uniqueness of region variables: In all terms letregion r with {wi = δi} in t
in the initial program, each bound region variable r must be distinct.

This constraint ensures that conflicting witnesses cannot be created in separate
letregion terms. For example:

letregion r with {w1 = MkConst r} in

letregion r with {w2 = MkMutable r} in . . .

In an implementation this is easily satisfied by giving variables unique identi-
fiers.

No fabricated region witnesses: Region witnesses constructors may not be
used in a type applied directly to a term.

This constraint ensures that conflicting witnesses cannot be created in other
parts of the program. For example:

letregion r with {w1 = MkConst r} in
. . . update (MkMutable r) t1 t2 . . .

Returning to the list of terms, True ϕ and False ϕ allocate a new boolean value
into region ϕ in the heap. We use the general symbol ϕ to represent the region
as it may be either a region variable r or a region witness ρ during evaluation.

The update function overwrites its first boolean argument with the value from
the second, and requires a witness that its first argument is in a mutable region.

The suspend function suspends the application of a function to an argument,
and requires a witness that the function is pure.

4.2. SIMPLIFIED CORE LANGUAGE 205

Store locations, l, are created during the evaluation of a True ϕ or False ϕ term.
They can be thought of as the abstract addresses where a particular boolean
object lies. When we manipulate store locations in the program we write them
as l, and treat them as (value level) witnesses that a particular store location
exists. Akin to region witnesses, store locations are not present in the initial
program.

4.2.6 Weak values and lazy evaluation

Values are terms of the form x, Λ(a : κ).t, λ(x : τ).t or l. We use v to refer
to terms that are values.

Additionally, weak values are all values, plus terms of the form suspend δ t1 t2.
The latter term is a thunk, which delays the evaluation of the embedded function
application. As such, t1 is the function, t2 is its argument, and δ is a witness
that the application is pure.

When we perform function application the function argument is reduced to a
weak value only. When reducing a let-expression, the right of the binding is
also reduced to a weak value only. We use v◦ to refer to weak values, and
imagine the circle in the superscript as a bubble that can carry an unapplied
function application through the reduction, sans evaluation. A weak value is
only forced when the surrounding expression demands its (strong) value. This
happens when the value is inspected by an if-expression, or is needed by a
primitive operator such as update.

Here is an example, where the term being reduced at each step is underlined.

let z = (λx. x) cat in

let f = suspend (λx.λy. x) (suspend (λx. x) dog)
in f z (1)

−→ let z = cat in
let f = suspend (λx.λy. x) (suspend (λx. x) dog)
in f z (2)

−→ let f = suspend (λx.λy. x) (suspend (λx. x) dog)
in f cat (3)

−→ (suspend (λx.λy. x) (suspend (λx. x) dog)) cat (4)

−→ (λy. suspend (λx. x) dog) cat (5)

−→ (suspend (λx. x) dog) (6)

−→ dog (7)

Note that in the step from (3) to (4), the right of the f binding is a thunk, so
it is substituted directly into the body of the let-expression. In the step from
(4) to (5), the function application demands the value of the function, so the
thunk that represents it is forced.

206 CHAPTER 4. CORE LANGUAGE

4.2.7 Stores, machine states and region handles

We model the store as a set of bindings of the form l
ρ
7→ V , where l is a location,

V is an atomic value, and ρ is the handle of the region the value is in. As we
have limited ourselves to boolean as the only updatable type, only booleans
values are present in the store. This means V can be either T or F for true or
false values respectively.

Stores may also contain elements of the form (mutable ρ) and (const ρ) which
specify the associated property of the region with that handle. Note the dis-
tinction between properties and witnesses. Properties exist in the store and
are not underlined, whereas witnesses exist in the expression being reduced,
and are underlined. To convert a witness to its equivalent property we use the
propOf function.

For example:

propOf(mutable ρ) ≡ mutable ρ

A machine state is a combination of a store and the term being evaluated. We
write machine states as H ; t, where H is the store (also known as the heap)
and t is the term. When the program starts evaluating the store is empty, so
we use ∅ ; t as the initial state.

Region witnesses are witnesses to the fact that a particular region is present in
the store, and is available to have things allocated into it. Note that the region
witnesses in the store are written ρ, but when used as a type-level witness they
are written with an underline, ρ. We use letregion to create a new region,
and the True and False constructors to allocate values into it. We must pass a
region handle to these constructors to prove that the required region exists for
them to allocate their value into.

For example, to create a new region and allocate a True value into it we could
start with the following machine state:

∅ ; letregion r with {w = MkConst r} in True r

To reduce the letregion, we create fresh region handle ρ, along with its witness
ρ and substitute the witness for all occurrences of the bound region variable
r. If there are witnesses to mutability or constancy attached, then we also
construct those and add them to the heap. For example:

∅ ; letregion r with {w = MkConst r} in True r
−→ ρ, const ρ ; True ρ

Note that the term True ρ is closed. If we had not substituted the witness ρ
for r then r would be free, which would violate the progress theorem we discuss
in §4.2.19.

4.2. SIMPLIFIED CORE LANGUAGE 207

To reduce the application of a data constructor, we create a fresh location in
the store and bind the associated value to it:

ρ, const ρ ; True ρ

−→ ρ, const ρ, l
ρ
7→ T ; l

Note again that the location in the store is written l, but in the term it is
written l. We can think of l as a value level witness, or evidence, that there is
an associated location in the store. This must be true, because the only way
can acquire an l is by performing an allocation.

Importantly, in a concrete implementation there is no need to actually record
properties like ρ and (const ρ) in the store. A term such as (const ρ) expresses
a property which the running program will honor, but we do not need privilege
bits, tables, locks, or other low level machinery to achieve this – it’s taken care
of statically by the type system. The fact a well typed program will not update
data in a constant region is part of the guarantee that it will not “go wrong”.

On the other hand, we do need to record bindings such as l
ρ
7→ T , because they

correspond to physical data in the store.

4.2.8 Region allocation versus lazy evaluation

Note that letregion example from the last section would be invalid in systems
such as [TB98] which use regions for memory management. Here it is again:

∅ ; letregion r with {w = MkConst r} in True r

This expression has type Bool r, which indicates that it returns a boolean value
in a region named r. The trouble is that the value will exist in the store after the
term has finished evaluating. Systems such as [TB98] use the syntactic scope of
the variable bound by a letregion to denote the lifetime of the associated
region. In these systems, once the body of a letregion term has finished
evaluating, the region named r, along with all the objects in it, is reclaimed by
the storage manager. The type checker ensures that the surrounding program
cannot hold references to objects in reclaimed regions, by requiring that the
region variable r is not free in the type environment, or the type of the return
value. This is an observation criteria similar to the one discussed in §2.4.5.

Unfortunately, this simple criteria only works for strict languages. In Disciple,
even though a value may have type Bool r, if it is a lazy value then it may be
represented by a thunk. This thunk can hold references to regions that are not
visible in its type, and if we were to deallocate those regions before forcing the
thunk, then the result would be undefined. This is discussed further in §5.2.4.

As we do not use regions for allocation, we do not enforce the observation
criteria mentioned above. However, this requires us to relax our notion of type
equality to account for the fact that region handles are substituted for region
variables during evaluation. We use the notion of region similarity, written
r ∼ ρ to represent this, and the mechanism is discussed in the coming sections.

208 CHAPTER 4. CORE LANGUAGE

4.2.9 Store typings

A store typing Σ is a set of elements of the form: ρ, mutable ρ, const ρ, l : τ ,
r ∼ ρ.

The store typing is an abstract model of the current state of the store, and the
properties we require it to have.

A store H is said to be well typed with respect to a store typing Σ, written
Σ ⊢ H, if every binding in the store has the type predicted by the store typing.
That is:

for all l
ρ
7→ V ∈ H we have

l : τ ∈ Σ and ρ ∈ Σ for some τ, ρ.

for all mutable ρ ∈ H we have mutable ρ ∈ Σ

for all const ρ ∈ H we have const ρ ∈ Σ

The dual of well typed is models, that is a store typing Σ is said to model a store
H, written Σ |= H, if all members in the store typing correspond to members
in the store:

for all l : τ ∈ Σ we have l
ρ
7→ V ∈ H

for all ρ ∈ Σ we have ρ ∈ H

for all mutable ρ ∈ Σ we have mutable ρ ∈ H

for all const ρ ∈ Σ we have const ρ ∈ H

4.2. SIMPLIFIED CORE LANGUAGE 209

4.2.10 Region similarity

The term r ∼ ρ, pronounced “r is similar to ρ”, is used to associate a region
handle with a region variable. This notation is used in our proof of soundness
to account for the fact that the types of terms change during evaluation.

Our typing rules use the following judgement form:

Γ | Σ ⊢ t :: τ ; σ

This is read: with type environment Γ and store typing Σ the term t has type
τ and its evaluation causes an effect σ. The type environment maps value
variables to types, and type variables to kinds.

When a letregion is reduced, the act of substituting the fresh region handle
for the region variable changes the type of the term. We can see this in the
following reduction from §4.2.7.

∅ ; letregion r with {w = MkConst r} in True r
−→ ρ, const ρ ; True ρ

Writing each position out on a separate line, the type judgement for the initial
term is:

∅
| ∅
⊢ letregion r with {w = MkConst r} in True r
:: Bool r
; ⊥

Note that the True r term gives rise to Bool r. However, when we reduce the
outer letregion, we end up with:

∅
| ρ, const ρ, r ∼ ρ

⊢ True ρ

:: Bool ρ

; ⊥

As the value term is now True ρ instead of True r, its type is Bool ρ instead
of Bool r. This is why we introduce the r ∼ ρ term into the store typing:
it records the mapping between region handles and the variables they were
substituted for. In our proof of soundness we require that when we reduce an
expression, the result has a type that is similar to the initial expression. That
is, it is identical up to the renaming of region handles to their associated region
variables. Note that the effect term can also change during reduction, with
region variables in effects like Read r being replaced by region handles.

210 CHAPTER 4. CORE LANGUAGE

4.2.11 Duplication of region variables during evaluation

Before moving on to discuss the formal typing rules, we point out a final prop-
erty of the store typing. There can be multiple region handles bound to a
particular region variable, that is, we can have both r ∼ ρ1 and r ∼ ρ2 in the
store typing, where ρ1 and ρ2 are distinct. This is caused when a term contain-
ing a letregion is duplicated during function application (or via a let-binding).

For example, starting with the statement:

f : . . .
| ∅

⊢ (λx : ()
⊥
−→ Bool r. f (x ()) (x ()))
(λy : (). letregion r in True r)

:: . . .
; ⊥

We substitute the argument for x, giving:

−→ f : . . .
| ∅
⊢ f ((λ(y : ()). letregion r in True r) ())

((λ(y : ()). letregion r in True r) ())
:: . . .
; ⊥

Note the duplication of r in the letregion term. When the first copy is reduced
it creates its own region handle:

∗
−→ f : . . .

| ρ1, r ∼ ρ1, l1
ρ1
7→ Bool ρ1

⊢ f l1 ((λ(y : ()). letregion r in True r) ())
:: . . .
; ⊥

Reducing the second copy produces a different one, ρ2:

∗
−→ f : . . .

| ρ1, r ∼ ρ1, l1
ρ1
7→ Bool ρ1

ρ2, r ∼ ρ2, l2
ρ2
7→ Bool ρ2

⊢ f l1 l2
:: . . .
; ⊥

This illustrates that the mapping between region variables and region handles is
not simply one-to-one, a point we must be mindful of in our proof of soundness.

4.2. SIMPLIFIED CORE LANGUAGE 211

4.2.12 Witness production

H ; δ δ′

H, const ρ ; MkConst ρ const ρ (EwConst)

H, mutable ρ ; MkMutable ρ mutable ρ (EwMutable)

H ; MkPure pure ⊥ (EwPure)

H ; MkPurify ρ (const ρ) pure (Read ρ) (EwPurify)

H ; δ1 δ′1

H ; MkPureJoin σ1 σ2 δ1 δ2 MkPureJoin σ1 σ2 δ′1 δ2
(EwPureJoin1)

H ; δ2 δ′2

H ; MkPureJoin σ1 σ2 δ1 δ2 MkPureJoin σ1 σ2 δ1 δ′2
(EwPureJoin2)

H ; MkPureJoin σ1 σ2 pure σ1 pure σ2 pure (σ1 ∨ σ2) (EwPureJoin3)

The judgement form H ; δ δ′ reads: with store H, type δ produces type δ′.

The first two rules, EwConst and EwMutable are used to sample a particular
property of the store. The idea is that a term like MkMutable ρ cannot be
reduced to a witness to that fact, unless the store really does support the
required property. When proving soundness, we show that such a term can
only be evaluated in a context that ensures the required property is true, so the
evaluation can always progress.

EwPure is a simple axiom allows us to construct a witness that the ⊥ effect is
pure.

EwPurify is used to produce a witness that a read from a region is pure from a
witness that the region is constant.

The final three rules, EwPureJoin1, EwPureJoin2 and EwPureJoin are used to
join two witnesses, showing the purity of seperate effects, into one that shows
the purity of both.

212 CHAPTER 4. CORE LANGUAGE

4.2.13 Transitions

H ; t −→ H′ ; t′

H ; t −→ H′ ; t′

H ; t ϕ −→ H′ ; t′ ϕ
(EvTApp1)

H ; (Λ(a :: κ). t) ϕ −→ H ; t[ϕ/a] (EvTAppAbs)

H ; t1 −→ H′ ; t′1

H ; t1 t2 −→ H′ ; t′1 t2
(EvApp1)

H ; t −→ H′ ; t′

H ; v t −→ H′ ; v t′
(EvApp2)

H ; (λ(x :: τ). t) v◦ −→ H ; t[v◦/x] (EvAppAbs)

H ; t1 −→ H′ ; t′1

H ; let x = t1 in t2 −→ H′ ; let x = t′1 in t2
(EvLet1)

H ; let x = v◦ in t −→ H ; t[v◦/x] (EvLet)

H, propOf(∆i) ; δi ∆i ρ fresh

H ; letregion r {wi = δi} in t

−→ H, ρ, propOf(∆i) ; t[∆i/wi][ρ/r]

(EvLetRegion)

H ; t1 −→ H′ ; t′1

H ; if t1 then t2 then t3 −→ H′ ; if t′1 then t2 then t3
(EvIf)

H, l
ρ
7→ T ; if l then t2 then t3 −→ H, l

ρ
7→ T ; t2 (EvIfThen)

H, l
ρ
7→ F ; if l then t2 then t3 −→ H, l

ρ
7→ F ; t3 (EvIfElse)

l fresh

H, ρ ; True ρ −→ H, ρ, l
ρ
7→ T ; l

(EvTrue)

l fresh

H, ρ ; False ρ −→ H, ρ, l
ρ
7→ F ; l

(EvFalse)

H ; t1 −→ H′ ; t′1

H ; update ∆ t1 t2 −→ H′ ; update ∆ t′1 t2
(EvUpdate1)

H ; t −→ H′ ; t′

H ; update ∆ v t −→ H′ ; update ∆ v t′
(EvUpdate2)

4.2. SIMPLIFIED CORE LANGUAGE 213

H, mutable ρ1, l1
ρ1
7→ V1, l2

ρ2
7→ V2 ; update mutable ρ1 l1 l2

−→ H, mutable ρ1, l1
ρ1
7→ V2, l2

ρ2
7→ V2 ; ()

(EvUpdate3)

H ; δ δ′

H ; suspend δ t1 t2 −→ H ; suspend δ′ t1 t2
(EvSuspend1)

H ; t1 −→ H ; t′1

H ; suspend ∆ t1 t2 −→ H ; suspend ∆ t′1 t2
(EvSuspend2)

H ; t −→ H ; t′

H ; suspend ∆ v t −→ H ; suspend ∆ v t′
(EvSuspend3)

H ; suspend pure σ1 (λ(x : τ). t) v◦ −→ H ; t[v◦/x] (EvSuspend4)

Rules EvTApp1 - EvLet are standard.

EvLetRegion creates a new region in the store, and substitutes its region handle
into the value term. By inspection of the witness production rules, the state-
ment H, propOf(∆i) ; δi ∆i is always true. It says that if we place the
required properties in the heap, we can then construct witnesses that sample
these properties.

EvIf - EvIfElse are standard.

EvTrue - EvFalse show how to allocate new boolean values into the store. Note
that to allocate a new value, the region it is to be allocated in must already
exist in the store. In the proof of progress we show that if a term contains a
region witness ρ then the corresponding region will always be present.

EvUpdate1 - EvUpdate3 show how to update a boolean value in the store.

EvSuspend1 - EvSuspend4 handle the suspension of function applications. In
EvSuspend1 we include the statement H ; δ δ′ to allow for the evaluation
of witness production rules, such as EwPureJoin. Note that in EvSuspend, the
effect term σ1 is only mentioned in the witness term. Our typing rules ensure
that σ1 actually represents the effect of evaluating the term t.

214 CHAPTER 4. CORE LANGUAGE

4.2.14 Super-kinds of kinds

Γ | Σ ⊢K κ :: ω

Γ | Σ ⊢K κ1 :: ω1 Γ, a : κ1 | Σ ⊢K κ2 :: ω2

Γ | Σ ⊢K Π(a : κ1). κ2 :: ω2
(KsAbs)

Γ | Σ ⊢K κ1 :: κ11 → ω Γ | Σ ⊢T ϕ :: κ11

Γ | Σ ⊢K κ1 ϕ :: ω
(KsApp)

κ ∈ {∗, %, ! }

Γ | Σ ⊢K κ :: �
(KsAtom)

Γ | Σ ⊢K Const :: %→ ♦
Γ | Σ ⊢K Mutable :: %→ ♦
Γ | Σ ⊢K Pure :: ! → ♦

The judgement form Γ | Σ ⊢K κ :: ω reads: with environment Γ and store
typing Σ, kind κ has super-kind ω.

KsAbs is the rule for the dependent kind abstraction. Note that a kind signature
such as %→ ∗ is also desugared to this form, resulting in Π(: %). ∗. Although
ω1 is only mentioned once in this rule, inclusion of the Γ |Σ ⊢K κ1 :: ω1 premise
ensures that the kind κ1 is well formed.

KsApp is the application rule for super-kinds. As we (thankfully) do not need
higher-order super kinds, the expression on the left of the super-kind arrow can
always be a (non-super) kind.

KsAtom says that the super-kind of atomic kinds is always �.

The last three rules give super-kinds for the witness kind constructors. These
allow us to check for malformed kind expressions such as Pure (Bool a) and
Const Read .

4.2. SIMPLIFIED CORE LANGUAGE 215

4.2.15 Kinds of types

Γ | Σ ⊢T ϕ :: κ

a : κ ∈ Γ

Γ | Σ ⊢T a :: κ
(KiVar)

Γ | Σ ⊢K κ1 :: ω1 Γ, a : κ1 | Σ ⊢T τ2 :: ∗

Γ | Σ ⊢T ∀(a : κ1). τ2 :: ∗
(KiAll)

Γ | Σ ⊢T ϕ1 :: Π(a : κ1). κ2 Γ | Σ ⊢T ϕ2 :: κ1

Γ | Σ ⊢T ϕ1 ϕ2 :: κ2[ϕ2/a]
(KiApp)

Γ | Σ ⊢T σ1 :: ! Γ | Σ ⊢T σ2 :: !

Γ | Σ ⊢T σ1 ∨ σ2 :: !
(KiJoin)

Γ | Σ ⊢T ⊤ :: ! (KiTop)

Γ | Σ ⊢T ⊥ :: ! (KiBot)

ρ ∈ Σ

Γ | Σ ⊢T ρ :: %
(KiHandle)

mutable ρ ∈ Σ

Γ | Σ ⊢T mutable ρ :: Mutable ρ
(KiMutable)

const ρ ∈ Σ

Γ | Σ ⊢T const ρ :: Const ρ
(KiConst)

Γ | Σ ⊢T pure ⊥ :: Pure ⊥ (KiPure)

const ρ ∈ Σ

Γ | Σ ⊢T pure (Read ρ) :: Pure (Read ρ)
(KiPurify)

Γ | Σ ⊢T pure σ1 :: Pure σ1

Γ | Σ ⊢T pure σ2 :: Pure σ2

Γ | Σ ⊢T pure (σ1 ∨ σ2) :: Pure (σ1 ∨ σ2)
(KiPureJoin)

216 CHAPTER 4. CORE LANGUAGE

Γ | Σ ⊢T () :: ∗
Γ | Σ ⊢T (→) :: ∗ → ∗ → !→ ∗
Γ | Σ ⊢T Bool :: %→ ∗
Γ | Σ ⊢T Read :: %→ !
Γ | Σ ⊢T Write :: %→ !
Γ | Σ ⊢T MkConst :: Π(r : %). Const r
Γ | Σ ⊢T MkMutable :: Π(r : %). Mutable r
Γ | Σ ⊢T MkPure :: Pure ⊥
Γ | Σ ⊢T MkPurify :: Π(r : %). Const r → Pure (Read r)
Γ | Σ ⊢T MkPureJoin :: Π(e1 : !). Π(e2 : !). Pure e1 → Pure e2 → Pure (e1 ∨ e2)

The judgement form Γ | Σ ⊢T ϕ :: κ reads: with environment Γ, and store
typing Σ, the type ϕ has kind κ.

KiVar is standard.

In KiAll is similar to KsAbs, with the premise Γ |Σ ⊢K κ1 :: ω1 ensuring that
κ1 is well formed.

KiApp is the rule for type-type application, and the substitution in the conclu-
sion handles our dependent kinds.

KiJoin ensures that both arguments are effects, as the join operator is only
defined for types of that kind.

KiTop and KiBot are straightforward.

KiHandle requires all region witnesses present in the term to be present in the
store typing. Provided the store typing models the store §4.2.9, this ensures that
if a region witness is present in the term, the corresponding region is also present
in the store. Likewise, KiMutable and KiConst ensure that the appropriate
witnesses are present in the store typing, so the store has the required property.

KiPure and KiPurify relate type-level witnesses of purity with the corresponding
kind-level description of that property.

KiPureJoin joins two separate witnesses, each showing the purity of an effect,
into a witness of purity of the sum of these effects. KiPureJoin was introduced
in §4.1.4.

The remaining rules give the kinds of our type constructors. We could have
arranged for these kinds to be present in the initial type environment, but
present them as separate rules due to their built-in nature.

4.2. SIMPLIFIED CORE LANGUAGE 217

4.2.16 Similarity

Σ ⊢T κ ∼ κ′

Σ ⊢T κ ∼ κ (SkmRefl)

Σ ⊢ ϕ1 ∼ ϕ2

Σ ⊢T κ ϕ1 ∼ κ ϕ2
(SkmApp)

Σ ⊢ ϕ ∼ ϕ′

r ∼ ρ ∈ Σ

Σ ⊢ r ∼ ρ
(SimHandle)

Σ ⊢ ϕ1 ∼ ϕ2 (SimRefl)

Σ ⊢ ϕ1 ∼ ϕ2 Σ ⊢ ϕ2 ∼ ϕ3

Σ ⊢ ϕ1 ∼ ϕ3
(SimTrans)

Σ ⊢ ϕ1 ∼ ϕ2

Σ ⊢ ϕ2 ∼ ϕ1
(SimCommute)

Σ ⊢T κ1 ∼ κ2 Σ ⊢ τ1 ∼ τ2

Σ ⊢ ∀(a : κ1). τ1 ∼ ∀(a : κ2). τ2
(SimAll)

Σ ⊢ ϕ11 ∼ ϕ21 Σ ⊢ ϕ21 ∼ ϕ22

Σ ⊢ ϕ11 ϕ12 ∼ ϕ21 ϕ22
(SimApp)

Σ ⊢ σ11 ∼ σ21 Σ ⊢ σ12 ∼ σ22

Σ ⊢ σ11 ∨ σ12 ∼ σ21 ∨ σ22
(SimJoin)

Σ ⊢ ϕ1 ∼ ϕ2

Σ ⊢ mutable ϕ1 ∼ mutable ϕ2
(SimMutable)

Σ ⊢ ϕ1 ∼ ϕ2

Σ ⊢ const ϕ1 ∼ const ϕ2
(SimConst)

Σ ⊢ ϕ1 ∼ ϕ2

Σ ⊢ pure ϕ1 ∼ pure ϕ2
(SimPure)

The judgement form Σ ⊢T κ ∼ κ′ reads: with store typing Σ, kind κ is similar
to kind κ′. We also write this as κ ∼Σ κ′. The judgement form Σ ⊢ ϕ ∼ ϕ′ is
similar.

The rules for similarity should be self explanatory. The only interesting one is
SimHandle. This rule says that region variables are similar to their associated
region handles, provided the mapping is present in the store typing.

218 CHAPTER 4. CORE LANGUAGE

4.2.17 Subsumption

Γ | Σ ⊢ σ ⊑ σ′

Σ ⊢ σ1 ∼ σ2

Γ | Σ ⊢ σ1 ⊑ σ2
(SubRefl)

Γ | Σ ⊢ σ1 ⊑ σ2 Γ | Σ ⊢ σ2 ⊑ σ3

Γ | Σ ⊢ σ1 ⊑ σ3
(SubTrans)

Γ | Σ ⊢T σ :: !

Γ | Σ ⊢ σ ⊑ ⊤
(SubTop)

Γ | Σ ⊢T σ :: !

Γ | Σ ⊢ ⊥ ⊑ σ
(SubBot)

Γ | Σ ⊢ σ1 ⊑ σ3 Γ | Σ ⊢ σ2 ⊑ σ3

Γ | Σ ⊢ σ1 ∨ σ2 ⊑ σ3
(SubJoin1)

Γ | Σ ⊢ σ1 ⊑ σ2 Γ | Σ ⊢T σ2 ∨ σ3 :: !

Γ | Σ ⊢ σ1 ⊑ σ2 ∨ σ3
(SubJoin2)

Γ | Σ ⊢T δ :: Pure σ

Γ | Σ ⊢ σ ⊑ ⊥
(SubPurify)

The judgement form Γ ⊢ σ ⊑ σ′ reads: with environment Γ and store typing
Σ, effect σ is subsumed by effect σ′.

All but the last of these rules are standard. Note that the type environment
Γ is not used in the premises of these rules. We will make use of it when we
discuss bounded quantification in §4.3.4.

SubPurify says that if we have a Pure σ witness, then we can treat σ as being
pure. This rule is the keystone of our system. It allow us to use the information
embodied in a witness to reason that the evaluation of an expression with a read
effect cannot interfere with others. The rule is used in the TySuspend case when
proving preservation of effects under evaluation in Appendix A.

4.2. SIMPLIFIED CORE LANGUAGE 219

4.2.18 Types of terms

Γ | Σ ⊢ t :: τ ; σ

x : τ ∈ Γ

Γ | Σ ⊢ x :: τ ; ⊥
(TyVar)

Γ, a : κ | Σ ⊢ t2 :: τ2 ; σ2

Γ | Σ ⊢ Λ(a : κ). t2 :: ∀(a : κ). τ2 ; σ2
(TyAbsT)

Γ | Σ ⊢ t1 :: ∀(a : κ11). ϕ12 ; σ1

Γ | Σ ⊢T ϕ2 :: κ2 κ11 ∼Σ κ2

Γ | Σ ⊢ t1 ϕ2 :: ϕ12[ϕ2/a] ; σ1[ϕ2/a]
(TyAppT)

Γ | Σ ⊢T τ1 :: ∗ Γ, x : τ1 | Σ ⊢ t :: τ2 ; σ

Γ | Σ ⊢ λ(x : τ1). t :: τ1
σ
→ τ2 ; ⊥

(TyAbs)

Γ | Σ ⊢ t2 :: τ2 ; σ2

Γ | Σ ⊢ t1 :: τ11
σ
→ τ12 ; σ1 τ11 ∼Σ τ2

Γ | Σ ⊢ t1 t2 :: τ12 ; σ1 ∨ σ2 ∨ σ
(TyApp)

Γ | Σ ⊢ t1 :: τ1 ; σ1

Γ, x : τ3 | Σ ⊢ t2 :: τ2 ; σ2 τ1 ∼Σ τ3

Γ | Σ ⊢ let x = t1 in t2 :: τ2 ; σ1 ∨ σ2
(TyLet)

δi well formed Γ | Σ ⊢K κi :: ♦

Γ, r : %, wi : κi | Σ ⊢ t :: τ ; σ Γ | Σ ⊢T δi :: κi

Γ | Σ ⊢ letregion r with {wi = δi} in t :: τ ; σ
(TyLetRegion)

Γ | Σ ⊢ t1 :: Bool ϕ ; σ1

Γ | Σ ⊢ t2 :: τ2 ; σ2

Γ | Σ ⊢ t3 :: τ3 ; σ3 τ2 ∼Σ τ3

Γ | Σ ⊢ if t1 then t2 else t3 :: τ2 ; σ1 ∨ σ2 ∨ σ3 ∨ Read ϕ
(TyIf)

Γ | Σ ⊢T ϕ :: %

Γ | Σ ⊢ True ϕ :: Bool ϕ ; ⊥
(TyTrue)

Γ | Σ ⊢T ϕ :: %

Γ | Σ ⊢ False ϕ :: Bool ϕ ; ⊥
(TyFalse)

Γ | Σ ⊢ t1 :: Bool ϕ1 ; σ1

Γ | Σ ⊢T δ :: Mutable ϕ1 Γ | Σ ⊢ t2 :: Bool ϕ2 ; σ2

Γ | Σ ⊢ update δ t1 t2 :: () ; σ1 ∨ σ2 ∨ Read ϕ2 ∨Write ϕ1
(TyUpdate)

220 CHAPTER 4. CORE LANGUAGE

τ11 ∼Σ τ2 Γ | Σ ⊢ t1 :: τ11
σ
→ τ12 ; σ1

Γ | Σ ⊢T δ :: Pure σ Γ | Σ ⊢ t2 :: τ2 ; σ2

Γ | Σ ⊢ suspend δ t1 t2 :: τ12 ; σ1 ∨ σ2
(TySuspend)

Γ | Σ ⊢ () :: () ; ⊥ (TyUnit)

l : τ ∈ Σ

Γ | Σ ⊢ l :: τ ; ⊥
(TyLoc)

The judgement form Γ | Σ ⊢ t :: τ ; σ reads: with environment Γ and store
typing Σ the term t has type τ and effect σ.

Many of these rules are standard, apart from the fact that we must use the
similarity judgements κ ∼Σ κ′ and ϕ ∼Σ ϕ′ when performing comparisons.

TyAppT handles type application. Note that the type parameter is substituted
into the resulting effect σ1[ϕ2/a] as well as the resulting type ϕ12[ϕ2/a]. This
ensures the effect term remains stable during evaluation. For example, if we
were to omit this substitution then we could construct the evaluation:

∅
| ∅
⊢ letregion r1 in

(Λ(r2 : %). if True r2 then . . . else . . .) r1

:: . . .
; Read r2

−→ ∅
| ρ1, r1 ∼ ρ1

⊢ (Λ(r2 : %). if True r2 then . . . else . . .) ρ1

:: . . .
; Read r2

−→ ∅
| ρ1, r1 ∼ ρ1

⊢ if True ρ1 then . . . else . . .

:: . . .
; Read ρ1

When the term in the second step is evaluated, its effect changes from Read r2

to Read ρ1. As there is no element in the store typing specifying that r2 and
ρ1 are similar, our preservation theorem would be violated.

4.2. SIMPLIFIED CORE LANGUAGE 221

4.2.19 Soundness of typing rules

Our proof of soundness is split into Progress and Preservation (subject reduc-
tion) theorems, in the usual way. The bulk of the proof is relegated to the
appendix, but we repeat the main theorems below. Note that this proof ad-
dresses the soundness of the type system itself. Proving the validity of code
transforms, such as the ones presented in §4.4, is another matter, but we will
touch on it in the next section.

Theorem: (Progress)
Suppose we have a state H ; t with store H and term t. Let Σ be a store typing
which models H. If H is well typed with respect to Σ, and t is closed and well
typed, and t contains no fabricated region witnesses (discussed in §4.2.5), then
either t is a value or H ; t can transition to the next state.

If ∅ | Σ ⊢ t :: τ ; σ
and Σ |= H
and Σ ⊢ H
and nofab(t)

then t ∈ Value
or for some H′, t′ we have

(H ; t −→ H′ ; t′ and nofab(t′))

Theorem: (Preservation)
Suppose we have a state H ; t with store H and term t. Let Σ be a store typing
which models H. If H and t are well typed, and H ; t can transition to a new
state H′ ; t′ then for some Σ′ which models H′, H′ is well typed, t′ has a similar
type to t, and the effect σ′ of t′ is no greater than the effect σ of t.

If Γ | Σ ⊢ t :: τ ; σ
and H ; t −→ H′ ; t′

and Σ ⊢ H and Σ |= H

then for some Σ′, τ ′, σ′ we have
Γ | Σ′ ⊢ t′ :: τ ′ ; σ′

and Σ′ ⊇ Σ and Σ′ |= H′ and Σ′ ⊢ H′

and τ ′ ∼Σ′ τ and σ′ ⊑Σ′ σ

Note that when a term is evaluated, its effect tends to become smaller, which
is expressed as the σ′ ⊑Σ′ σ clause in the preservation theorem. For example,
although update δ x y has the effect of reading y and writing x, it is reduced
to (), which has no intrinsic effect.

Also note that the store typing grows during evaluation, which is expressed as
the Σ′ ⊇ Σ clause of the preservation theorem. This means that once a region’s
constancy is set, it cannot be revoked, or changed during evaluation.

222 CHAPTER 4. CORE LANGUAGE

4.2.20 Goodness of typing rules

When combined, the Progress and Preservation theorems outlined in the pre-
vious section guarantee that a reduction of a well typed program does not “get
stuck”, meaning that it can always be reduced to normal form. Although this
“does not get stuck” is the classic interpretation of Milner’s famous mantra
“well typed programs don’t go wrong”, anyone who has spent time writing pro-
grams will appreciate that there are plenty of ways a program can “go wrong”
besides failing to reduce to normal form.

The trouble is that “well typed programs” can still contain plenty of bugs. For
compiler writers, a freshly compiled program failing to reduce to normal form
usually manifests as a runtime crash, or as an exception being thrown. This
occurrence, in fact, is often followed by a sigh of relief. It is a relief because
a program that crashes at the same point, every time, in a predictable way, is
usually straightforward to debug. In contrast, one that runs to completion but
gives the wrong answer provides no direct clue as to the location of the problem
in the original source code.

With this in mind, the fact that a type system is sound is only the first step
along the road to goodness. What is equally important, is that a program that
would be considered “buggy” by its creator also has a high likelihood of being
mistyped.

This is the primary reason for using a typed core language in a compiler. As a
compiler writer, when you make a mistake you want that mistake to manifest
itself as soon as possible. Having a compiled program simply give the wrong
answer is always the worst result. Performing optimisations on programs that
use mutable data structures doesn’t require a complicated type system like ours:
with its regions, effects, witness types, dependent kinds and so on. Information
concerning what side effects a function has, and which objects are mutable,
could equally be stored in tables. However, the benefit of using a typed core
language is that this information can also be checked.

The real purpose of witnesses

We now come to discuss the real purpose of witnesses in our compiler. We view
a witness as a token that gives us permission to perform a particular operation.
In particular, the operations that we use them for, namely updating data and
suspending computations, are ones that frequently result in hard to diagnose
bugs if not handled correctly. Updating an object that was supposed to be
constant is not “unsound”, but it’s probably buggy. Likewise, suspending a
computation that isn’t pure is not “unsound”, but it’s probably buggy.

For the first case, having a witness of kind Mutable r gives us permission to
update data in the region named r. When a region is created by reducing a
letregion expression, whether that region is going to be constant or mutable
is decided at that point. This is shown in the EvLetRegion rule from §4.2.13.
Now, as discussed in §4.2.7, in our semantics this decision results in either
a (const ρ) or (mutable ρ) property being added to the store. At the same
moment, we also get a witness as to which option we chose, which serves as a
record of the decision.

Later on in the reduction, we may want to update some object in this same
region. Of course, this should only be permitted if we decided the region was

4.2. SIMPLIFIED CORE LANGUAGE 223

going to be mutable in the first place. This is why, in EvUpdate3 from §4.2.13,
the update operator requires that we supply it with our witnesses of mutability.
Also note that in that same rule, there must be a corresponding (mutable ρ)
property in the store. Now, from our Progress theorem we know that we can
always apply this transition rule. This, in turn, means that if we can provide
a witness of mutability for some region, then we know that the corresponding
property is in the store, and that means we really did decide it was going to be
mutable when it was created.

On the other hand, if we decide that a new region is going to be constant, then
we get a (const ρ) property in the store instead of (mutable ρ). We also get
a Const r witness in the program, which records this decision. Now, unless
we enjoy tracking down difficult-to-find bugs, all data read by a suspended
function application should be constant. This ensures that we get the same
result independent of when the suspension happens to be forced. This is why,
in the EvSuspend4 rule from §4.2.13, we must provide the suspend operator
with a witness of purity for the application to be suspended. By inspection of
the kinds of witness constructors in §4.2.15 the only way such a witness of purity
can be produced is by combining witnesses of constancy for the regions that
will be (visibly) read. Finally, the fact that we can come up with said witnesses
of constancy ensures that witnesses of mutability for those same regions do not
exist elsewhere in the program.

A witness guarantees that something will not be done

For another way of thinking about witnesses, note that the utility of a Const r
witness is not so much that it encodes that a region is constant, rather, it
guarantees that it will not be updated. In the dual case, the utility of a Pure e
witness, is that it guarantees that a function application with effect e will not
read from regions that are mutable.

224 CHAPTER 4. CORE LANGUAGE

4.3 Extensions to the simplified language

The simplified core language of §4.2 is not syntactically complete with respect to
the source language. This means that it cannot directly express all the possible
well typed source programs. It does not include algebraic data types, case
expressions, effect masking or bounded quantification. In addition, the typing
rule for if-expressions does not allow us to choose between two functions that
have the same value type, but differing effects.

The additions needed for algebraic data types and case expressions are unsur-
prising, so we will not discuss them further. We discuss the others in turn.

4.3.1 Masking non-observable effects

We mask three sorts of effects: effects of computations that are unobservable,
effects on freshly allocated values, and effects that are known to be pure. The
following rule handles the first sort:

Γ | Σ ⊢ t :: τ ; σ r /∈ fvT (Γ) r /∈ fv(τ)

Γ | Σ ⊢ t :: τ ; σ \ (Read r ∨Write r)
(TyMaskObserve)

This rule encodes the observation criteria discussed in §2.4. It says that if a
region variable is not present in the type environment or type of a term, then
we can ignore the fact that its evaluation will perform read or write actions on
the associated region. As we treat ∨ as akin to set union ∪ the effect minus
operator \ is defined in the obvious way.

Note that it is safe to allow kind bindings of the form r : % to be present in
the environment, as long as the region variable is not mentioned in the τ part
of any x : τ . This is handled by the fvT (Γ) function which is defined as:

fvT (Γ) =
⋃
{ fv(τ) | x : τ ∈ Γ }

For a concrete implementation, the trouble with TyMaskObserve is that it is
not syntax directed. It is valid to apply this rule to any term, but applying it to
every term could be too slow at compile time. Usefully, when reconstructing the
type of a term we only need to perform this sort of masking on sub-terms that
are the bodies of λ-abstractions. This is because the typing rule for abstractions
is responsible for moving effect information from the σ in Γ |Σ ⊢ t :: τ ; σ into
the value type expression.

Instead of using a separate TyMaskObserve rule, we find it convenient to in-
corporate effect masking directly into the rule for λ-abstractions. This gives:

Γ, x : τ1 | Σ ⊢ t :: τ2 ; σ

r /∈ fvT (Γ) r /∈ fv(τ1) ∪ fv(τ2) σ′ = σ \ (Read r ∨Write r)

Γ | Σ ⊢ λ(x : τ1). t :: τ1
σ′

→ τ2 ; ⊥
(TyAbsObserve)

An alternative would be to combine the effect masking TyLetRegion, but this
would require the type checker to inspect the effect term more frequently.

4.3. EXTENSIONS TO THE SIMPLIFIED LANGUAGE 225

4.3.2 Masking effects on fresh regions

As discussed in §2.3.7, we can mask effects that are only used to compute the
result of a function, and are not otherwise visible. Here is the rule to do so:

Γ | Σ ⊢ λ(x : τ). t :: τ
σ
→ Bool r ; σ′

r /∈ fvT (Γ) r /∈ fv(τ)

σ′′ = σ \ (Read r ∨Write r)

Γ | Σ ⊢ λ(x : τ). t :: τ
σ′′

→ Bool r ; σ′

(TyMaskFresh)

As have not included closure typing information in our simplified language, we
have to tie TyMaskFresh to the lambda abstraction λ(x : τ). t. This prevents
us from inadvertently masking effects on regions present in the closure of the
function. When TyMaskFresh is applied, all the free variables in t (the closure)
must be present in the environment Γ, and thus the term fvT (Γ) accounts for
them.

Note that in TyMaskFresh we have set the result type of the function to Bool as
that is the only non-function value type constructor in our simplified language.
For the full language, we can replace Bool by any type constructor, so long as
we only mask effects on region variables that are in strongly material positions.
Materiality was discussed in §2.5.3.

Returning to the issue of closure typing, note that the following more general
variant of TyMaskFresh is bad.1

Γ | Σ ⊢ t :: τ
σ
→ Bool r ; σ′

r /∈ fvT (Γ) r /∈ fv(τ)

σ′′ = σ \ (Read r ∨Write r)

Γ | Σ ⊢ t :: τ
σ′′

→ Bool r ; σ′

(BadTyMaskFresh)

We can see why BadTyMaskFresh is bad by considering its (non) applicability
in the following program. Note that for a clearer example, we have taken the
liberty of using Int instead of Bool .

makeInc
= λ(). let x = 0 r1

f = λ(). do { x := x + 1 r1; x }
in f

This program is similar in spirit to the examples from §2.5.2. It allocates
a mutable integer x, then returns a function that updates it and returns its
value. Without masking, the type of the inner let-expression is:

(let x = 0 ... in f) :: ()
Read r1 ∨ Write r1−→ Int r1

At this point, the type environment only needs to contain the term r1 : % and
type for (+), which has no free variables. If we were to apply BadTyMaskFresh
here, then we would end up with:

(let x = 0 ... in f) :: ()→ Int r1

1We avoid the word unsound because its use will not prevent a term from being reduced

to normal form. However, if we apply it during type reconstruction and then optimise the

program based on this information, then we run the risk of producing a program that gives

an unintended answer, hence badness.

226 CHAPTER 4. CORE LANGUAGE

This is invalid because the expression will return a different value each time we
apply it to (), hence we cannot reorder calls to it.

In future work we plan to extend our core language with closure typing infor-
mation. This would allow us to use a rule similar to the following:

Γ | Σ ⊢ t :: τ
σ ς
−→ Bool r ; σ′

r /∈ fvT (Γ) r /∈ fv(τ) r /∈ fv(ς)

σ′′ = σ \ (Read r ∨Write r)

Γ | Σ ⊢ t :: τ
σ′′ ς
−→ Bool r ; σ′

(CloTyMaskFresh)

When we include closure typing information in the previous example, the type
of the let-expression becomes:

(let x = 0 ... in f) :: ()
(Read r1 ∨ Write r1) (x:Int r)

−→ Int r1

This closure term x : Int r reveals the fact that successive applications of this
function will share a value of type Int r. Because of this we cannot guarantee
that the returned value is fresh, so we cannot mask effects on it.

4.3.3 Masking pure effects

Recall the mapL function from §2.3.10 which performs a spine-lazy map across
the elements of a list. We will convert its definition to the core language. Firstly,
the source type of mapL is:

mapL :: ∀ a b r1 r2 e1

. (a
e1−→ b)→ List r1 a

e2−→ List r2 b
, e2 = Read r1 ∨ e1

⊲ Pure e1, Const r1

To convert this type to core, we write the purity and constancy constraints in
prefix form, and place the manifest effect term directly on the corresponding
function constructor:

mapL :: ∀ a b r1 r2 e1

. Pure e1 ⇒ Const r1

⇒ (a
e1−→ b)→ List r1 a

Read r1∨e1−→ List r2 b

The desugared version of the function definition follows. We have expanded the
pattern matching syntax, the infix use of @, and have introduced a binding for
each function argument:

mapL
= λf. λxx.

case xx of
Nil → Nil
Cons x xs →

do x′ = f x
mapL′ = mapL f
xs ′ = suspend1 mapL′ xs
Cons x′ xs ′

4.3. EXTENSIONS TO THE SIMPLIFIED LANGUAGE 227

From the type of mapL we see that the core version of the function should have
seven type parameters: five due to the universal quantifier, and two to bind the
witnesses for Pure e1 and Const r1. We will add these type arguments, along
with type applications where required:

mapL
= Λ a b r1 r2 e1.

Λ w1 :: Pure e1.
Λ w2 :: Const r1.

λ f :: a
e1→ b.

λ xx :: List r1 a.
case xx of

Nil → Nil a r2

Cons x xs →

do x′ = f x
mapL′ = mapL a b r1 r2 e1 w1 w2 f
xs ′ = suspend1

(List r1 a) (List r2 b) (Read r1 ∨ e1)
(MkPureJoin (Read r1) e1 (MkPurify r1 w2) w1)

Cons b r2 x′ xs′

We have elided the kind annotations on the first five type parameters to aid
readability. The variables w1 and w2 bind witnesses to the facts that e1 is
pure and r1 is constant. Note that in the recursive call to mapL all of its
type parameters must be passed back to itself. We also add type applications
to satisfy the quantifiers and constraints on suspend1 , and to satisfy Nil and
Cons. For reference, Nil and Cons have the following types:

Nil :: ∀a r1.List r1 a
Cons :: ∀a r1. a→ List r1 a→ List r1 a

Note that because the type we used for mapL contains the effect term Read r1∨
e1, when we call suspend1 we must provide a witness that this effect is pure.
This is the reason for the (MkPureJoin (Read r1) e1 (MkPurify r1 w2) w1)
term. Such witnesses were discussed in §4.1.4.

This is a valid translation, but as mentioned in §2.3.10 it would be “nicer” if
we could mask the Read r1 and e1 effects and not have to write them in the
type. After all, the point of proving that a particular effect is pure is so we can
ignore it from then on. Masking these effects in the type is straightforward,
and the core version is:

mapL :: ∀ a b r1 r2 e1

. Pure e1 ⇒ Const r1

⇒ (a
e1−→ b)→ List r1 a

⊥
−→ List r2 b

However, using this type requires that we add a mechanism to mask the equiv-
alent effects in the core program. One option is to add a rule similar to Ty-
MaskObserve from §4.3.1:

Γ | Σ ⊢ t :: τ ; σ Γ | Σ ⊢T δ :: Pure σ′

Γ | Σ ⊢ t :: τ ; σ \ σ′
(TyMaskPure)

228 CHAPTER 4. CORE LANGUAGE

However, as with TyMaskObserve, this rule is not syntax directed. Another
option is to introduce an explicit masking keyword, which states the witness
being used to mask the effect of a particular expression. For example:

Γ | Σ ⊢ t :: τ ; σ Γ | Σ ⊢T δ :: Pure σ′

Γ | Σ ⊢ mask δ in t :: τ ; σ \ σ′
(TyMaskPureEx)

The following code is a core version of the mapL function that uses the mask
keyword, and has the “nice” type mentioned above. Note that because the
effect of mapL is now ⊥ we use this as the effect argument to suspend1 .

mapL
= Λ a b r1 r2 e1.

Λ w1 :: Pure e1.
Λ w2 :: Const r1.

λ f :: a
e1→ b.

λ xx :: List r1 a.
mask MkPureJoin (Read r1) e1 (MkPurify r1 w2) w1 in
case xx of

Nil → Nil a r2

Cons x xs →

do x′ = f x
mapL′ = mapL a b r1 r2 e1 w1 w2 f
xs ′ = suspend1

(List r1 a) (List r2 b) ⊥
(MkPure ⊥)

Cons b r2 x′ xs′

4.3.4 Bounded quantification

We add bounded quantification to the core language so we can support the
higher order programs discussed in §2.3.6. For example, when converted to
core, the third order function foo has the following type and definition:

foo :: ∀ r1 r2 r3 r4 (e1 ⊒ Read r1) e2

. ((Int r1
e1−→ Int r2)

e2−→ Int r3)
e2∨Read r3−→ Int r4

foo
= Λ r1 r2 r3 r4 (e1 ⊒ Read r1) e2.

λ f : (Int r1
e1−→ Int r2)

e2−→ Int r3.
do x1 = succ r1 r2

x2 = f x1

succ r3 r4 x2

Note that in the application f x1 the expected type of the argument is:

f :: Int r1
e1−→ Int r2

but x1 has type:

x1 :: Int r1
Read r1−→ Int r2

To support this we modify the rule for application so that the argument may
have any type that is subsumed by the type of the function parameter. We

4.3. EXTENSIONS TO THE SIMPLIFIED LANGUAGE 229

arrange the typing rule for bounded type abstraction to add its constraint to
the type environment, and use this to show that applications such as f x1 are
valid.

The additions to the core language are as follows:

ϕ → . . .
| ∀(e ⊒ σ). τ (bounded quantification)

t → . . .
| Λ(e ⊒ σ). t (bounded type abstraction)

Operationally, bounded type application behaves the same way as the un-
bounded case:

H ; (Λ(e ⊒ σ). t) ϕ −→ H ; t[ϕ/e] (EvTAppAbsB)

The new typing rules are:

Γ | Σ ⊢T σ :: ! Γ, e : ! | Σ ⊢T τ :: κ e /∈ fv(Γ)

Γ | Σ ⊢T ∀(e ⊒ σ). τ :: κ2
(KiAllB)

Γ | Σ ⊢T σ1 :: !

Γ, e : !, e ⊒ σ1 | Σ ⊢ t2 :: τ2 ; σ2

Γ | Σ ⊢ Λ(e ⊒ σ1). t2 :: ∀(e ⊒ σ1). τ2 ; σ2
(TyAbsTB)

Γ | Σ ⊢ t1 :: ∀(e ⊒ σ11). τ12 ; σ1

Γ | Σ ⊢T σ2 :: ! σ11 ⊑Σ σ2

Γ | Σ ⊢ t1 σ2 :: τ12[σ2/e] ; σ1[σ2/e]
(TyAppTB)

Γ | Σ ⊢ t2 :: τ2 ; σ2

Γ | Σ ⊢ t1 :: τ11
σ
→ τ12 ; σ1 τ2 ⊑Σ τ11

Γ | Σ ⊢ t1 t2 :: τ12 ; σ1 ∨ σ2 ∨ σ
(TyAppB)

a ⊒ σ ∈ Γ

Γ | Σ ⊢ σ ⊑ a
(SubVar)

Γ | Σ ⊢ τ21 ⊑ τ11

Γ | Σ ⊢ τ12 ⊑ τ22 Γ | Σ ⊢ σ1 ⊑ σ2

Γ ⊢ τ11
σ1→ τ12 ⊑ τ21

σ2→ τ22

(SubFun)

Σ ⊢T κ1 ∼ κ2 Σ ⊢ σ1 ∼ σ2 Σ ⊢ τ1 ∼ τ2

Σ ⊢ ∀(a ⊒ σ1). τ1 ∼ ∀(a ⊒ σ2). τ2
(SimAllB)

230 CHAPTER 4. CORE LANGUAGE

KiAllB and TyAbsTB are similar to their unbounded counterparts. Note that
bounded quantification is only defined for effects, so the bounding type has this
kind.

In TyAbsTB, the effect bound e ⊒ σ1 is added to the type environment, and
SubVar is used to retrieve it higher up in the proof tree.

In TyAppTB we use subsumption on effects, σ11 ⊑Σ σ2, to satisfy the bound
on the quantifier.

In TyAppB we use a subsumption judgement on value types, τ2 ⊑Σ τ11, to
support applications such as the one described in the foo example. Note that
although subsumption only has meaning on the effect portion of a type, we
still need to define it to work on value types. This is because the effect type
information is attached to the value type information.

We don’t really need contravariance

In SubFun, although we use contravariant subsumption, τ21 ⊑ τ11, for the
function parameter, in practice this contravariance isn’t used. We could have
equally written τ11 ⊑ τ21. This arises due to the way we strengthen inferred
types, discussed in §2.3.6. As we do not strengthen constraints on effect vari-
ables that appear in the types of function parameters, the effect annotations on
such types will always be variables.

In TyAppB, when we apply a function to its argument, we use the subsumption
judgement to invoke the SubVar rule, which accepts examples like foo. However,
in that example we only applied a second order function to a first order one.
Annotations on function arrows of higher order will always be variables, so
applications involving them are accepted via SubRefl. The variance of function
types does not come into play.

For contrast, the process algebra of [NN93] includes an effect system in which
variance does matter. However, that work is presented as a stand-alone lan-
guage, not as a core language embedded in a larger compiler. For DDC, we
cannot write a program in the source language that maps onto a core-level
program in which variance matters, so we have not invested further effort into
supporting it.

This situation is similar to when System-F is used as a basis for the core
language of a Haskell 98 compiler. System-F supports higher ranked types
[PJVWS07], but Haskell 98 doesn’t. Types of rank-2 can be introduced when
performing lambda lifting [PJ87], but no terms are produced that have types
of rank higher than this. The compiler does not need to support full System-F
because only a fragment of that language is reachable from source.

4.3. EXTENSIONS TO THE SIMPLIFIED LANGUAGE 231

4.3.5 Effect joining in value types

Consider the following source program:

five = 5
f = if ...

then (λ(). succ five)
else (λ(). do { putStr “hello”; succ five})

with

putStr :: ∀r1.String r1
e1−→ ()

⊲ e1 = Read r1 ∨ Console

Note that in the definition of f , the two functions in the right of the if-expression
have different effects. The first reads the integer bound to five, but the second
also prints to the console. If we set five to have type Int r5, then these two
expressions have the following types:

(λx. succ five)

:: ()
e1−→ Int r1

⊲ e1 = Read r5

(λ(). do { putStr “hello”; succ five})

:: ()
e2−→ Int r1

⊲ e2 = Read r5 ∨ Console

As it stands, we cannot translate this program directly to our core language,
because the typing rule TyIf of §4.2.18 requires both alternatives to have similar
types, inclusive of effect information. We support such programs by extending
the definition of ∨ to join the effects contained within value types, and use this
operator to compute the resulting type of if-expressions. This mirrors what
happens during type inference.

(τ1
e1−→ τ2) ∨ (τ1

e2−→ τ3) ≡ τ1
e1∨e2→ (τ2 ∨ τ3)

Γ | Σ ⊢ t1 :: Bool ϕ ; σ1

Γ | Σ ⊢ t2 :: τ2 ; σ2

Γ | Σ ⊢ t3 :: τ3 ; σ3 τ = τ2 ∨ τ3

Γ | Σ ⊢ if t1 then t2 else t3 :: τ ; σ1 ∨ σ2 ∨ σ3 ∨ Read ϕ
(TyIfJoin)

Note that as our type inference algorithm only performs generalisation at let-
bindings, the types of alternatives will never contain quantifiers. For this reason
we don’t need to define ∨ over quantified types. Also, as we only strengthen
the manifest effects of a function type, the effect annotations on parameters
will always be variables. Similarly to §4.3.4, this guarantees that the effect
annotations in function parameters are variables, so we don’t have to join them.

An alternate method would be to provide an explicit type annotation for the
result of the if-expression, and use the subsumption judgement to check that
the types of both alternatives are less than the annotation. This approach was
taken in [NN93], but we avoid it because it increases the volume of annotation.

232 CHAPTER 4. CORE LANGUAGE

4.4 Optimisations

For DDC, the primary purpose of tracking effect information is to support
compiler optimisations. With that said, we don’t present any new ones, nor
do we make substantial improvements over existing ones. What we do provide,
is the ability to perform the same sort of optimisations previously reserved
for purely functional languages such as Haskell, but now in the presence of
side effects. The great enablers are the let-floating transforms discussed in
[PJPS96]. These allow bindings to be moved from their definition sites to
their use sites. This in turn exposes opportunities for other simple, correctness
preserving transforms, many of which are described in Santos’s thesis [dMS95].

We will discuss how our effect and mutability information can be used to per-
form these transforms. The reader is advised to consult [PJPS96] or [dMS95]
for matters not relating to effects.

We distinguish four kinds of let-floating transforms, and will consider each in
turn:

• Local transforms that are part of the language normalisation process.

• Floating bindings to other positions at the same scope level.

• Floating into if/case alternatives.

• Floating outside lambda abstractions.

Although we present our examples in the core language discussed in §4.2, we
elide type annotations when they do not contribute to the discussion. We also
make use of standard features such as integers, case expressions and unboxed
values.

As DDC is still a research prototype, we do not present any concrete speed-
up figures for these optimisations. Such figures would be skewed by the naive
implementation of our runtime system. See [dMS95] for data relating to a
mature compiler. As the saying goes, “what’s amazing is not how well the bear
dances – what’s amazing is that the bear dances at all!”

4.4.1 Local transforms

Here is an example local transform, given in [PJPS96]:

(let v = e in b) a −→ let v = e in b a

Although this is a valid transform, its applicability in a concrete implementation
depends on whether the core program can ever contain a term of the initial form.
There is also the question of whether a term in the resulting form can be directly
translated to the back-end intermediate language (or machine code).

In DDC, we keep the core program normalised so that the first term of an
application is always a variable. We do this because we compile via C, and
this process does not support more general forms of application. In this sense,
the above transform is not an optimisation per se, because it is part of the
normalisation process, and must always be performed.

4.4. OPTIMISATIONS 233

4.4.2 Floating at the same level

Floating bindings at the same scope level serves to expose opportunities for
other transforms. Local unboxing is one such transform, and is a simple, well
known technique for eliminating the majority of boxing and unboxing operations
in numeric code. We discuss how to perform it in the presence of side effects
by using the type information present in the core language. Local unboxing
can also be expressed as a backwards dataflow analysis, but we use (forwards)
let-floating as the presentation is simpler.

Here is a simple program which takes the successor of an integer, as well as
updating it:2

succUpdate x
= do y = succ x

x := 5
succ y

Converting this program to the core language yields the following:

succUpdate
= Λ r1 r2 (w1 : Mutable r1).

λ x : Int r1.
letregion r3 with {w3 = MkConst r3} in
letregion r4 with {w4 = MkConst r4} in
do y = box r3 (succ# (unbox r1 (force x)))

updateInt# r1 w1 (force x) (unbox r4 (box r4 5#))

box r1 (succ# (unbox r3 (force y)))

In this translation we have expanded the boxed numeric functions succ and
updateInt into a combination of boxing, unboxing, and thunk forcing operators.
Here are the types of these new operators:

unbox :: ∀r1. Int r1
Read r1−→ Int#

box :: ∀r1. Int# → Int r1

succ# :: Int# → Int#

updateInt# :: ∀r1.Mutable r1 ⇒ Int r1
Write r1−→ Int# → ()

We use Int# as the unboxed version of Int , and write unboxed literals as 5#. A
value of type Int# can be held in a machine register. For the reasons discussed in
§2.1, plain unboxed integers are non-updatable and thus do not need a region
variable. As an aside, when we wish to store updatable arrays of unboxed
integers in the heap, we give the array the type Ptr# r1 Int#, and attach the
mutability constraint to the pointer type instead.

Note that updateInt# uses the value of an unboxed integer to update a boxed
one. The boxed integer resides in the heap, not in a register.

In this thesis we treat force as a primitive of the core language. force tests its
argument to see if it is represented by an object with an outermost thunk, and
forces that thunk if need be. We treat it as a primitive operator because our

2This example has been kept simple to so that the typeset intermediate code is a managable

size. Hopefully the reader can appreciate that the techniques also scale to more interesting

programs.

234 CHAPTER 4. CORE LANGUAGE

type system is not expressive enough to write a sensible type of force other than
∀a. a→ a. We could use this type, but doing so would introduce a large number
of superfluous type applications in our example. See §5.2.8 for a discussion of
how we might give a better type to force.

From the above code, we can already see an obvious optimisation. In the second
argument of updateInt# we can collapse the term (unbox r4 (box r4 5#)) into
just 5#.

After we have exposed the primitive boxing, unboxing and forcing operators,
the next step is to flatten the program so that each binding consists of a single
application. This increases the mobility of each binding, that is, the probability
that it will be safe to move it. Note that order of evaluation in the program
runs left-to right, depth first, so the bindings come out in the following order:

succUpdate x
= Λ r1 r2 (w1 : Mutable r1).

λ x : Int r1.
letregion r3 with {w3 = MkConst r3} in
letregion r4 with {w4 = MkConst r4} in
do x1 = force x ⊥

x2 = unbox r1 x1 Read r1

y1 = succ# x2 ⊥
y = box r3 y1 ⊥
u1 = 5# ⊥
u2 = force x ⊥
updateInt# r1 w1 u2 u1 Write r1

z1 = force y ⊥
z2 = unbox r3 z1 Read r3

z3 = succ# z2 ⊥
box r2 z3 ⊥

We have recorded the effect of each binding on the right. The majority of these
bindings are pure, so their position is constrained only by the data dependencies
in the program. A special case is the binding for x2. From its effect we see that
it reads the x value from the region named r1. This interferes with the update
operation, which writes to r1.

Note that the binding for x1 is a duplicate of u2, so we can remove the second
and substitute u2 = x1 into successive bindings. We can then float all bindings
except x1 and x2 into their use sites. We do not float x1 as it now has two bound
occurrences, and we do not float x2 as this would require moving it across the
interfering update expression:

succUpdate x
= Λ r1 r2 (w1 : Mutable r1).

λ x : Int r1.
letregion r3 with {w3 = MkConst r3} in
letregion r4 with {w4 = MkConst r4} in
do x1 = force x

x2 = unbox r1 x1

updateInt# r1 w1 x1 5#

box r2 (succ# (unbox r3 (force (box r3 (succ# x2)))))

4.4. OPTIMISATIONS 235

Now, in the last statement we can eliminate the use of force, because a freshly
boxed integer is guaranteed not to be a thunk. We can then eliminate the unbox
box pair as well. This gives:

succUpdate x
= Λ r1 r2 (w1 : Mutable r1).

λ x : Int r1.
letregion r3 with {w3 = MkConst r3} in
letregion r4 with {w4 = MkConst r4} in
do x1 = force x ⊥

x2 = unbox r1 x1 Read r1

updateInt# r1 w1 x1 5# Write r1

box r2 (succ# (succ# x2)) ⊥

Compared to the original version, we have eliminated two uses each of box ,
unbox and force. If we were to constrain the original type of succUpdate so that
its parameter was Direct , then we could eliminate the remaining use of force
as well. Note that although the position of the x2 binding is not constrained
by data dependencies, it is constrained by the interfering effect of the update
statement.

4.4.3 Effects and region aliasing

In the succUpdate example of the previous section, we could tell that the un-
boxing and update operations interfered because their effects mentioned the
same region variable. If two atomic effects mention different region variables,
then we must consider whether the corresponding objects may alias when de-
ciding whether the effects interfere. For example, say we had a function of the
following type:

fun :: ∀ r1 r2

. Int r1 → Int r2
e1−→ ...

⊲ e1 = ...
, Mutable r1

The first part of its definition in the core language could well be:

fun
= Λ r1 r2 (w1 : Mutable r1).

λ x : Int r1.
λ y : Int r2.
letregion r3 with ... in.
letregion r4 with ... in.
exp

Assume that exp is some interesting expression that reads the values of x and y,
and updates x in the process. Now, there is nothing preventing the programmer
from calling fun with the same object for both arguments:

let x = 5 in fun x x

Because of this, when transforming exp, we cannot assume that two effects
Read r2 and Write r1 do not interfere. On the other hand, effects on r3 and r4

cannot interfere because they have been introduced by the function itself, and

236 CHAPTER 4. CORE LANGUAGE

are known to be distinct. The type system ensures that objects in the region
named r3 are distinct from those that are in the region named r4. Likewise,
effects on r1 and r3, or r1 and r4 cannot interfere because an object with type
Int r1 must have been allocated by the caller, and thus cannot alias with locally
allocated objects.

However, suppose r1 and r2 were constrained to have differing mutabilities:

fun :: ∀r1 r2

. Int r1 → Int r2
e1−→ ...

⊲ e1 = ...
, Mutable r1

, Const r2

In this case the first part of the function definition could be:

fun
= Λ r1 r2 (w1 : Mutable r1) (w2 : Const r2).

λ x : Int r1.
λ y : Int r2.
letregion r3 with ... in.
letregion r4 with ... in.
exp

With this new definition the two effects Read r2 and Write r1 are guaranteed
not to interfere. The caller cannot pass the same object for both parameters
because it cannot produce witnesses of mutability and constancy for the same
region variable.

In future work we intend to use this line of reasoning to extend the language
with NoAlias witnesses. This is discussed in §5.2.5.

4.4.4 Floating into alternatives

Consider the following program:

do y = f x
if exp then y else ...

As Disciple uses call-by-value evaluation by default, the application f x will
always be evaluated. Note that in DDC, before we try to float bindings into
alternatives we transform the program to administrative normal form. In this
form the terms involved in an application are either variables or constants.

In the above example, if f x and exp are pure, or they only read mutable data,
then it is safe to move the y binding into the alternative to give:

if exp then f x else ...

This eliminates the need to evaluate f x in the event the second branch of the
if-expression is taken. Note that if the first alternative contains other function
applications, then we need to consider whether f x can interfere with them.

4.4. OPTIMISATIONS 237

For example:

do (x1 : Int r1) = 5 r1 ⊥
(x2 : Int r2) = succ x1 Read r1

if ... ⊥
then do

x1 := 23 r3 Write r1 ∨ Read r3

succ x2 Read r2

else 42 r2 ⊥

Recall that in the core language we use literal integers such as 5 as constructors,
so (5 r1) is equivalent to box r1 5#. We have also added type annotations to
the binding occurrences of variables to make the example clearer. Note that
we cannot move the x2 binding into its use site because it interferes with the
expression x1 := 23 r1. However, we can move the x2 binding into the first
alternative of the if-expression, so long as we place it before the update:

do (x1 : Int r1) = 5 r1 ⊥

if ... ⊥
then do

(x2 : Int r2) = succ x1 Read r1

x1 := 23 r3 Write r1 ∨ Read r3

succ x2 Read r2

else 42 r2 ⊥

If a binding causes a top level effect then we cannot move it across another.
Likewise, we cannot move such a binding inwards, as that would tend to reduce
the number of times it was evaluated. For example:

do x1 = do { putStr “hello”; 5 r1 } Console

if ... ⊥
then succ x1 Read r1

else 42 r1 ⊥

4.4.5 Floating outside lambda abstractions

Floating bindings outside of lambda abstractions, also known as the full laziness
transform, allows us to share the result of a computation between calls to a
function. This is similar to the “lifting expressions out of loops” optimisation
done in compilers for imperative languages.

For example, consider the following program:

Λ r2 r3.
letregion r1 with {w = Const r1} in
do (xs : List r1 (Int r3)) = ... ⊥

f = λ(y : Int r2). do
(n : Int r3) = length xs ⊥
n + y Read r2 ∨ Read r3

z1 = f (5 r2) Read r2 ∨ Read r3

...
z2 = f (23 r2) Read r2 ∨ Read r3

238 CHAPTER 4. CORE LANGUAGE

As the value of n does not depend on the bound variable y, we can lift it out of
the enclosing λ-abstraction. This eliminates the need to recompute it for each
application of f :

Λ r2 r3.
letregion r1 with {w = Const r1} in
do (xs : List r1 (Int r3)) = ... ⊥

(n : Int r3) = length xs ⊥

f = λ(y : Int r2). n + y Read r2 ∨ Read r3

z1 = f (5 r2) Read r2 ∨ Read r3

...
z2 = f (23 r2) Read r2 ∨ Read r3

Of course, in general this is only valid if the lifted expression is pure. Here, we
must guarantee that the length of the list is not destructively changed between
each application of f . For this example, the purity of the n binding is guaranteed
by the constancy of r1, which is witnessed by w.

Only lift bindings that produce constant results

As it is only safe to increase the sharing of constant data, we must insure that
the results of lifted bindings are constant. Here is an example where a binding
is pure, and independent of the λ-bound variable, but it is not safe to float it
outwards:

Λ r4 r6.
letregion r5 with {w = Mutable r5} in

do (xs : List ...) = ...

(ys : List r4 (Int r5))
= map (λ . do { (m : Int r5) = succ 0; m }) xs

updateInt r5 r6 w (ys !! 2) (5 r6)

(ys !! 3)

Where updateInt has type:

updateInt :: ∀ r1 r2. Mutable r1 ⇒ Int r1 → Int r2
Read r2∨Write r1−→ ()

The operator !! is used to retrieve a numbered element of the list. This example
creates a new list of integers, ys, which is the same length as the original list
xs. It then updates the second element of ys, and returns the third. Note that
the m binding is pure, but as succ allocates its result, each element of the list
ys will be represented by a different run-time object. Even though we update
the second element, the third element will still have the value succ 0 = 1.

If we were to erroneously lift the m binding out of the lambda abstraction, this
would cause the same object to be used for every element of the list:

4.4. OPTIMISATIONS 239

Λ r4 r6.
letregion r5 with { w = Mutable r5 } in

do (xs : List ...) = ...

(m : Int r5) = succ 0

(ys : List r4 (Int r5))
= map (λ . m) xs

updateInt r5 r6 w (ys !! 2) (5 r6)

(ys !! 3)

In this case, when we update the second element of the list, this is the same
as updating the third element as well, so we have changed the meaning of the
program.

Suspend lifted bindings to reduce wasted computation

If we cannot guarantee that a particular λ-abstraction is applied at least once,
then we should suspend the evaluation of any bindings that are lifted from
it. This guards against the case where the abstraction is never applied, or the
evaluation of the binding does not terminate. For example:

Λ r3.
letregion r4 with { w = Const r4 } in

do (xs : List r4 (Int r3))
= ...

f = λy. do { n = length xs; n + y }
g = ...

if ...
then f 5 + f 23
else g 42

As length xs is pure, we can lift the n binding out of the abstraction. This will
save it being re-evaluated for each occurrence of f . However, if the else branch
of the if-expression is taken, then the value of n won’t be needed. Due to this
we should suspend the function application that produces it:

Λ r3.
letregion r4 with { w = Const r4 } in

do (xs : List r4 (Int r3))
= ...

n = suspend1 (MkPurify r4 w) length xs
f = λy. n + y
g = ...

if ...
then f 5 + f 23
else g 42

240 CHAPTER 4. CORE LANGUAGE

In practice, we only want to introduce one thunk per binding. If the right of the
binding is something other than a single function application, then we can wrap
it in a dummy lambda abstraction and suspend that instead. For example, if
the right of the n binding was actually succ (length xs) then we could translate
our original example to:

Λ r3.
letregion r4 with { w = Const r4 } in

do (xs : List r4 (Int r3))
= ...

n = suspend1 (MkPureJoin (MkPurify r4 w) ...)
(λ . succ (length xs))
()

f = λy. n + y
g = ...

if ...
then f 5 + f 23
else g 42

Note that as we only lift pure bindings, we should always be able to create
witnesses of purity for those bindings. This is an example of type information
serving as an internal sanity check, rather than being used to guide optimisa-
tions. If we cannot create a witness of purity for a lifted binding, then there is
a bug in our compiler implementation.

4.5 Comparisons

4.5.1 Monadic intermediate languages. 1998
Tolmach, Benton, Kennedy, Russell.

One of the main inspirations for our work has been to build on the monadic in-
termediate languages of [Tol98], [BK99] and [PJSLT98]. The system of [Tol98]
uses a coarse grained effect analysis to guide the translation of the source pro-
gram into a core language incorporating a hierarchy of monadic types. The
monads are ID, LIFT, EXN, and ST. Starting from the bottom of the hierar-
chy: ID describes pure, terminating computations; LIFT encapsulates pure but
potentially non-terminating computations; EXN encapsulates potentially non-
terminating computations that may raise uncaught exceptions, and ST encapsu-
lates computations that may do everything including talk to the outside world.

The optimisations in [Tol98] are given as transform rules on monadic terms, and
less transforms apply to expressions written with the more effectual monads.
Limitations of this system include the fact that it lacks effect polymorphism,
and the coarseness of the hierarchy. In the last part of [Tol98], Tolmach sug-
gests that it would be natural to extend his system with Hindley-Milner style
polymorphism for both types and monads in the Talpin-Jouvelot style. He also
suggests that it would extend naturally to a collection of fine-grained monads
encapsulating primitive effects, but laments the lack of a generic mechanism for
combining such monads.

4.5. COMPARISONS 241

Monads and effects express equivalent information

In [WT03], Wadler and Thiemann compare the effect typing and monadic sys-
tems, and give a translation from the first to the second. For their monadic
system, they write the types of computations as Tσ a, where a is the type of
the resulting value and σ is a set of store effects. They consider store effects
such as Read r1 and Write r2, use ∨ to collect atomic effect terms, and include
type schemes that quantify over type, region and effect variables. Clearly, their
monadic system shares a lot of common ground with an effect system. The
main technical difference between the two is that the monadic version of the
typing rule for applications is broken into two parts:

Whereas in the effect system we have:

Γ ⊢ t1 :: τ11
σ3−→ τ12 ; σ1 Γ ⊢ t2 :: τ11 ; σ2

Γ ⊢ t1 t2 :: τ12 ; σ1 ∨ σ2 ∨ σ3
(EffApp)

In the monadic system we have:

Γ ⊢ t1 :: τ11 → τ12 Γ ⊢ t2 :: τ11

Γ ⊢ t1 t2 :: τ12
(MonApp)

Γ ⊢ t1 : Tσ1 τ1 Γ, x : τ1 ⊢ t2 : Tσ2 τ2

Γ ⊢ let x← t1 in t2 :: Tσ1∨σ2 τ2
(MonBind)

In the effect typing system, effects are caused by the application of functions, as
well as by the evaluation of primitive operators such as readRef and writeRef .
In the monadic system, all effects are invoked explicitly with the let x← t1 in t2
form, which evaluates the computation t1, and then substitutes the resulting
value into t2. Function application of the form t1 t2 is always pure.

Expressing T-monads in Disciple

Note that Tσ a style computation types are straightforward to express in Disci-
ple, because we can define data types that have effect parameters. For example,
eliding region and closure information we can write:

data T e1 a = MkT (()
e1−→ a)

Our T e1 a data type simply encapsulates a function that produces a value of
type a when applied to the unit value (), while having an effect e1. The monadic
return and bind operators are defined as follows:

returnT :: ∀a. a→ T ⊥ a

returnT x = MkT (λ(). x)

bindT :: ∀a b e1 e2

. T e1 a→ (a→ T e2 b)→ T e3 b
⊲ e3 = e1 ∨ e2

bindT (MkT f1) mf 2

= MkT (λ(). case mf 2 (f1 ()) of
MkT f2 → f2 ())

242 CHAPTER 4. CORE LANGUAGE

Although we can directly express T monads in a language with an effect system,
the reverse is not true. A monadic system requires all effects to be encapsulated
within a computation type such as T, and the function arrow,→, must be pure.
However, an effect system allows arbitrary function applications to have effects,
and we can add these effects as annotations to the arrows,

σ
→.

What’s more natural?

In [BK99] Benton and Kennedy suggest that “the monadic style takes the dis-
tinction between computations and values more seriously”, and that it has a
more well-behaved equational theory. However, their work has different goals
to ours. On one hand, [BK99] includes rigorous proofs that their optimising
transforms are correct. For this purpose, we can appreciate how reducing ef-
fect invocation to a single place in the language would make it easier to reason
about. Their system was implemented in the MLj [BKR98] compiler, so it
is demonstrably practical. In [BKBH07] Benton et al consider the semantics
of a similar system extended with region variables and effect masking, and in
[BB07] Benton and Buchlovsky present the semantics of an effect based analysis
for exceptions. On the other hand, [BKR98] does not include effect polymor-
phism, and the more recent work of [BKBH07] and [BB07] does not discuss
type inference and has not yet been implemented in a compiler.

For our purposes, we find it more natural to think of function application and
primitive operators as causing effects, as this is closer to the operational reality.
After spending time writing a compiler for a language that includes laziness, we
don’t feel too strongly about the distinction between computations and values.
When we sleep we dream about thunks, and the fact that the inspection of a
lazy “value” of type Int may diverge is precisely because that value represents
a possibly suspended computation.

If we were going to follow Benton and Kennedy’s approach then we would write
TLIFT Int for the lazy case and Int for the direct one. Using (MonBind) above,
this would have the benefit that the potential non-termination of lazy compu-
tations would be propagated into the types of terms that use them. However,
for the reasons discussed in §1.4 we don’t actually treat non-termination as a
computational effect. We also remain unconvinced of the utility of introducing
a separate monadic binding form into the core language, at least in the concrete
implementation. Horses for courses.

4.5.2 System-Fc. 2007
Sulzmann, Chakravarty, Peyton Jones, Donnelly.

The core language of GHC is based on System-Fc [SCPJD07], which uses
type equality witnesses to support generalised algebraic data types (GADTs)
[XCC03] and associated types [CKJM05]. The kinds of such witnesses are writ-
ten a ∼ b, which express the fact that type a can be taken as being equivalent to
type b. The witnesses express non-syntactic type equalities, which are a major
feature of the work on GADTs and associated types.

The witness passing mechanism in DDC was inspired by an earlier draft of
[SCPJD07] that included the dependent kind abstraction Πa : κ1. κ2.

4.5. COMPARISONS 243

In this draft, abstraction was used to write the kinds of polymorphic witness
constructors such as:

elemList :: Πa : ∗.Elem [a] ∼ a

Here, Elem is the constructor of an associated type. The kind of elemList says
that elements of a list of type a have type a. In the published version of the
paper, extra typing rules were introduced to compose and decompose types
that include equality constraints, and these new rules subsumed the need for
an explicit dependent kind abstraction. In the published version, the type of
elemList is written:

elemList :: (∀a : ∗.Elem [a]) ∼ (∀a : ∗. a)

Note that when this type is instantiated, the type argument is substituted for
both bound variables. For example:

elemList Int :: Elem [Int] ∼ Int

The dependent kind abstraction is still there in spirit, but the syntax has
changed. System-Fc includes witness constructors such as sym, trans, left and
right whose kinds express logical properties such as the symmetry and transi-
tivity of the type equality relation, as well as providing decomposition rules.
Although [SCPJD07] gives typing rules for these constructors, if we were pre-
pared to limit their applicability to first order kinds then we could also express
them with the dependent kind abstraction. For example:

Γ ⊢ ϕ : τ1 ∼ τ2

Γ ⊢ sym ϕ : τ2 ∼ τ1
(Sym)

would become:

sym :: Π(a : ∗). Π(b : ∗). a ∼ b→ b ∼ a

Adding kind abstraction to the system would allow us to remove the restriction
to first order kinds, and regain the full expressiveness of the original rules:

sym :: λ(k : �). Π(a : k). Π(b : k). a ∼ b→ b ∼ a

Here, the superkind � restricts k to be something like ∗ or ∗ → ∗, and not
another witness kind.

Note that the System-Fc witness constructors such as sym, and the DDC wit-
ness constructors such as MkPureJoin are of the same breed. They both express
logical properties of the specific system, which are separate from the underlying
LF [AHM89] style framework. It would be interesting to see how well both sys-
tems could be expressed in a more general one, such as Ωmega [She05], which
has extensible kinds.

244 CHAPTER 4. CORE LANGUAGE

Chapter 5

Conclusion

The work presented in this thesis is embodied in the Disciplined Disciple Com-
piler (DDC) which can be obtained from the haskell.org website. We have
found it invaluable to develop the compiler alongside the source language and
type system. Having a real compiler allows us to experiment with example
programs that would be impractical to manipulate by hand, and we have been
working on DDC since the very start of this project.

DDC is not yet ‘industrial strength’, but it does have enough functionality
to compile non-trivial programs. Screenshots from two of our test programs
are below. The one on the left is a real-time, 2-dimensional particle collision
simulation that uses a quad-tree to determine when two particles are close
enough to possibly collide. The second is a simple ray tracer which uses a
vector library based on our projection system.

Developing these programs has given us insight into some of the strengths and
weaknesses of our current system. In this chapter we briefly discuss our back-
end implementation, identify opportunities for further work, summarise our
contributions, and conclude.

Gratuitous Screenshots

245

246 CHAPTER 5. CONCLUSION

5.1 Implementation

DDC is written in Haskell with GHC extensions. It uses three intermediate
representations: a desugared form of the source language; the core language
presented in this thesis, and an abstract C-like language. We have used Parsec
[LM01] for the parser, and compile to ANSI C.

As the focus of our work has been on the type system and core language, we have
not put a substantial amount of work into optimising the back end. However,
we have gleaned a few points that may be of interest to others embarking on
a similar endeavor. Although compiling via third party intermediate languages
such as C−− [PJNO97] or LLVM [LA04] is likely to produce better code in the
long run, we feel that targeting C still has a place if the developer “just wants
to get something working”. The primary benefits are that a given developer
will invariably know C already, and that implementions of primitive functions
can be written directly.

5.1.1 Implementing thunks and laziness

As Disciple uses call-by-value evaluation as default, we expect laziness to only
be used occasionally. We desire straightforward, C-like programs that do not
make heavy use of higher order functions or partial application to run as fast as
if they were actually written in C. For this reason we avoid the heavy encodings
that are associated with compiling via an abstract machine, such as the STG
machine [PJ92].

After the core-level optimisations are finished, we perform lambda lifting to
generate supercombinators [Hug83]. Each supercombinator is translated to a
single C function. We handle partial application by building a thunk con-
taining a pointer to the associated supercombinator, along with the provided
arguments. This is the eval/apply method discussed in [MPJ04].

Thunks representing suspended computations are created with explicit calls to
the suspend function that was introduced in §2.3.9. Thunks that represent
numeric values are forced by the force function. Calls to force are introduced
by the compiler during the local unboxing optimisation that was discussed in
§4.4.2. We use switch statements to implement core-level case-expressions, and
thunks that represent values of algebraic type are forced by extra alternatives
that we add to these statements.

For example, the following expression:

case xx of
Nil → ... alt1 ...
Cons x xs → ... alt2 ...

compiles to:

again:

switch (_TAG(xx)) {

case tag_Nil: goto alt1;

case tag_Cons: goto alt2;

case tag_INDIR: xx = ((Thunk *)xx)->next; goto again;

case tag_SUSP: xx = force(xx); goto again;

default: ... error handling ...

}

5.2. LIMITATIONS AND POSSIBLE IMPROVEMENTS 247

The tags INDIR and SUSP are common to all objects. When the tag of an
object is inspected, if it turns out to be an indirection or suspension then it
is followed or forced appropriately. The object is then reinspected by jumping
back to the start of the switch statement. Note that we place the alternatives
for indirections and suspensions last in the list. This ensures that the handling
of lazy objects does not degrade the speed of programs that use mostly call-
by-value evaluation. If the type of the object to be inspected is constrained to
be direct, then we can omit the INDIR and SUSP alternatives and gain a slight
speedup due to a smaller executable.

The primary advantages of this method are its simplicity and portability. The
disadvantage is that we incur a function call overhead every time we force a
thunk. This method is unlikely to ever match the efficiency a purpose built
system based on the STG machine [PJ92], but it works, and is significantly
easier to implement.

5.2 Limitations and possible improvements

This section discusses some of the limitations that we have uncovered in our
current system. Although we present ideas for addressing these limitations, they
have not yet been fully developed or implemented. The limitations are presented
in order, with the ones that we feel would most affect client programmers listed
first. Most of these limitations were introduced earlier in this thesis, and we
elaborate on them here as a guide for future work.

5.2.1 Masking mutability constraints

As mentioned in §2.3.7, although we can mask effects on region variables that
correspond to fresh objects, we cannot mask mutability constraints on the same
variables. The classic example is a function that destructively updates a counter
when calculating the length of a list, and then returns the counter. With effect
masking, our current system gives this function the following type:

length :: ∀a r1 r2. List r1 a
e1−→ Int r2

⊲ Read r1

, Mutable r2

For this example we can work around the problem by copying the counter value
before returning it. This invokes the Shape constraint discussed in §2.6.2, and
allows the resulting value to have a differing mutability. We expect to solve
the general problem by introducing closure information into the core language,
and then using a similar mutability masking mechanism to the one outlined by
Gupta in [Gup95].

248 CHAPTER 5. CONCLUSION

5.2.2 Blocked regions and region sums

The following program is rejected by our system:

x = 5

fun ()
= do y = 23

...
y := 42
if ... then x else y

As x is defined at top level it defaults to being constant, and as y is updated
it must be mutable. However, both x and y are returned by the if-expression,
so our system requires them to have the same type. This creates a mutability
conflict, so the program is rejected.

Our work-around is to explicitly copy either x, y, or both. This solves the
immediate problem, but is clumsy and could result in a considerable run-time
overhead when dealing with larger structures.

Note that if we could guarantee that the result of the if-expression was treated
as neither constant nor mutable, then we could allow the above program. As
discussed in §2.3.13, we view mutability as the capability of an object to be up-
dated, and constancy as the capability of suspending a computation that reads
it. We have in mind to introduce a new constraint, Blocked , which prevents a
region variable from being additionally constrained as either Const or Mutable.

However, we do not want the Blocked constraint to ‘leak’ into the type of x.
The fact that we choose between x and a mutable value does not mean there
is any danger of suspending a function that reads x directly. Say x and y have
the following types:

x :: Int r1 ⊲ Const r1

y :: Int r2 ⊲Mutable r2

We would prefer to leave r1 and r2 as constant and mutable respectively, and
use a region sum to express the fact that the result of fun could be in either
region r1 or r2. The full type of fun would then be something like:

fun :: ∀ c1 r2 r3. ()
c1−→ Int r3

⊲ c1 ⊒ x : Int r1

, r3 ⊒ r1 ∨ r2

, Const r1

, Blocked r3

The constraint r3 ⊒ r1 ∨ r2 is read: “r3 might include objects from r1 or r2”,
with the “or” being non-exclusive. The literature on union typing, such as
[DP03], may provide clues on how to implement this.

5.2.3 Bounded quantification and effect strengthening

In section §4.3.4 we discussed bounded quantification and how it is included in
our core language. We added this feature so that we can directly express the
types inferred by our Talpin-Jouvelot style inference algorithm. However, we
are not convinced that bounded quantification (beyond type class constraints)

5.2. LIMITATIONS AND POSSIBLE IMPROVEMENTS 249

is intrinsically necessary. We feel this way because there is never an operational
need for the effect of one parameter function to be larger than another.

As discussed in §2.3.6, effect variables serve to propagate the effect of a param-
eter into to the manifest effect of the overall function. This mechanism is used
to express the fact that a higher order function may invoke its parameter, and
our optimising transforms must be aware of this. The only time we need to
constrain the effect of a parameter function is when we suspend an application
of it, and we do this with purity constraints via the type classing system.

The fact that a function such as foo from §2.3.6 has a ⊒ constraint on its
parameter effect is an artefact of the bidirectional nature of Hindley-Milner
type inference. This is related to the poisoning problem which is mentioned
in [BK99] and discussed in [WPJ99]. Both [WPJ99] and [BK99] report that
subtyping can be used to remedy this problem, but [WPJ99] concerns usage
analysis and not effects, and [BK99] does not consider effect polymorphism.
In [BKBH07] Benton et al extend the system presented in [BK99] with region
variables, but do not discuss type inference.

More work is needed to determine whether the effect (and closure) constraints
on the types of higher order functions can always be strengthened. The goal
would be to either eliminate the need for bounded quantification in the core
language, or to determine why this can not, or should not, be done.

5.2.4 Polymorphism, data sharing, and constraint masking

Suppose we wish to define a type class to help compute the areas of geometric
figures. The obvious definition would be:

class Area a where

area :: ∀r1. a
e1−→ Float r1

⊲ e1 = ReadT a

This definition says that an instance of the area function produces a float into
the fresh region named r1, and is permitted to read its argument. Here is a
data type to represent our figures:

data Figure r1

= Rectangle (Float r1) (Float r1)
| Circle (Float r1)

The parameters of Rectangle are its width and height, and the parameter of
Circle is its radius. The area of a rectangle is its width multiplied by its height,
and the area of a circle is π times its radius squared:

instance Area (Figure r1) where
area fig
= case fig of

Rectangle w h → w ∗ h
Circle r → pi ∗ r2

Unfortunately, this is not a valid instance of Area. The trouble is that the
constant pi is free in the closure of area, but this information is not present in
the class definition. If we assume pi is defined at top level and has the type
Float r5, then our instance function has type:

250 CHAPTER 5. CONCLUSION

areaFigure :: ∀r1 r2.Figure r1
e1 c1−→ Float r2

⊲ e1 = Read r1

, c1 = pi : Float r5

Although we could go back and widen the class definition so that all instances
of area are assumed to refer to pi , this is an unsatisfying solution. How could
we decide a priori which constants would be needed? For example, the surface
area of a torus is 4π2Rr, where r and R are the inner and outer radii. When
determining such an area we would prefer to use a constant pi2 instead of
computing the value of π2 each time. Should we include just pi and pi2 in the
class definition, or will we need other constants as well?

In essence, our current system exposes too much useful information about the
sharing properties of data. Although we need this information to reason about
mutability and to perform effect masking, we sometimes want to ignore it in the
interests of polymorphism. Using the language of [MNM04], it is nonlinearity
and ‘amnesia’ which make a type system work. A given system must be able
to forget about the exact details of the program, otherwise testing for well-
typedness degenerates to simply running the program and checking for failure.

A seemingly obvious solution is to erase closure terms that refer to constant
regions, but we have to carefully consider possible interactions with other exten-
sions to the language. For example, if we allow masking of Mutable constraints
as per §5.2.1, then what about masking of Const constraints as well? For
example, say we have a function of the following type:

fun :: ()
c1−→ Float r1

⊲ c1 = x : Float r1

, Const r1

As r1 is constant, we could argue that the constraint on c1 should be erased.
Assuming that x is not in the type environment, this would also allow r1 to be
generalised:

fun :: ∀r1. ()→ Float r1

, Const r1

Now, this type doesn’t look too different from the type of length in §5.2.1. If
we followed the reasoning presented there then we might like to (erroneously)
mask the constancy constraint as well:

funbad :: ∀r1. ()→ Float r1

However, this in invalid. With this type there is nothing stopping us from
updating the return value. The point is that a constancy constraint does not
just mean that a given object should not be updated, it means that it should
not be updated because other expressions may refer to it in ways that are not
visible in our type information.

This brings us back to our discussion of region allocation from §4.2.8. Recall
that we do not currently use regions for allocation, or more importantly deallo-
cation. This is because a ‘value’ of type Int r1 may be represented by a thunk,
and that thunk may hold references to objects in regions which are not present
in its type. We cannot currently perform region allocation because our type
system does not provide us with information about what objects might be in-
visibly referenced by thunks. Knowing that those objects are constant is not

5.2. LIMITATIONS AND POSSIBLE IMPROVEMENTS 251

enough, what we actually need is a list of region variables that have escaped
our analysis and must be assumed to be shared at top-level. Importantly, this
is also the same property we need to consider in our type class example.

We have in mind to introduce a new region constraint Shared that expresses
this property. We would also introduce a constraint SharedT that refers to all
the region variables in a particular value type, and another SharedC that refers
to region variables in a closure.

Our suspend function would then have type:

suspend :: ∀a b. (a
e1 c1−→ b)→ a→ b

⊲ Pure e1

, SharedT a
, SharedC c1

This type expresses the fact that the closure of the parameter function, along
with the value of type a, is still reachable after this function returns. Neither
c1 or a are present in the type b, but the core language could use the sharing
constraints on them to ensure that they are not region-allocated.

5.2.5 Witnesses of no aliasing

As discussed in §4.4.3, if the core translation of a function has two region
parameters r1 and r2 then we must assume that objects in the corresponding
regions may alias. This prevents us from reordering bindings with effects such
as Write r1 and Read r2. A natural extension would be to add a new witness
constructor MkNoAlias, and use a witness of kind NoAlias r1 r2 to express the
fact that objects in regions named r1 and r2 are guaranteed not to alias. The
optimiser could then use such witnesses to prove that effects on these regions
do not interfere.

If two region variables are introduced at the same point, the generation of a
NoAlias witness for them is straightforward. We could extend the letregion
expression so that multiple region variables can be introduced, and require that
witnesses of no aliasing are created at the same point. For example:

letregion { r1, r2 }
with { w1 = MkMutable r1

w2 = MkMutable r2

w3 = MkNoAlias r1 r2}
in ...

However, if the NoAlias constructor only has two region parameters, then the
number of witness we might want to create is quadratic in the number of region
variables introduced by the letregion expression. It may be better to extend
the syntax of kinds so they can contain sets of region variables. This would
complicate the type system, but it is an orthogonal extension. We could also
use this functionality to reduce the multitude of other sorts of witnesses. For
example, by using a single witness of kind Mutable {r1, r2, r3} instead of three
separate ones.

252 CHAPTER 5. CONCLUSION

5.2.6 Should we treat top-level effects as interfering?

From a utopian viewpoint, effects such as FileSystem, Console and Network
should not interfere, but in practice they do. On a unix based system, data
written to the special file /dev/stdout appears on the console, so in general
we should not reorder calls to library functions such as writeFile and putStr .1

However, as we allow programmers to define their own effect constructors,
we can forsee use-cases for embedded systems that incorporate effects such
as MotionSensor , RobotArm, BlinkyLight etc. Although MotionSensor and
RobotArm would likely interfere, perhaps MotionSensor and BlinkyLight would
not.

It would be straight-forward to allow the programmer to define their own effect
interference relationships. This seems like a “fun” extension, but we are not
sure how useful it would be in practice. For now, we treat all top level effects
as interfering.

5.2.7 Add witnesses to write effects

In the type system for our core language, there is nothing that directly links
the fact that write effects must only act on mutable regions. We rely on the
signatures of primitive functions such as updateInt to contain both the muta-
bility constraint and the write effect, but do not enforce it. We could perhaps
change the kind of the Write constructor to require a witness that the region
written to is mutable, that is:

Write :: Π(r1 : %).Mutable r1 → !

We have not yet thought of a use-case where a programmer would desire a
region to be mutable in the absence of a write effect, or import a primitive
function that performs a write but does not require mutability. However, we
have avoided giving Write the above kind because it would noticeably increase
the volume of type information in the core program. An alternative would be
to emit a compiler warning if a primitive function was defined with one but not
the other, but this is more of an ad-hoc solution.

5.2.8 A better type for force

In §4.4.2 we avoided assigning a type to force because the only sensible type we
can give it is ∀a. a→ a, and that’s not particularly useful. We wish to encode
the fact that the resulting value is guaranteed not to be represented by a thunk,
but we do not have a way of doing so. For example, if we limited force to act
on integers then we might try:

force :: ∀r1. Int r1 → Int r1

⊲ Direct r1

However, this does not work because we are expecting to apply force to objects
that are constrained to be in Lazy regions.

1With the meanings of these functions being the same as in Haskell.

5.2. LIMITATIONS AND POSSIBLE IMPROVEMENTS 253

Using a different region variable in the parameter and resulting type does not
work either:

force :: ∀r1 r2. Int r1 → Int r2

⊲ Direct r2

With this type, the link between the input and output region variables is lost.
If we apply force to an integer that is constrained to be mutable, then this
constraint will not be present on the resulting type. It appears as though we
need a way to relate the region variables r1 and r2 in a way that maintains
all possible region constraints except Lazy . In some senses, this is similar to
the problem that the Shape constraint solves, which is discussed in §2.6.2. We
could perhaps write something like:

force :: ∀r1 r2. Int r1 → Int r2

⊲ LazyToDirect r1 r2

, Lazy r1

, Direct r2

, Alias r1 r2

The type inferencer would use the LazyToDirect constraint to ensure that all
constraints placed on r1 other than Lazy were propagated to r2, and all con-
straints placed on r2 other than Direct were propagated to r1. We would need
the extra constraint Alias r1 r2 in the event our system also contained the
NoAlias witnesses discussed in §5.2.5.

The question is then how to reflect this LazyToDirect constraint in the core
language. We could perhaps use a higher kinded witness constructor to convert
witnesses on r1 to witnesses on r2. Something like:

MkLazyToDirectConv
:: ∀(k : %→ ♦, k 6= Lazy).

Πr1 r2. LazyToDirect r1 r2 → k r1 → k r2

This encodes the fact that if an object in a region named r1 is forced, and then
considered to be in a fresh region named r2, then any property of the initial
object is also a property of the resulting one, except for the possibility of being
a thunk. However, as we do not have any experience with the associated type
inference or core-level transforms we cannot comment on its practicality.

254 CHAPTER 5. CONCLUSION

5.3 Summary of Contributions

• I present a system that integrates region, effect and closure typing into
a unified whole and uses type classes to express mutability and purity
constraints. To my knowledge, the system in this thesis is the first to
apply mutability constraints to region variables, or purity constraints to
effect terms.

• I describe how laziness and arbitrary destructive update can be used
sanely in the same program. This is done by applying purity constraints
to the visible effects of suspended function applications, and satisfying
these constraints by requiring objects read by the function to be constant.
This ensures that impure function applications are not suspended, as the
behavior of a program which did so would likely be incomprehensible to
both the programmer and compiler.

• I present a System-Fc style core language that includes region, effect and
closure information. I show how to encode information about mutability
and purity using dependently kinded witnesses.

• I describe the behaviour of a Talpin-Jouvelot style effect typing system
when applied to higher order functions. I show how some ⊒ constraints
can be strengthened to equalities, but others cannot. Strengthening effect
constraints allows the volume of type information in the core program to
be reduced.

• I show how Shape constraints can be used to define type classes such
as Eq and Copy . These constraints are used to require the parameter
and return types of a function to have the same overall value type, while
allowing the contained region and mutability information to vary.

• I discuss how Lazy and Direct constraints can be used to track which ob-
jects might be represented as thunks. I show how to use this information
to optimise programs that use mostly call-by-value evaluation.

• I discuss the concept of material region variables and show how this con-
cept can be used to trim the majority of information out of closure terms.

• I present pull-back projections and show how they can be used to eliminate
the need for ML style mutable references. Using pull-back projections is
preferable because ML style references pollute the value types of functions
and data structures that use them, which can lead to a large amount of
refactoring when developing programs.

• I describe how to perform Hindley-Milner style type inference without
prior knowledge of the binding dependency graph. If the program uses
type directed projections then this graph is not obtainable a priori, be-
cause the instance function to use for each projection depends on the type
of the value being projected.

5.4. THE HAIR SHIRT 255

5.4 The Hair Shirt

When I started this project back in 2004, one of the first things I came across
were the slides for Simon Peyton Jones’s 15 year Haskell retrospective entitled
“Wearing the Hair Shirt” [PJ03b]. When I looked up what a “hair shirt” was, it
turned out to be a device of penance. Certain practitioners of the Christian faith
wear (or wore) shirts made out of animal hair, because they are uncomfortable,
and help to isolate the wearer from worldly passions.

Designing programming languages is almost too much fun. In the words of
Aleister Crowley: “We ignore what created us; we adore what we create”. It is
all too easy to come up with a reasonable idea, fall in love with it, then begin to
treat that idea as the one true way of solving any particular problem. Slide 41 of
Wearing the Hair Shirt is titled “What really matters?”. Four things are listed:
Laziness, Purity and Monads, Type Classes, and Sexy Types. “Laziness” has
a big red cross through it, and “Purity and Monads” are listed as one thing. I
thought about that for some time, and that thinking turned into this thesis.

Five years later, I’d argue that in the context of functional programming, lazi-
ness and monads are merely tools, not universal truths. Purity is important to
the extent that it reflects an understanding and control over side effects, and
type classes and Sexy Types are one and the same. What matters, at least the
way I see it, is the Curry-Howard isomorphism, but everyone knew that already.

I find the fact that we can leverage the Curry-Howard isomorphism to express
relationships between region, effect and closure information to be highly reas-
suring. The core axioms, such as the fact that a read of a constant region is
pure, are expressed in the kinds of witness constructors. The ambient type
system does the rest.

The concrete implementation of DDC still has some wrinkles, but all the ones
I know about are cosmetic and do not represent flaws in the overall approach
or theory. The type system in this thesis, with its regions, effects, closures
and various constraints is large in volume, but the various parts share much
common ground. The type inferencer took a long time to work out, mainly
because when I started I didn’t know what I was doing, but the end result is
surprisingly straightforward.

If I were to distill this thesis into one single point, it would be that the distinction
between “pure” and “impure” languages is an artificial one. As we can express
information about effects and mutability directly in the type system, using
a standard framework, the difference between pure and impure is no greater
than the difference between Bool and Float . Effect typing, closure typing, type
classing, regions, dependent kinds and projections were all invented by other,
eminently clever people. I’ve spent the last while pasting them together into
a pleasing collage and smoothing out the corners. Now the world seems shiny
and new.

256 CHAPTER 5. CONCLUSION

14

Kappa-Epsilon-Phi-Alpha-Lambda-Eta Iota-Delta

ONION-PEELINGS2

The Universe is the Practical Joke of the General
at the Expense of the Particular, quoth FRATER
PERDURABO, and laughed.

But those disciples nearest to him wept, seeing the
Universal Sorrow.

Those next to them laughed, seeing the Universal
Joke.

Below these certain disciples wept.
Then certain laughed.
Others next wept.
Others next laughed.
Next others wept.
Next others laughed.
Last came those that wept because they could not

see the Joke, and those that laughed lest they
should be thought not to see the Joke, and thought
it safe to act like FRATER PERDURABO.

But though FRATER PERDURABO laughed
openly, He also at the same time wept secretly;
and in Himself He neither laughed nor wept.

Nor did He mean what He said.

2An excerpt from The Book Of Lies, Aliester Crowley, 1913.

Bibliography

[Abr90] Samson Abramsky, The lazy lambda calculus, Research Topics in
Functional Programming, Addison-Wesley, 1990, pp. 65–116.

[AHM89] Arnon Avron, Furio Honsell, and Ian A. Mason, An overview of
the Edinburgh Logical Framework, In Current Trends in Hard-
ware Verification and Automated Theorem Proving, G. Birtwistle,
Springer-Verlag, 1989, pp. 323–240.

[Aug84] Lennart Augustsson, A compiler for lazy ML, LFP 1984: Proc.
of the Symposium on LISP and Functional Programming, ACM,
1984, pp. 218–227.

[AWW91] Alexander Aiken, John H. Williams, and Edward L. Wimmers,
The FL project: The design of a functional language, 1991.

[Bac78] John Backus, Can programming be liberated from the von Neu-
mann style? A functional style and its algebra of programs, Com-
munications of the ACM, vol. 21, number 8, August 1978.

[Ban79] John P. Banning, An efficient way to find the side effects of pro-
cedure calls and the aliases of variables, POPL 1979: Proc. of
the Symposium on Principles of Programming Languages, ACM,
1979, pp. 29–41.

[BB07] Nick Benton and Peter Buchlovsky, Semantics of an effect analysis
for exceptions, TLDI 2007: Proc. of the International Workshop
on Types in Languages Design and Implementation, ACM, 2007,
pp. 15–26.

[BE04] Adrian Birka and Michael D. Ernst, A practical type system and
language for reference immutability, OOPSLA 2004: Proc. of
the Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, ACM, 2004, pp. 35–49.

[BHA85] Geoffrey Burn, Chris Hankin, and Samson Abramsky, The theory
of strictness analysis for higher order functions, Programs as data
objects, Springer-Verlag, 1985, pp. 42–62.

[BK99] Nick Benton and Andrew Kennedy, Monads, effects and transfor-
mations, Electronic Notes in Theoretical Computer Science, Else-
vier, 1999, pp. 1–18.

[BKBH07] Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin
Hofmann, Relational semantics for effect-based program transfor-
mations with dynamic allocation, PPDP 2007: Proc. of the In-

257

258 BIBLIOGRAPHY

ternational Conference on Principles and Practice of Declarative
Programming, ACM, 2007, pp. 87–96.

[BKR98] Nick Benton, Andrew Kennedy, and George Russell, Compiling
standard ML to Java bytecodes, ICFP 1998: Proc. of the In-
ternational Conference on Functional Programming, ACM, 1998,
pp. 129–140.

[BM98] Richard Bird and Lambert Meertens, Nested datatypes, MPC
1998: Proc.s of the Mathematics of Program Construction,
Springer-Verlag, 1998, pp. 52–67.

[BR00] Adam Bakewell and Colin Runciman, A model for comparing the
space usage of lazy evaluators, PPDP 2000: Proc. of the Interna-
tional Conference on Principles and Practice of Declarative Pro-
gramming, ACM, 2000, pp. 151–162.

[BS93] Erik Barendsen and Sjaak Smetsers, Conventional and unique-
ness typing in graph rewrite systems, FSTTCS 1993: Proc. of the
Conference on the Foundations of Software Technology and The-
oretical Computer Science, Springer-Verlag, 1993, pp. 41–51.

[BS94] , Uniqueness typing in theory and practice, PLILP 1995:
Proc. of the International Symposium on Programming Lan-
guages, Springer, 1994.

[C05] ISO/IEC 9899:TC2 The C programming language, committee
draft, May 2005.

[Can91] David Cann, Retire Fortran? a debate rekindled, ACM/IEEE Con-
ference on Supercomputing, July 1991.

[CC91] Felice Cardone and Mario Coppo, Type inference with recursive
types: syntax and semantics, Information and Computation 92
(1991), no. 1, 48–80.

[CF04] Robert Cartwright and Mike Fagan, Soft typing, SIGPLAN No-
tices 39 (2004), no. 4, 412–428.

[Cha02] Haskell 98 foreign function interface 1.0, 2002,
http://www.cse.unsw.edu.au/ chak/haskell/ffi/ffi/ffi.html.

[Cha04] Gregory Chaitin, Register allocation and spilling via graph color-
ing, Best of PLDI 1979-1999 39 (2004), no. 4, 66–74.

[Che05] Mun Hon Cheong, Functional programming and 3D games, Tech.
report, University of New South Wales, 2005.

[CKJM05] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones,
and Simon Marlow, Associated types with class, POPL 2005: Proc.
of the International Conference on Principles of Programming
Languages, ACM Press, 2005, pp. 1–13.

[CLS07] Duncan Coutts, Roman Leshchinskiy, and Don Stewart, Stream
fusion: from lists to streams to nothing at all, ICFP 2007: Proc. of
the International Conference on Functional Programming, ACM,
2007, pp. 315–326.

BIBLIOGRAPHY 259

[CO94] Kung Chen and Martin Odersky, A type system for a lambda cal-
culus with assignments, TACS ’94: Proc. of the International Con-
ference on Theoretical Aspects of Computer Software, Springer-
Verlag, 1994, pp. 347–364.

[Coo04] Matthew Cook, Universiality in elementry cellular automata,
Complex Systems, vol. 1, 2004, pp. 1–40.

[CPN98] David Clarke, John Potter, and James Noble, Ownership types for
flexible alias protection, SIGPLAN Not. 33 (1998), no. 10, 48–64.

[Cpp08] ISO/IEC IS 14882: The C++ programming language standard,
committie draft, 2008-10-08, October 2008.

[CWM99] Karl Crary, David Walker, and Greg Morrisett, Typed memory
management in a calculus of capabilities, POPL 1999: Proc. of
the International Conference on Principles of Programming Lan-
guages, ACM Press, 1999, pp. 262–275.

[DB96] Dominic Duggan and Frederick Bent, Explaining type inference,
Science of Computer Programming 27 (1996), no. 1, 37–83.

[DF01] Robert Deline and Manuel Fahndrich, Enforcing high-level pro-
tocols in low-level software, PLDI 2001: Proc. of the Conference
on Programming Language Design and Implementation, vol. 36,
ACM Press, May 2001, pp. 59–69.

[DM82] Luis Damas and Robin Milner, Principal type-schemes for func-
tional programs, POPL 1982: Proc. of the Symposium on Princi-
ples of Programming Languages, ACM, 1982, pp. 207–212.

[dMS95] André Lúıs de Medeiros Santos, Compilation by Transformation
in Non-Strict Functional Languages, Ph.D. thesis, Department of
Computer Science, University of Glasgow, 1995.

[DP03] Joshua Dunfield and Frank Pfenning, Type assignment for inter-
sections and unions in call-by-value languages, FOSSACS 2003:
Proc. of the International Conference on Foundations of Soft-
ware Science and Computation Structures, Springer LNCS, 2003,
pp. 250–266.

[dVPA07] Edsko de Vries, Rinus Plasmeijer, and David M. Abrahamson,
Uniqueness typing simplified, IFL 2007: Proc. of the Workshop
on Implementation and Application of Functional Programming
Languages, 2007.

[Erw06] Martin Erwig, Visual type inference, Journal of Visual Languages
and Computing 17 (2006), no. 2, 161–186.

[Fel91] Matthias Felleisen, On the expressive power of programming lan-
guages, Science of Computer Programming 17 (1991), no. 1-3,
35–75.

[FFA99] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken, A the-
ory of type qualifiers, SIGPLAN Notices 34 (1999), no. 5, 192–203.

260 BIBLIOGRAPHY

[Fil94] Andrzej Filinski, Representing monads, POPL 1994: Proc. of the
Symposium on Principles of Programming Languages, ACM, 1994,
pp. 446–457.

[FM06] Matthew Fluet and Greg Morrisett, Monadic regions, Journal of
Functional Programming 16 (2006), no. 4-5, 485–545.

[GA01] David Gay and Alex Aiken, Language support for regions, SIG-
PLAN Notices 36 (2001), no. 5, 70–80.

[Gar02] Jacques Garrigue, Relaxing the value restriction, APLAS 2002:
Proc. of the Asian Workshop on Programming Languages and
Systems, 2002, pp. 31–45.

[GCC09] GCC 4.2.3 online documentation, 2009, http://gcc.gnu.org.

[Gia00] Douglas C. Giancoli, Physics for scientists and engineers, third
edition, Prentice Hall, 2000.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java
language specification, third edition, 2005.

[GJSO91] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and
James W. O’Toole, Report on the FX programming language,
Tech. report, Massachusetts Institute of Technology, 1991.

[GL86] David K. Gifford and John M. Lucassen, Integrating functional
and imperative programming, LFP 1986: Proc. of the Conference
on LISP and Functional Programming, ACM, 1986, pp. 28–38.

[GMJ+02] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yan-
ling Wang, and James Cheney, Region-based memory management
in cyclone, SIGPLAN Notices 37 (2002), no. 5, 282–293.

[Gro06] Dan Grossman, Quantified types in an imperative language, ACM
Trans. Programming Languages and Systems 28 (2006), no. 3,
429–475.

[GS01] Jörgen Gustavsson and David Sands, Possibilities and limitations
of call-by-need space improvement, ICFP 2001: Proc. of the In-
ternational Conference on Functional Programming, ACM, 2001,
pp. 265–276.

[Gun92] Carl A. Gunter, Semantics of Programming Languages, MIT
Press, 1992.

[Gup95] Shail Aditya Gupta, Functional encapsulation and type reconstruc-
tion in a strongly-typed, polymorphic language, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 1995.

[Has08] Haskell’ deepseq proposal, November 2008,
http://hackage.haskell.org/trac/haskell-prime/wiki/deep seq.

[Hee05] Bastian Heeren, Top quality error messages, Ph.D. thesis, De-
partement Informatica, Universiteit Utrecht, 2005.

[Hen02] Fergus Henderson, Accurate garbage collection in an uncoopera-
tive environment, ISMM ’02: Proc. International Symposium on
Memory Management, ACM, 2002, pp. 150–156.

BIBLIOGRAPHY 261

[HHPJW96] Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip
Wadler, Type classes in Haskell, Trans. on Programming Lan-
guages and Systems 18 (1996), no. 2, 109–138.

[HHS02] Bastiaan Heeren, Jurriaan Hage, and Doaitse Swierstra, General-
izing Hindley-Milner type inference algorithms, Tech. report, Insti-
tute of Information and Computer Science, Universiteit Utrecht,
2002.

[HHS03] , Constraint based type inferencing in Helium, Tech. re-
port, Institute of Information and Computer Science, Universiteit
Utrecht, 2003.

[HJL06] Ralf Hinze, Johan Jeuring, and Andres Løh, Comparing ap-
proaches to generic programming in Haskell, Tech. report, ICS,
Utrecht University, 2006.

[HJSA02] Bastiaan Heeren, Johan Jeuring, Doaitse Swierstra, and
Pablo Azero Alcocer, Improving type-error messages in functional
languages, Tech. report, Institute of Information and Computer
Science, Universiteit Utrecht, 2002.

[HM98] Graham Hutton and Erik Meijer, Monadic parsing in Haskell,
Journal of Functional Programming 8 (1998), no. 4, 437–444.

[HP96] John L. Hennessy and David A. Patterson, Computer Architecture
a Quantative Approach, 2nd Ed, Morgan Kaufmann, 1996.

[HS07] Tim Harris and Satnam Singh, Feedback directed implicit paral-
lelism, ICFP 2007: Proc. of the International Conference on Func-
tional Programming (2007), 251–264.

[Hug83] John Hughes, The design and implementation of programming lan-
guages, Ph.D. thesis, Oxford University Computing Laboratory,
1983.

[Hug89] , Why functional programming matters, Computer Journal
32 (1989), no. 2, 98–107.

[Int06] Intel Corporation, IA-32 Intel Architecture Software Developer’s
Manual, March 2006.

[JG91] Pierre Jouvelot and David Gifford, Algebraic reconstruction of
types and effects, POPL ’91: Proc. of the Symposium on Prin-
ciples of Programming Languages, ACM, 1991, pp. 303–310.

[JMG+02] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James
Cheney, and Yanling Wang, Cyclone: A safe dialect of C, USENIX
Annual Technical Conference, June 2002, pp. 275–288.

[Joh85] Thomas Johnsson, Lambda lifting: transforming programs to re-
cursive equations, Proc. of the Conference on Functional Pro-
gramming Languages and Computer Architecture (New York, NY,
USA), Springer-Verlag Inc., 1985.

[Jon92] Mark P. Jones, A theory of qualified types, ESOP 1992: Proc. of
the European Symposium on Programming, vol. 582, Springer-
Verlag, 1992, pp. 287–306.

262 BIBLIOGRAPHY

[Jon93] , A system of constructor classes: overloading and implicit
higher-order polymorphism, FPCA 1993: Proc. of the Conference
on Functional Programming and Computer Architecture, ACM
Press, 1993, pp. 52–61.

[Jon99] , Typing Haskell in Haskell, Haskell Workshop, 1999.

[Jon00] , Type classes with functional dependencies, ESOP 2000:
Proc. of the European Symposium on Programming, Springer-
Verlag, 2000, pp. 230–244.

[JPJ99] Mark P. Jones and Simon Peyton Jones, Lightweight extensible
records for Haskell, Proc. of the Haskell Workshop, 1999.

[JPJ08] Barry Jay and Simon Peyton Jones, Scrap your type applications,
MPC ’08: Proc. International Conference on Mathematics of Pro-
gram Construction, Springer-Verlag, 2008, pp. 2–27.

[Kar08] J. Karczmarczuk, Symbol type?, October 2008, http://www.mail-
archive.com/haskell-cafe@haskell.org/msg30981.html.

[Knu74] Donald E. Knuth, Structured programming with go to statements,
Computing Surveys 6 (1974), 261–301.

[LA04] Chris Lattner and Vikram Adve, LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation, CGO 2004:
Proc. of the International Symposium on Code Generation and
Optimization, Mar 2004.

[LA05] , Transparent pointer compression for linked data struc-
tures, MSP 2005: Proc. of the Workshop on Memory System Per-
formance, June 2005.

[Lau93a] John Launchbury, Lazy imperative programming, Tech. report,
Yale University, 1993.

[Lau93b] , A natural semantics for lazy evaluation, POPL 1993:
Proc. of the Conference on Principles of Programming Languages,
ACM Press, 1993, pp. 144–154.

[LDG+08] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy,
and Jérôuillon, The Objective Caml system, release 3.11, docu-
mentation and user’s manual., Tech. report, Institut National de
Recherche en Informatique et en Automatique, 2008.

[LDJC83] Shu Lin and Jr Daniel J. Costello, Error Control Coding: Funda-
mentals and Applications, Prentice-Hall, 1983.

[Ler92] Xavier Leroy, Polymorphic typing of an algorithmic language,
Tech. report, Institut National de Recherche en Informatique et
en Automatique (INRIA), 1992.

[Ler93] , Polymorphism by name, POPL 1993: Proc. of the Sympo-
sium on Principles of Programming Languages, 1993, pp. 220–231.

[Ler97] , The effectiveness of type-based unboxing, Tech. report,
Boston College Computer Science Department, 1997.

BIBLIOGRAPHY 263

[LG88] John. M. Lucassen and David. K. Gifford, Polymorphic effect sys-
tems, POPL 1988: Proc. of the Symposium on Principles of Pro-
gramming Languages, ACM, 1988, pp. 47–57.

[LHJ95] Sheng Liang, Paul Hudak, and Mark Jones, Monad transformers
and modular interpreters, POPL 1995: Proc. of the Symposium on
Principles of Programming Languages, ACM, 1995, pp. 333–343.

[LL05] Daan Leijen and Andres Löh, Qualified types for mlf, SIGPLAN
Not. 40 (2005), no. 9, 144–155.

[LM01] Daan Leijen and Erik Meijer, Parsec: Direct style monadic parser
combinators for the real world, Tech. Report UU-CS-2001-27, De-
partment of Computer Science, Universiteit Utrecht, 2001.

[LNSW01] Martin Leucker, Thomas Noll, Perdita Stevens, and Michael We-
ber, Functional programming languages for verification tools: Ex-
periences with ML and Haskell, Proc. of the Scottish Functional
Programming Workshop., 2001.

[Lou08] J. Louis, Why I don’t use Haskell for Functional Program-
ming, 2008, http://jlouisramblings.blogspot.com/2008/03/why-i-
dont-use-haskell-for-functional 08.html.

[LP96] John Launchbury and Ross Paterson, Parametricity and unbox-
ing with unpointed types, ESOP 1996: European Symposium of
Programming, vol. 1058, Springer, April 1996, pp. 204–218.

[LPJ94] John Launchbury and Simon Peyton Jones, Lazy functional state
threads, PLDI 1994: Proc. of the Conference on Programming
Languages Design and Implementation, ACM Press, 1994, pp. 24–
35.

[LPJ03] Ralf Lämmel and Simon Peyton Jones, Scrap your boilerplate:
a practical design pattern for generic programming, TLDI 2003:
Proc. of the Workshop on Types in Language Design and Imple-
mentation, ACM Press, 2003.

[LW91] Xavier Leroy and Pierre Weis, Polymorphic type inference and
assignment, POPL 1991: Proc. of the Symposium on Principles
of Programming Languages, ACM Press, 1991, pp. 291–302.

[LY98] Oukseh Lee and Kwangkeun Yi, Proofs about a folklore let-
polymorphic type inference algorithm, ACM Trans. Programming
Languages and Systems 20 (1998), no. 4, 707–723.

[Mac91] David B. MacQueen, Standard ML of New Jersey, Proc. of the
Symposium on Programming Language Implementation and Logic
Programming, Springer-Verlag, 1991, pp. 1–13.

[Mil78] Robin Milner, A theory of type polymorphism in programming,
Journal of Computer and System Sciences 17 (1978), 348–375.

[Mit07] Neil Mitchell, Uniform boilerplate and list processing, Proc. of the
Haskell Workshop, ACM, September 2007.

264 BIBLIOGRAPHY

[MNM04] Peter Møller-Neergaard and Harry G. Mairson, Types, potency,
and idempotency: why nonlinearity and amnesia make a type sys-
tem work, ICFP 2004: Proc. of the International Conference on
Functional Programming, ACM, 2004, pp. 138–149.

[Mog89] Eugenio Moggi, Computational lambda-calculus and monads,
Proc. of the Symposium on Logic in Computer Science, IEEE
Computer Society Press, June 1989, pp. 14–23.

[MPJ04] Simon Marlow and Simon Peyton Jones, Making a fast curry:
push/enter vs. eval/apply for higher-order languages, ICFP 2004:
Proc. of the International Conference on Functional programming,
ACM, 2004, pp. 4–15.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen
(eds.), The definition of Standard ML (revised), The MIT Press,
1997.

[Myc84] Alan Mycroft, Polymorphic type schemes and recursive definitions,
Proc. of the International Symposium on Programming, Springer-
Verlag, 1984, pp. 217–228.

[NAH+95] Rishiyur S. Nikhil, Arvind, James Hicks, Shaft Aditya, Lennart
Augustsson, Jan-Willem Maessen, and Yuli Zhou, pH language
reference manual, version 1.0, Tech. report, Computer Science
and Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, January 1995.

[NN93] Flemming Nielson and Hanne Riis Nielson, From CML to process
algebras, Theoretical Computer Science, Springer-Verlag, 1993,
pp. 493–508.

[NN99] , Type and effect systems, Correct System Design, number
1710 in Lecture Notes in Computer Science, Springer-Verlag, 1999,
pp. 114–136.

[NSvEP91] Eric Nøcker, Sjaak Smetsers, Marko van Eekelen, and Rinus Plas-
meijer, Concurrent Clean, PARLE 1991: In Proc. of Parallel Ar-
chitectures and Languages Europe (1991), 202–219.

[Ode91] Martin Odersky, How to make destructive updates less destructive,
POPL 1991: Proc. of the Symposium on Principles of Program-
ming Languages, ACM Press, 1991, pp. 25–26.

[OG98] Chris Okasaki and Andrew Gill, Fast mergeable integer maps, In
Workshop on ML, 1998, pp. 77–86.

[Oka98a] Chris Okasaki, Higher-order functions for parsing or why would
anyone ever want to use a sixth-order function, Journal of Func-
tional Programming 8, 1998.

[Oka98b] , Purely functional data structures, Cambridge University
Press, 1998.

[ORH93] Martin Odersky, Dan Rabin, and Paul Hudak, Call by name, as-
signment, and the lambda calculus, POPL 1993: Proc. of the Sym-
posium on Principles of Programming Languages, ACM, 1993,
pp. 43–56.

BIBLIOGRAPHY 265

[Par92] Will Partain, The nofib benchmark suite of Haskell programs,
Proc. of the Glasgow Workshop on Functional Programming,
Springer-Verlag, 1992, pp. 195–202.

[PHL+77] Gerald J. Popek, Jim J. Horning, Butler W. Lampson, James G.
Mitchell, and Ralph L. London, Notes on the design of Euclid,
Proc. of the Conference on Language Design for Reliable Software,
ACM, 1977, pp. 11–18.

[Pie02] Benjamin C. Pierce, Types and Programming Languages, The MIT
Press, 2002.

[Pie05] , Advanced Topics in Types and Programming Languages,
The MIT Press, 2005.

[PJ87] Simon Peyton Jones, The Implementation of Functional Program-
ming Languages, ch. 13, Prentice-Hall, 1987.

[PJ92] , Implementing lazy functional languages on stock hard-
ware: The spineless tagless G-machine, Journal of Functional Pro-
gramming 2 (1992), 127–202.

[PJ94] , Compilation by transformation in the Glasgow Haskell
Compiler, In Glasgow Workshop on Functional Programming,
Springer, 1994, pp. 184–204.

[PJ03a] Simon Peyton Jones (ed.), Haskell 98 language and libraries: The
revised report., Cambridge University Press, April 2003.

[PJ03b] , Wearing the hair shirt, 2003,
http://research.microsoft.com/users/Cambridge/simonpj/Papers
/haskell-retrospective/HaskellRetrospective.pdf.

[PJJM97] Simon Peyton Jones, Mark Jones, and Erik Meijer, Type classes:
an exploration of the design space, In Haskell Workshop, 1997.

[PJM97] Simon Peyton Jones and Erik Meijer, Henk: a typed intermediate
language, Proc. of the Workshop on Types in Compilation, 1997.

[PJNO97] Simon Peyton Jones, Thomas Nordin, and Dino Oliva, C minus
minus: A portable assembly language, Proc. of the Workshop on
Implementing Functional Languages, Springer Verlag, 1997, pp. 1–
19.

[PJPS96] Simon Peyton Jones, Will Partain, and André Santos, Let-floating:
moving bindings to give faster programs, ICFP 1996: Proc. of
the International Conference on Functional Programming, ACM,
1996, pp. 1–12.

[PJS98] Simon Peyton Jones and André L. M. Santos, A transformation-
based optimiser for Haskell, Science of Computer Programming
32 (1998), no. 1–3, 3–47.

[PJSLT98] Simon Peyton Jones, Mark Shields, John Launchbury, and An-
drew Tolmach, Bridging the gulf: a common intermediate lan-
guage for ML and Haskell, POPL 1998: Proc. of the Symposium
on Principles of Programming Languages, ACM, 1998, pp. 49–61.

266 BIBLIOGRAPHY

[PJVWS07] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields, Practical type inference for arbitrary-rank types,
Journal of Functional Programming 17 (2007), no. 1, 1–82.

[PJW92] Simon Peyton Jones and Philip Wadler, Imperative functional pro-
gramming, Proc. of the Symposium on Principles of Programming
Languages, October 1992, pp. 71–84.

[PMN88] Carl G. Ponder, Patrick McGeer, and Anthony P-C. Ng, Are
applicative languages inefficient?, SIGPLAN Notices 23 (1988),
no. 6, 135–139.

[Pot95] François Pottier, Type inference and simplification for recursively
constrained types, Actes du GDR Programmation 1995 (journe du
ple Programmation Fonctionnelle), November 1995.

[Pot00] , A versatile constraint-based type inference system, Nordic
Journal of Computing 7 (2000), no. 4, 312–347.

[PR05] François Pottier and Didier Remy, The essence of ML type in-
ference, Advanced Topics in Types and Programming Languages
(Benjamin C. Pierce, ed.), MIT Press, 2005, pp. 389–489.

[Rab96] Daniel Eli Rabin, Calculi for Functional Programming Languages
with Assignment, Ph.D. thesis, Yale University, 1996.

[Rem94] Didier Remy, Type inference for records in natural extension of
ML, Theoretical aspects of object-oriented programming: types,
semantics, and language design (1994), 67–95.

[Ren02] Paul Rendell, Turing universality of the game of life, Collision-
based Computing, Springer-Verlag, 2002, pp. 513–539.

[Rey74] John C. Reynolds, Towards a theory of type structure, Program-
ming Symposium, Proceedings Colloque sur la Programmation,
Springer-Verlag, 1974, pp. 408–423.

[Rey78] John C. Reynolds, Syntactic control of interference, POPL 1978:
Proc. of the Symposium on Principles of Programming Languages,
ACM, 1978, pp. 39–46.

[Ros84] J. Barkley Rosser, Highlights of the history of the lambda-calculus,
IEEE Annals of the History of Computing 6 (1984), no. 4, 337–
349.

[RY08] Didier Remy and Boris Yakobowski, Graphic type constraints
and efficient type inference: From ML to MLF, ICFP 2008:
Proc. of the International Conference on Functional Programming,
September 2008.

[Sab98] Amr Sabry, What is a purely functional language?, Journal of
Functional Programming 8 (1998), no. 1, 1–22.

[San94] Patrick Sansom, Time profiling a lazy functional compiler, Func-
tional Programming, Springer-Verlag, 1994.

BIBLIOGRAPHY 267

[SCA93] A. V. S. Sastry, William Clinger, and Zena Ariola, Order-of-
evaluation analysis for destructive updates in strict functional lan-
guages with flat aggregates, FPCA ’93: Proc. of the Conference on
Functional Programming Languages and Computer Architecture,
ACM, 1993, pp. 266–275.

[SCPJD07] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Pey-
ton Jones, and Kevin Donnelly, System-F with type equality co-
ercions, Proc. of the Workshop on Types in Language Design and
Implementation, ACM Press, 2007.

[She05] Tim Sheard, Putting Curry-Howard to work, Proc. of the Haskell
Workshop, ACM Press, September 2005.

[SJ07] Don Stewart and Spencer Janssen, XMonad: A tiling window
manager, Proc. of the Haskell Workshop, ACM Press, Sep 2007.

[SOW99] Martin Sulzmann, Martin Odersky, and Martin Wehr, Type infer-
ence with constrained types, Theory and Practice of Object Sys-
tems 5 (1999), no. 1, 35–55.

[SPJ95] Patrick Sansom and Simon Peyton Jones, Time and space profil-
ing for non-strict, higher-order functional languages, POPL 1995:
Proc. of the Symposium on Principles of Programming Languages,
ACM, 1995, pp. 355–366.

[SR95] R. Sekar and I.V. Ramakrishnan, Fast strictness analysis based
on demand propagation, ACM Transactions on Programming Lan-
guages and Systems 17 (1995), 17–6.

[SRH04] Michael D. Smith, Norman Ramsey, and Glenn Holloway, A gener-
alized algorithm for graph-coloring register allocation, PLDI 2004:
Proc. of the Conference on Programming Language Design and
Implementation, ACM, 2004, pp. 277–288.

[SRI91] Vipin Swarup, Uday S. Reddy, and Evan Ireland, Assignments
for applicative languages, Proc. of the Conference on Functional
Programming Languages and Computer Architecture, Springer-
Verlag New York, Inc., 1991, pp. 192–214.

[SS76] Guy L. Steele and Gerald J. Sussman, Lambda: The ultimate
imperative, Tech. report, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1976.

[SS90] Harold Søndergaard and Peter Sestoft, Referential transparency,
definiteness and unfoldability, Acta Informatica 27 (1990), no. 6,
505–517, Reviewed in Computing Reviews 32 (3): 144–145, 1991.

[SSD08a] Jonathan Shapiro, Swaroop Sridhar, and Scott Doerrie, BitC lan-
guage specification, Tech. report, The EROS Group LLC and
Johns Hopkins University, 2008.

[SSD08b] , The origins of the BitC programming language, Tech. re-
port, The EROS Group LLC and Johns Hopkins University, 2008.

[SSh08] Christian Skalka, Scott Smith, and David Van horn, Types and
trace effects of higher order programs, Journal of Functional Pro-
gramming 18 (2008), no. 2, 179–249.

268 BIBLIOGRAPHY

[SSS08] Swaroop Sridhar, Jonathan S. Shapiro, and Scott F. Smith, Sound
and complete type inference for a systems programming language,
APLAS 2008: Proc. of the Asian Symposium on Programming
Languages and Systems, Springer-Verlag, 2008, pp. 290–306.

[SSS09] Swaroop Sridhar, Jonathan S. Shapiro, and Scott F. Smitt, For-
malization of the BitC type system, Tech. report, Johns Hopkins
University, 2009.

[SSW04] Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny, Improving
type error diagnosis, Haskell ’04: Proceedings of the 2004 ACM
SIGPLAN workshop on Haskell (New York, NY, USA), ACM,
2004, pp. 80–91.

[Str86] Bjarne Stroustrup, An overview of C++, Proc. of the Workshop
on Object-Oriented programming, ACM, 1986, pp. 7–18.

[Sun02] Sun Microsystems, Inc, SPARC assembly language reference man-
ual, May 2002.

[TA05] Tachio Terauchi and Alex Aiken, Witnessing side effects, ICFP
2005: Proc. of the International Conference on Functional Pro-
gramming, 2005.

[TB98] Mads Tofte and Lars Birkedal, A region inference algorithm, ACM
Transactions on Programming Languages and Systems 20 (1998),
no. 4, 724–767.

[TBE+06] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,
Tommy Højfeld Olesen, and Peter Sestoft, Programming with re-
gions in the MLKit (revised for version 4.3.0), Tech. report, IT
University of Copenhagen, Denmark, January 2006.

[THLPJ98] Phil Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon
Peyton Jones, Algorithm + Strategy = Parallelism, Journal of
Functional Programming 8 (1998), 23–60.

[TJ92a] Jean-Pierre Talpin and Pierre Jouvelot, Polymorphic type, region
and effect inference, Journal of Functional Programming 2 (1992),
245–271.

[TJ92b] , The type and effect discipline, Proc. of the Symposium on
Logic in Computer Science, IEEE Computer Society Press, 1992,
pp. 162–173.

[Tof90] Mads Tofte, Type inference for polymorphic references, Informa-
tion and Computation 89 (1990), no. 1, 1–34.

[Tol98] Andrew Tolmach, Optimizing ML using a hierarchy of monadic
types, In Workshop on Types in Compilation, Springer Verlag,
1998, pp. 97–113.

[Wad87] Philip Wadler, Fixing some space leaks with a garbage collector,
Software Practice and Experience 17 (1987), no. 9, 595–609.

[Wad90a] , Comprehending monads, Mathematical Structures in
Computer Science, 1990, pp. 61–78.

BIBLIOGRAPHY 269

[Wad90b] , Linear types can change the world, Working Conference
on Programming Concepts and Methods, 1990, pp. 347–359.

[Wad04] , Functional programming in the real world, SIGPLAN No-
tices 33 (2004), no. 2, 25–30.

[Wan86] Mitchell Wand, Finding the source of type errors, POPL 1986:
Proc. of the Symposium on Principles of Programming Languages,
ACM, 1986, pp. 38–43.

[WB89] Philip Wadler and Stephen Blott, How to make ad-hoc polymor-
phism less ad hoc, POPL 1989: Proc. of the Symposium on Prin-
ciples of Programming Languages, ACM Press, 1989, pp. 60–76.

[WH87] Philip Wadler and R. J. M. Hughes, Projections for strictness
analysis, Proc. of the Conference on Functional Programming
Languages and Computer Architecture, Springer-Verlag, 1987,
pp. 385–407.

[WPJ99] Keith Wansbrough and Simon Peyton Jones, Once upon a poly-
morphic type, POPL 1999: Proc. of the Symposium on Principles
of Programming Languages, ACM, 1999, pp. 15–28.

[Wri92] Andrew K. Wright, Typing references by effect inference, ESOP
1992: Proc. of the European Symposium on Programming, vol.
582, Springer-Verlag, 1992, pp. 473–491.

[Wri96] Andrew Wright, Polymorphism for imperative languages without
imperative types, Tech. Report TR93-200, Rice University, 1996.

[WT03] Philip Wadler and Peter Thiemann, The marriage of effects and
monads, ACM Trans. Computation and Logic 4 (2003), no. 1,
1–32.

[XCC03] Hongwei Xi, Chiyan Chen, and Gang Chen, Guarded recursive
datatype constructors, SIGPLAN Notices 38 (2003), no. 1, 224–
235.

[YR97] Hongseok Yang and Uday Reddy, Imperative lambda calculus re-
visited, Tech. report, University of Illinois at Urbana-Champaign,
August 1997.

270 BIBLIOGRAPHY

Appendix A

Proofs of Language Properties

In this appendix we present the formal proofs of language properties for the
system in §4.2, culminating in a proof of soundness. Each of these proofs is by
induction over the derivation of a typing judgement. When presenting each case,
we will assume the statement being considered and then invoke the standard
inversion lemmas [Pie02] to fill in the appropriate premises.

For example, the proof of Substitution of Values in Values starts with the case
t = x. We assume the statement Γ, x : τ2 | Σ ⊢ x :: τ1 ; ⊥, and use the
inversion lemma to give x : τ1 ∈ Γ, x : τ2.

(2) x : τ1 ∈ Γ, x : τ2

(1) Γ, x : τ2 | Σ ⊢ x :: τ1 ; ⊥

Each statement is numbered for identification purposes, and we underline the
numbers of statements which are assumptions. In some cases, not all statements
obtained by the inversion lemmas will be used, but will include them as premises
so that the typing rules maintain their familiar shapes.

We will omit the quantifiers “for all” and “for some” when they are obvious
from the context, as they clutter the proof without providing much additional
information.

Firstly, some standard lemmas:

Lemma: (Forms of Terms and Types)

When a term is in normal form we can determine its shape by inspecting its
type [Pie02]. Similarly, when a type is in normal form we can determine its
shape by inspecting its kind.

For example:

If t is a value
and ∅ | Σ ⊢ t :: τ1 → τ2 ; σ

then t = λ(x : τ1). t′

By inspection of the typing rules. The only values which can have function
types are lambda abstractions and variables, but if the type environment is
empty the value cannot be a variable.

271

272 APPENDIX A. PROOFS OF LANGUAGE PROPERTIES

Lemma: (No free witness variables in effects)

If Γ | Σ ⊢ t :: ϕ ; σ
and Γ | Σ ⊢T w :: κ and Γ | Σ ⊢K κ :: ♦

then σ[δ/w] ≡ σ

By inspection of the kinding rules for effect constructors.

Lemma: (No free witness variables in term types)

If Γ | Σ ⊢ t :: ϕ ; σ
and Γ | Σ ⊢T w :: κ and Γ | Σ ⊢K κ :: ♦

then ϕ[δ/w] ≡ ϕ

By inspection of the kinding rules for value type constructors.

Lemma: (Weaken Store Typing)

If we can assign a term t some type and effect, then we can also assign t the
same type and effect under a larger store typing. This property is also true for
kind and similarity judgements.

If Γ | Σ ⊢ t :: τ ; σ
and Σ′ ⊇ Σ

then Γ | Σ′ ⊢ t :: τ ; σ

By induction over the derivation of Γ | Σ ⊢ t :: τ ; σ. At the top of the
derivation tree we will have uses of (TyLoc) which include statements such as
l : τ ∈ Σ. These statements remain true when Σ is extended.

Lemma: (Strengthen Type Environment)

If Γ, x : τ | Σ ⊢T ϕ :: κ
then Γ | Σ ⊢T ϕ :: κ

By inspection of the forms of types. Types to not contain value variables.

Lemma: (Similarity under Substitution)

If ϕ1 ∼Σ ϕ′
1

and ϕ2 ∼Σ ϕ′
2

then ϕ1[ϕ2/a] ∼Σ ϕ′
1[ϕ

′
2/a]

Easy induction.

Lemma: (Region Witness Assertion)

If we add a property to the heap, then we can always evaluate the witness
constructor that tests for it.

The statement H, propOf(∆) ; δ ∆ and δ ∈ {MkConst r,MkMutable r}
for some r, ∆ is true.

By inspection of the transition rules (EwConst) and (EwMutable).

273

Lemma: (Progress of Purity)

If ∅ | Σ ⊢T δ :: Pure σ
and nofab(δ)

then δ = pure σ

or H ; δ δ′ for some H, δ′.

Proof :

(1) ∅ | Γ ⊢T δ :: Pure σ (assume)

(2) nofab(δ) (assume)

(3) δ ∈ {MkPure ⊥, MkPurify ρ δ1,

MkPureJoin σ2 σ3 δ2 δ3} (Forms of Types 1)

Case: δ = MkPure ⊥

(5) H ; MkPure ⊥ pure ⊥ (EwPure)

Case: δ = MkPurify ρ δ1

(6) δ1 = const ρ (Kind of MkPurify 2)

(7) H ; MkPurify (const ρ) pure (Read ρ) (EwPurify 6 7)

Case: δ = MkPureJoin σ2 σ3 δ2 δ3

(8) ∅ | Σ ⊢T δ2 :: Pure σ2 (Kind of MkPureJoin)

(9) nofab(δ2) (Def. nofab 2)

(10) δ2 = pure σ2 or H ; δ2 δ′2 (IH 8 9)

(11) δ3 = pure σ3 or H ; δ3 δ′3 (Similarly)

(12) Either (EwPureJoin1), (EwPureJoin2)

or (EwPureJoin3) applies

274 APPENDIX A. PROOFS OF LANGUAGE PROPERTIES

Lemma: (Substitution of Values in Values)

If Γ, x : τ2 | Σ ⊢ t :: τ1 ; σ
and Γ | Σ ⊢ v◦ :: τ ′

2 ; ⊥
and τ2 ∼Σ τ ′

2

then Γ | Σ ⊢ t[v◦/x] :: τ ′
1 ; σ′

and τ1 ∼Σ τ ′
1

and σ ∼Σ σ′

Proof: By induction over the derivation of Γ, x : τ2 | Σ ⊢ t :: τ1 ; σ

(IH) Subst. Values/Values holds for all subterms of t. (assume)

Case : t = y / TyVar

Trivial. x 6= y so t is unaffected.

Case : t = x / TyVar

(4) x : τ1 ∈ Γ, x : τ2

(1) Γ, x : τ2 | Σ ⊢ x :: τ1 ; ⊥

(2) Γ | Σ ⊢ v◦ :: τ ′
2 ; ⊥ (assume)

(3) τ2 ∼Σ τ ′
2 (assume)

(5) τ1 ≡ τ2 (Def. Type Env 4)

(6) Γ | Σ ⊢ x[v◦/x] :: τ ′
2 ; ⊥ (Def. Sub. 2)

(7) τ1 ∼Σ τ ′
2 (3 5)

Case : t = Λ(x : κ). t1 / TyAbsT

(4) Γ, x : τ2, a : κ | Σ ⊢ t1 :: τ1 ; σ

(1) Γ, x : τ2 | Σ ⊢ Λ(a : κ). t1 :: ∀(a : κ). τ1 ; σ

(2) Γ | Σ ⊢ v◦ :: τ ′
2 ; ⊥ (assume)

(3) τ2 ∼Σ τ ′
2 (assume)

(5) Γ, a : κ | Σ ⊢ v◦ :: τ ′
2 ; ⊥ (Weak. Type Env 2)

(6..8) Γ, a : κ | Σ ⊢ t1[v
◦/x] :: τ ′

1 ; σ′,

τ1 ∼Σ τ ′
1, σ ∼Σ σ′ (IH 4 5 3)

(9) Γ | Σ ⊢ Λ(a : κ). (t1[v
◦/x]) :: ∀(a : κ).τ ′

1 ; σ′ (TyAbsT 6)

(10) Γ | Σ ⊢ (Λ(a : κ). t1)[v
◦/x] :: ∀(a : κ).τ ′

1 ; σ′ (Def. Sub. 9)

275

Case: t = t1 ϕ2 / TyAppT

(4) Γ, x : τ2 | Σ ⊢ t1 :: ∀(a : κ11). ϕ12 ; σ

(6) κ11 ∼Σ κ2

(5) Γ, x : τ2 | Σ ⊢T ϕ2 :: κ2

(1) Γ, x : τ2 | Σ ⊢ t1 ϕ2 :: ϕ12[ϕ2/a] ; σ[ϕ2/a]

(2) Γ | Σ ⊢ v◦ :: τ ′
2 ; ⊥ (assume)

(3) τ2 ∼Σ τ ′
2 (assume)

(7..9) Γ | Σ ⊢ t1[v
◦/x] :: ∀(a : κ′

11). ϕ′
12 ; σ′

∀(a : κ11). ϕ12 ∼Σ ∀(a : κ′
11). ϕ′

12

σ[ϕ2/a] ∼Σ σ′ (IH 4 2 3)

(10) κ11 ∼Σ κ′
11 (SimAll 8)

(11) κ′
11 ∼Σ κ2 (SimTrans 6 10)

(12) Γ | Σ ⊢T ϕ2 :: κ2 (Str. Type Env 5)

(13) Γ | Σ ⊢ t1[v
◦/x] ϕ2 :: ϕ′

12[ϕ2/a] ; σ′[ϕ2/a] (TyAppT 7 12 11)

(14) Γ | Σ ⊢ (t1 ϕ2)[v
◦/x] :: ϕ′

12[ϕ2/a] ; σ′[ϕ2/a] (Def. Sub. 13)

Case: t = λ(x : τ). t1 / TyAbs

Similarly to TyAbsT case.

Case: t = t1 t2 / TyApp

(4) Γ, x : τ3 | Σ ⊢ t1 :: τ11
σ
→ τ12 ; σ1

(6) τ11 ∼Σ τ2

(5) Γ, x : τ3 | Σ ⊢ t2 :: τ2 ; σ2

(1) Γ, x : τ3 | Σ ⊢ t1 t2 :: τ12 ; σ1 ∨ σ2 ∨ σ

(2) Γ | Σ ⊢ v◦ :: τ ′
3 ; ⊥ (assume)

(3) τ3 ∼Σ τ ′
3 (assume)

(7..9) Γ | Σ ⊢ t1[v
◦/x] :: τ ′

11
σ′

→ τ ′
12 ; σ′

1

τ ′
11

σ′

→ τ ′
12 ∼Σ τ11

σ
→ τ12

σ1 ∼Σ σ′
1 (IH 4 2 3)

(10..12) Γ | Σ ⊢ t2[v
◦/x] :: τ ′

2 ; σ′
2

τ2 ∼Σ τ ′
2

σ2 ∼Σ σ′
2 (IH 5 2 3)

(13) τ ′
11 ∼Σ τ ′

2 (SimApp, SimTrans 8 6 11)

(14) Γ | Σ ⊢ t1[v
◦/x] t2[v

◦/x] :: τ ′
12 ; σ′

1 ∨ σ′
2 ∨ σ′ (TyApp 7 10 13)

(15) Γ | Σ ⊢ (t1 t2)[v
◦/x] :: τ ′

12 ; σ′
1 ∨ σ′

2 ∨ σ′ (Def. Sub. 14)

Case: t = (let x = t1 in t2) / TyLet
Case: t = (letregion r with {wi :: δi} in t1) / TyLetRegion
Case: t = (if t1 then t2 else t3) / TyIf

Similarly to TyApp case.

276 APPENDIX A. PROOFS OF LANGUAGE PROPERTIES

Case: t = True ϕ / TyTrue
Case: t = False ϕ / TyFalse

Trivial. Types contain do not contain value variables.

Case: t = update δ t1 t2 / TyUpdate
Case: t = suspend δ t1 t2 / TySuspend

Similarly to TyApp case.

Case: t = () / TyUnit

Trivial. Unit does not contain value variables.

Case: t = l / TyLoc

Trivial. Locations do not contain value variables.

277

Lemma: (Substitution of Types in Values)

If Γ, a : κ3 | Σ ⊢ t :: τ1 ; σ
and Γ | Σ ⊢T ϕ2 :: κ2

and κ3 ∼Σ κ2

then Γ[ϕ2/a] | Σ ⊢ t[ϕ2/a] :: τ1[ϕ2/a] ; σ[ϕ2/a]

Proof: by induction over the derivation of Γ, a : κ3 | Σ ⊢ t :: τ1 ; σ

(IH) Substitution holds for all subterms of t. (assume)

Case: t = x / TyVar

Trival. No type vars in value vars.

Case: t = Λ(a : κ). t / TyAbsT

(4) Γ, a : κ3, a11 : κ11 | Σ ⊢ t12 :: τ12 ; σ1

(1) Γ, a : κ3 | Σ ⊢ Λ(a11 : κ11). t12 :: ∀(a11 : κ11). τ12 ; σ1

(2) Γ | Σ ⊢T ϕ2 :: κ2 (assume)

(3) κ3 ∼Σ κ2 (assume)

(5) Γ, a11 : κ11 | Σ ⊢T ϕ2 :: κ2 (Weak. Type Env 2)

(6) (Γ, a11 : κ11)[ϕ2/a] | Σ ⊢ t12[ϕ2/a]

:: τ12[ϕ2/a] ; σ1[ϕ2/a] (IH 4 5 3)

(7) Γ[ϕ2/a], a11 : κ11[ϕ2/a] | Σ ⊢ t12[ϕ2/a]

:: τ12[ϕ2/a] ; σ1[ϕ2/a] (Def. Sub. 6)

(8) Γ[ϕ2/a] | Σ ⊢ (Λ(a11 : κ11). t12)[ϕ2/a]

:: (∀(a11 : κ11). τ12)[ϕ2/a] ; σ1[ϕ2/a] (Def. Sub, TyAbsT 7)

Case: t = t11 ϕ12 / TyAppT

(4) Γ, a : κ4 | Σ ⊢ t1 :: ∀(a1 : κ11). ϕ12 ; σ1 (5) Γ, a : κ4 | Σ ⊢T ϕ2 :: κ2 (6) κ11 ∼Σ κ2

(1) Γ, a : κ4 | Σ ⊢ t1 ϕ2 :: ϕ12[ϕ2/a1] ; σ1[ϕ2/a1]

(2) Γ | Σ ⊢T ϕ3 :: κ3 (assume)

(3) κ4 ∼Σ κ3 (assume)

(7) Γ[ϕ3/a] | Σ ⊢ t1[ϕ3/a]

:: (∀(a1 : κ11). ϕ12)[ϕ3/a] ; σ1[ϕ3/a] (IH 4 2 3)

(8) Γ[ϕ3/a] | Σ ⊢ t1[ϕ3/a]

:: ∀(a1 : κ11[ϕ3/a]). ϕ12[ϕ3/a] ; σ1[ϕ3/a] (Def. Sub. 7)

(9) Γ[ϕ3/a] | Σ ⊢T ϕ2[ϕ3/a] :: κ2[ϕ3/a] (Sub. Type/Type 5 2 3)

(10) κ11[ϕ3/a] ∼Σ κ2[ϕ3/a] (Def. Sub, Def. (∼), 6)

(11) Γ[ϕ3/a] | Σ ⊢ t1[ϕ3/a] ϕ2[ϕ3/a]

:: (ϕ12[ϕ3/a])[ϕ2[ϕ3/a]/a1]

; (σ1[ϕ3/a])[ϕ2[ϕ3/a]/a1] (TyAppT 8 9 10)

(12) a 6= a1 (No Var Capture 4)

(13) Γ[ϕ3/a] | Σ ⊢ (t1 ϕ2)[ϕ3/a]

:: (ϕ12[ϕ2/a1])[ϕ3/a] ; (σ1[ϕ2/a1])[ϕ3/a] (Def. Sub. 11 12)

278 APPENDIX A. PROOFS OF LANGUAGE PROPERTIES

Case: t = λ(x : τ11). t12 / TyAbs
Case: t = (t1 t2) / TyApp
Case: t = (let x = t1 in t2) / TyLet

Similarly to TyAbsT Case

Case: t = letregion r with {wi = δi} in t1 / TyLetRegion

(6) δi well formed

(4) Γ, a : κ3, r : %, wi = κi | Σ ⊢ t1 :: τ ; σ

(7) Γ | Σ ⊢K κi :: ♦

(5) Γ, a : κ3 | Σ ⊢T δi :: κi

(1) Γ, a : κ3 | Σ ⊢ letregion r with {wi = δi} in t1 :: σ ;

(2) Γ | Σ ⊢T ϕ2 :: κ2 (assume)

(3) κ3 ∼Σ κ2 (assume)

(8) Γ, r : %, wi : κi | Σ ⊢T ϕ2 :: κ2 (Weak. Type Env 2)

(9) (Γ, r : %, wi : κi)[ϕ2/a] | Σ ⊢ t[ϕ2/a] :: τ [ϕ2/a] ; σ[ϕ2/a] (IH 4 8 3)

(10) Γ[ϕ2/a], r : %, (wi : κi[ϕ2/a])|Σ ⊢ t[ϕ2/a]

:: τ [ϕ2/a] ; σ[ϕ2/a] (Def. Sub. 9)

(11) Γ[ϕ2/a] | Σ ⊢T δi[ϕ2/a] :: κi[ϕ2/a] (Sub. Type/Type 5 2 3)

(12) Γ | κi[ϕ2/a] ⊢K ♦ :: (Insp. Kinding Rules)

(13) δi[ϕ2/a] well formed (Def. Well Formed 6)

(14) Γ[ϕ2/a] | Σ ⊢ letregion r with {wi = δi[ϕ2/a]} in t[ϕ2/a]

:: τ [ϕ2/a] ;σ[ϕ2/a] (TyLetRegion 10..13)

(15) Γ[ϕ2/a] | Σ ⊢ (letregion r with {wi = δi} in t)[ϕ2/a]

:: τ [ϕ2/a] ;σ[ϕ2/a] (Def. Sub. 14)

Case: t = if t1 then t2 else t3 / TyIf

Similarly to TyAbsT case.

Case: t = True ϕ / TyTrue

(4) Γ, a : κ3 | Σ ⊢T ϕ :: %

(1) Γ, a : κ3 | Σ ⊢ True ϕ :: Bool ϕ ; ⊥

(2) Γ | Σ ⊢T ϕ2 :: κ2 (assume)

(3) κ3 ∼Σ κ2 (assume)

(5) Γ[ϕ2/a] | Σ ⊢T ϕ[ϕ2/a] :: %[ϕ2/a] (Sub Type/Type 4 2 3)

(6) Γ[ϕ2/a] | Σ ⊢T ϕ[ϕ2/a] :: % (Def. Sub. 5)

(7) Γ[ϕ2/a] | Σ ⊢ True (ϕ[ϕ2/a]) :: Bool (ϕ[ϕ2/a]) ; ⊥ (TyTrue 6)

(8) Γ[ϕ2/a] | Σ ⊢ (True ϕ)[ϕ2/a] :: (Bool ϕ)[ϕ2/a] ; ⊥ (Def. Sub. 7)

279

Case: t = False ϕ

Similarly to TyTrue Case.

Case: t = update δ t1 t2 / TyUpdate

(4) Γ, a : κ4 | Σ ⊢T δ :: Mutable σ

(5) Γ, a : κ4 | Σ ⊢ t1 :: Bool ϕ1 ; σ1

(6) Γ, a : κ4 | Σ ⊢ t2 :: Bool ϕ2 ; σ2

(1) Γ, a : κ4 | Σ ⊢ update δ t1 t2 :: () ; σ1 ∨ σ2 ∨ Read ϕ2 ∨Write ϕ1

(2) Γ | Σ ⊢T ϕ3 :: κ3 (assume)

(3) κ4 ∼Σ κ3 (assume)

(7) Γ, a : κ4 | Σ ⊢T ϕ3 :: κ3 (Weak. Type Env 2)

(8) Γ[ϕ3/a] | Σ ⊢ t1[ϕ3/a] :: Bool (ϕ1[ϕ3/a]) ; σ1[ϕ3/a] (IH, Def. Sub. 5 7 3)

(9) Γ[ϕ3/a] | Σ ⊢ t2[ϕ3/a] :: Bool (ϕ2[ϕ3/a]) ; σ2[ϕ3/a] (IH, Def. Sub. 6 7 3)

(10) Γ[ϕ3/a] | Σ ⊢T δ[ϕ3/a] :: (Mutable δ)[ϕ3/a] (Sub. Type/Type 4 2 3)

(11) Γ[ϕ3/a] | Σ ⊢T δ[ϕ3/a] :: Mutable (δ[ϕ3/a]) (Def. Sub. 10)

(12) Γ[ϕ3/a] | Σ ⊢ update (δ[ϕ3/a]) (t1[ϕ3/a]) (t2[ϕ3/a])

:: ()

; σ1[ϕ3/a] ∨ σ2[ϕ3/a] ∨ Read (ϕ2[ϕ3/a])

∨Write (ϕ1[ϕ3/a]) (TyUpdate 8 9 11)

(13) Γ[ϕ3/a] | Σ ⊢ (update δ t1 t2)[ϕ3/a]

:: ()

; (σ1 ∨ σ2 ∨ Read ϕ2 ∨Write ϕ1)[ϕ3/a] (Def. Sub. 12)

Case: t = suspend δ t1 t2 / TySuspend

Similarly to TyApp / TyUpdate case.

Case: t = () / TyUnit
Case: t = l / TyLoc

Trivial. No free type vars.

280 APPENDIX A. PROOFS OF LANGUAGE PROPERTIES

Lemma: (Substitution of Types in Types)

If Γ, a : κ3 | Σ ⊢T ϕ1 :: κ1

and Γ | Σ ⊢T ϕ2 :: κ2

and κ3 ∼Σ κ2

then Γ[ϕ2/a] | Σ ⊢T ϕ1[ϕ2/a] :: κ1[ϕ2/a]

Proof: by induction over the derivation of Γ, a : κ3 | Σ ⊢T ϕ1 :: κ1

(IH) Substitution holds for all subterms of ϕ1. (assume)

Case: ϕ = a / KiVar

Similarly to Subst Var/Var TyVar case.

Case: ϕ = ∀(b : κ1). τ / KiAll

(4) Γ, a : κ4 | Σ ⊢T σ :: κ1 (5) Γ, a : κ4, b : κ1 | Σ ⊢T τ1 :: κ2

(1) Γ, a : κ4 | ϕ1 ⊢T ∀(b : κ1). τ1 :: κ2

(2) Γ | Σ ⊢T ϕ3 :: κ3 (assume)

(3) κ4 ∼Σ κ3 (assume)

(6) Γ[ϕ3/a] | Σ ⊢T ϕ1[ϕ3/a] :: κ1[ϕ3/a] (IH 4 2 3)

(7) Γ, b : κ1 | Σ ⊢T ϕ3 :: κ3 (Weak. Type Env 2)

(8) Γ[ϕ3/a], b : κ1[ϕ3/a] | Σ ⊢T τ1[ϕ3/a] :: κ2[ϕ3/a] (IH, Def. Subst 5 7 3)

(9) b /∈ fv(Γ[ϕ3/a]) (Uniqueness of Vars)

(10) Γ[ϕ3/a] | Σ ⊢T (∀(b : κ1). τ1)[ϕ3/a] :: κ2[ϕ3/a] (KiAll, Def. Sub. 6 8 9)

Case: ϕ = ϕ1 ϕ2 / KiApp

(4) Γ, a : κ4 | Σ ⊢T ϕ1 :: Π(b : κ11). κ12 (5) Γ, a : κ4 | Σ ⊢T ϕ2 :: κ11

(1) Γ, a : κ4 | Σ ⊢T ϕ1 ϕ2 :: κ12[ϕ2/a]

(2) Γ | Σ ⊢T ϕ3 :: κ3 (assume)

(3) κ4 ∼Σ κ3 (assume)

(6) Γ[ϕ3/a] | Σ ⊢T ϕ1[ϕ3/a] :: Π(b : κ11[ϕ3/a]). (κ12[ϕ3/a]) (IH, Def. Sub. 4 2 3)

(7) Γ[ϕ3/a] | Σ ⊢T ϕ2[ϕ3/a] :: κ11[ϕ3/a] (IH 5 2 3)

(8) Γ[ϕ3/a] | Σ ⊢T ϕ1[ϕ3/a] ϕ2[ϕ3/a]

:: (κ12[ϕ3/a])[ϕ2[ϕ3/a]/b] (KiApp 6 7)

(9) b /∈ fv(ϕ3) (Uniqueness of Var)

(10) Γ[ϕ3/a] | Σ ⊢T (ϕ1 ϕ2)[ϕ3/a] :: (κ12[ϕ2/b])[ϕ3/a] (Def. Sub. 8)

The remaining cases are similar to the KiApp case.

281

Theorem: (Progress)
Suppose we have a state H ; t with store H and term t. Let Σ be a store
typing which models H. If H is well typed, and t is closed and well typed, and
t contains no fabricated region witnesses, then either t is a value or H ; t can
transition to the next state.

If ∅ | Σ ⊢ t :: τ ; σ
and Σ |= H
and Σ ⊢ H
and nofab(t)

then t ∈ Value
or for some H′, t′ we have

(H ; t −→ H′ ; t′ and nofab(t′))

Proof: By induction over the derivation of ∅ | Σ ⊢ t :: τ ; σ

Let (H ; t can step) ≡ (for some H, t we have H ; t −→ H′ ; t′ and nofab(t′))

We will not formally prove nofab(t′) in the conclusion of each case. This
property can be verified by inspecting (EvLetRegion) and noting that
unevaluated applications of witness constructors are not substituted into the
body of the term.

(IH) Progress holds for all subterms of t. (assume)

Case: t is one of x, Λ(a :: κ). t′, λ(x :: τ). t′, (), l

t ∈ Value

Case: t = (t1 ϕ2) / TyAppT

(5) ∅ | Σ ⊢ t1 :: ∀(a : κ11). ϕ12 ; σ (6) ∅ | Σ ⊢T ϕ2 :: κ2 (7) κ11 ∼Σ κ2

(1) ∅ | Σ ⊢ t1 ϕ2 :: ϕ12[ϕ2/a] ; σ[ϕ2/a]

(2..4) Σ |= H, Σ ⊢ H, nofab(t) (assume)

(5) t1 ∈ Value or H ; t1 can step (IH 5 2..4)

(6) Case: t1 ∈ Value

(7) t1 = Λ(a : κ11). t12 (Forms of Terms 6 5)

(8) H ; t can step (EvTAppAbs 6)

(8) Case: H ; t1 can step

(9) H ; t can step (EvTApp1 7)

282 APPENDIX A. PROOFS OF LANGUAGE PROPERTIES

Case: t = t1 t2 / TyApp

(5) ∅ | Σ ⊢ t1 :: τ11
σ
→ τ12 ; σ1 (6) ∅ | Σ ⊢ t2 :: τ2 ; σ2 (7) τ11 ∼Σ τ2

(1) ∅ | Σ ⊢ t1 t2 :: τ12 ; σ1 ∨ σ2 ∨ σ

(2..4) Σ |= H, Σ ⊢ H, nofab(t) (assume)

(8) t1 ∈ Value or H ; t1 can step (IH 5 2..4)

(9) t2 ∈ Value or H ; t2 can step (IH 6 2..4)

(10) Case : H ; t1 can step

(11) H ; t can step (EvApp1 10)

(12, 13) Case : t1 ∈ Value, H ; t2 can step

(14) H ; t can step (EvApp2 12 13)

(15, 16) Case : t1 ∈ Value, t2 ∈ Value

(17) t1 = λ(x : τ11). t12 (Forms of Terms 15 5)

(18) H ; t can step (EvAppAbs 17 16)

Case: t = (let x = t1 in t2) / TyLet

Similarly to TyApp case.

Case: t = (letregion r with {wi = δi} in t1) / TyLetRegion

(1) ∅ | Σ ⊢ (letregion r with {wi = δi} in t1) :: τ1 ; σ1 (assume)

(2..4) Σ |= H, Σ ⊢ H, nofab(t) (assume)

(5) H, propOf(∆i) ; δi ∆i (Region Wit. Assert)

(6) H ; t can step (EvLetRegion 5)

283

Case: t = (if t1 then t2 else t3) / TyIf

(5) ∅ | Σ ⊢ t1 :: Bool ϕ ; σ1

(6) ∅ | Σ ⊢ t2 :: τ2 ; σ2

(7) ∅ | Σ ⊢ t3 :: τ3 ; σ3 (8) τ2 ∼Σ τ3

(1) ∅ | Σ ⊢ (if t1 then t2 else t3) :: τ2 ; (σ1 ∨ σ2 ∨ σ3 ∨ Read ϕ)

(2..4) Σ |= H, Σ ⊢ H, nofab(t) (assume)

(9) t1 ∈ Value or H ; t1 can step (IH 5 2..4)

(10) Case : t1 ∈ Value

(11) t1 = l (Forms of Terms 10 5)

(12) ∅ | Σ ⊢ l :: Bool ϕ ; ⊥ (5 11)

(13) l : Bool r ∈ Σ (TyLoc 12)

(14) l
ρ
7→ V ∈ H for some V ∈ {T, F} (Def. Store Model 2 13)

(15) H ; t can step (EvIfThen, EvIfElse 14)

(16) Case : H ; t1 can step

(17) H ; t can step (EvIf 16)

Case: t = (True ϕ1) / TyTrue

(5) ∅ | Σ ⊢T ϕ1 :: %

(1) ∅ | Σ ⊢ True ϕ1 :: Bool ϕ1 ; ⊥

(2..4) Σ |= H, Σ ⊢ H, nofab(t) (assume)

(6) ϕ1 = ρ (Forms of Types, t is closed, 1)

(7) ∅ | Σ ⊢T ρ :: % (5 6)

(8) ρ ∈ Σ (KiHandle 7)

(9) ρ ∈ H (Def. Store Model 2 8)

(10) H ; t can step (EvTrue 9 6)

Case: t = (False ϕ1) / TyFalse

Similarly to TyTrue case.

284 APPENDIX A. PROOFS OF LANGUAGE PROPERTIES

Case: t = (update δ t1 t2) / TyUpdate

(5) ∅ | Σ ⊢T δ :: Mutable ϕ1

(6) ∅ | Σ ⊢ t1 :: Bool ϕ1 ; σ1

(7) ∅ | Σ ⊢ t2 :: Bool ϕ2 ; σ2

(1) ∅ | Σ ⊢ (update δ t1 t2) :: () ; (σ1 ∨ σ2 ∨ Read ϕ2 ∨Write ϕ1)

(2..4) Σ |= H, Σ ⊢ H, nofab(t) (assume)

(8, 9) Case : t1 ∈ Value, t2 ∈ Value

(10) δ = mutable ρ1 (Forms of Types 4 5)

(11) mutable ρ1 ∈ Σ (KiMutable 5 10)

(12) mutable ρ1 ∈ H (Def. Store Model 2 11)

(13, 14) t1 = l1, t2 = l2 (Forms of Terms 8 9 6 7)

(15) l1
ρ′17→ V′

1 ∈ H for some V′
1 ∈ {T, F} (as per TyIf case 2 6 13)

(16) l2
ρ2
7→ V2 ∈ H for some V2 ∈ {T, F} (as per TyIf case 2 7 14)

(17) ρ1 = ϕ1 (KiMutable 5 10)

(18) ∅ | Σ ⊢ l1 :: Bool ρ1 ; ⊥ (6 13 17)

(19) l1 : Bool ρ1 ∈ Σ (Tyloc 18)

(20) l1
ρ1
7→ V1 ∈ H for some V1 ∈ {T, F} (Def. Store Model 2 19)

(21) ρ1 = ρ′1 (Def. Store 15 20)

(22) H ; t can step (EvUpdate3, 12 20 16 10 13 14)

Other cases via EvUpdate1 or EvUpdate2 as per TyApp case.

Case: t = (suspend δ t1 t2) / TySuspend

(5) τ11 ∼Σ τ2

(6) ∅ | Σ ⊢T δ :: Pure σ

(7) ∅ | Σ ⊢ t1 :: τ11
σ
→ τ12 ; σ1

(8) ∅ | Σ ⊢ t2 :: τ2 ; σ2

(1) ∅ | Σ ⊢ (suspend δ t1 t2) :: τ12 ; σ1 ∨ σ2

(2..4) Σ |= H, Σ ⊢ H, nofab(t) (assume)

(9) δ ∈ {MkPurify ρ δ2, MkPureJoin σ3 σ4 δ3 δ4,

MkPure ⊥, pure σ} (Forms of Types 6)

(10) Case : δ1 ∈ {MkPurify ρ δ2, MkPureJoin σ3 σ4 δ3 δ4, MkPure ⊥}

(11) H ; δ1 δ′1 (Progress of Purity 6 3 10)

(12) H ; t can step (EvSuspend1 11)

(13..15) Case : δ1 = pure σ, t1 ∈ Value, t2 ∈ Value

(16) t1 = λ(x : τ). t3 (Forms of Terms 6 16)

(17) H ; t1 can step (EvSuspend4 13 16 15)

Other cases via EvSuspend2 or EvSuspend3 as per TyApp case.

285

Theorem: (Preservation)
Suppose we have a state H ; t with store H and term t. Let Σ be a store
typing which models H. If H and t are well typed, and H ; t can transition to
a new state H′ ; t′ then for some Σ′ which models H′, H′ is well typed, t′ has a
similar type to t, and the effect σ′ of t′ is no greater than the effect σ of t.

If Γ | Σ ⊢ t :: τ ; σ
and H ; t −→ H′ ; t′

and Σ ⊢ H and Σ |= H

then for some Σ′, τ ′, σ′ we have
Γ | Σ′ ⊢ t′ :: τ ′ ; σ′

and Σ′ ⊇ Σ and Σ′ |= H′ and Σ′ ⊢ H′

and τ ′ ∼Σ′ τ and σ′ ⊑Σ′ σ

Proof: By induction over the derivation of Γ | Σ ⊢ t :: τ ; σ.

(IH) Progress holds for all subterms of t. (assume)

Case: t is one of x, Λ(a :: κ). t′, λ(x :: τ). t′, (), l

Can’t happen. There is no transition rule for H ; t

Case: t = t1 ϕ2 / TyAppT / EvApp1

(5) Γ | Σ ⊢ t1 :: ∀(a : κ11). ϕ12 ; σ (6) Γ | Σ ⊢T ϕ2 :: κ2 (7) κ11 ∼Σ κ2

(1) Γ | Σ ⊢ t1 ϕ2 :: ϕ12[ϕ2/a] ; σ[ϕ2/a]

(8) H ; t1 −→ H′ ; t′1
(2) H ; t1 ϕ2 −→ H′ ; t′1 ϕ2

(3, 4) Σ |= H, Σ ⊢ H (assume)

(9..14) Γ | Σ′ ⊢ t′1 :: ∀(a : κ′
11). ϕ′

12 ; σ′,

Σ′ ⊇ Σ, σ′ ⊑Σ′ σ,

∀(a : κ′
11). ϕ′

12 ∼Σ′ ∀(a : κ11). ϕ12

Σ′ ⊢ H′, Σ′ |= H′ (IH 5 8 3 4)

(15) Γ | Σ′ ⊢T ϕ2 :: κ2 (Weak. Store Typing 6 10)

(16) κ′
11 ∼Σ′ κ11 (SimAll 12)

(17) κ11 ∼Σ′ κ2 (Weak. (∼Σ) 7 10)

(18) κ′
11 ∼Σ′ κ2 (16 17)

(19) Γ | Σ′ ⊢ t′1 ϕ2 :: ϕ′
12[ϕ2/a] ; σ′[ϕ2/a] (TyAppT 9 13 18)

286 APPENDIX A. PROOFS OF LANGUAGE PROPERTIES

Case: t = t1 ϕ2 / TyAppT / EvAppAbs

(8) Γ, a : κ11 | Σ ⊢ t12 :: ϕ12 ; σ

(5) Γ | Σ ⊢ Λ(a : κ11). t12 :: ∀(a : κ11). ϕ12 ; σ

(7) κ11 ∼Σ κ2

(6) Γ | Σ ⊢T ϕ2 :: κ2

(1) Γ | Σ ⊢ (Λ(a : κ11). t12) ϕ2 :: ϕ12[ϕ2/a] ; σ[ϕ2/a]

(2) H ; (Λ(a :: κ11). t12) ϕ2 −→ H ; t12[ϕ2/a]

(3, 4) Σ |= H, Σ ⊢ H (assume)

(9) Γ[ϕ2/a] | Σ ⊢ t12[ϕ2/a] :: ϕ12[ϕ2/a] ; σ[ϕ2/a] (Sub. Type/Value 8 6 7)

(10) a /∈ Γ (No Var Capture 1)

(11) Γ[ϕ2/a] ≡ Γ (Def. Sub. 10)

Case: t = t1 t2 / TyApp / EvApp1

(5) Γ | Σ ⊢ t1 :: τ11
σ
→ τ12 ; σ1 (6) Γ | Σ ⊢ t2 :: τ2 ; σ2 (7) τ11 ∼Σ τ2

(1) Γ | Σ ⊢ t1 t2 :: τ12 ; σ1 ∨ σ2 ∨ σ

(8) H ; t1 −→ H′ ; t′1
(2) H ; t1 t2 −→ H′ ; t′1 t2

(3, 4) Σ |= H, Σ ⊢ H (assume)

(9..14) Γ | Σ′ ⊢ t′1 :: τ ′
11

σ′

→ τ ′
12 ; σ′

1

Σ′ ⊇ Σ, Σ′ ⊢ H′, Σ′ |= H′

(τ ′
11

σ′

→ τ ′
12) ∼Σ′ (τ11

σ
→ τ12)

σ′
1 ∼Σ′ σ1 (IH 5 8 3 4)

(15) Γ | Σ′ ⊢ t2 :: τ2 ; σ2 (Weak. Store Typing 6 10)

(16) τ ′
11 ∼Σ′ τ11 (SimApp 13)

(17) τ11 ∼Σ′ τ2 (Weak. (∼Σ) 7 10)

(18) τ ′
11 ∼Σ′ τ2 (16 17)

(19) Γ | Σ′ ⊢ t′1 t2 :: τ ′
12 ; σ′

1 ∨ σ2 ∨ σ′ (TyApp 9 15 18)

(20) σ′ ∼Σ′ σ (SimApp 13)

(21) σ′
1 ∨ σ2 ∨ σ′ ⊑Σ′ σ1 ∨ σ2 ∨ σ (14 20)

287

Case: t = t1 t2 / TyApp / EvApp2

Similarly to TyApp/EvApp1 case.

Case: t = t1 t2 / TyApp / EvAppAbs

(8) Γ, x : τ11 | Σ ⊢ t12 :: τ12 ; σ

(5) Γ | Σ ⊢ λ(x : τ11). t12 :: τ11
σ
→ τ12 ; σ1 (6) Γ | Σ ⊢ v◦ :: τ2 ; ⊥ (7) τ11 ∼Σ τ2

(1) Γ | Σ ⊢ (λ(x : τ11). t12) v◦ :: τ12 ; σ1 ∨ σ2 ∨ σ

(2) H ; (λ(x : τ11). t12) v◦ −→ H′ ; t12[v
◦/x]

(3, 4) Σ |= H, Σ ⊢ H (assume)

(9..11) Γ | Σ ⊢ t12[v
◦/x] :: τ ′

12 ; σ′

τ12 ∼Σ τ ′
12

σ ∼Σ σ′ (Sub. Value/Value 8 6 7)

(12) σ′ ⊑Σ σ1 ∨ σ2 ∨ σ (11)

Case: t = let x = t1 in t2 / TyLet / EvLet1

(5) Γ | Σ ⊢ t1 :: τ1 ; σ1 (6) Γ, x : τ3 | Σ ⊢ t2 :: τ2 ; σ2 (7) τ1 ∼Σ τ3

(1) Γ | Σ ⊢ let x = t1 in t2 :: τ2 ; σ1 ∨ σ2

(8) H ; t1 −→ H′ ; t′1
(2) H ; let x = t1 in t2 −→ H′ ; let x = t′1 in t2

(3, 4) Σ |= H, Σ ⊢ H (assume)

(9..14) Γ | Σ′ ⊢ t1 :: τ ′
1 ; σ′

1

Σ′ ⊇ Σ, Σ′ ⊢ H′, Σ′ |= H′

τ ′
1 ∼Σ′ τ1, σ′

1 ⊑Σ′ σ1 (IH 5 2 3 4)

(15) τ1 ∼Σ′ τ3 (Weak. (∼Σ) 7 10)

(16) τ ′
1 ∼Σ′ τ3 (13 15)

(17) Γ, x : τ3 | Σ
′ ⊢ t2 :: τ2 ; σ2 (Weak. Store Typing 6 10)

(18) Γ | Σ′ ⊢ let x = t′1 in t2 :: τ2 ; σ′
1 ∨ σ2 (TyLet 9 17 16)

(20) σ′
1 ∨ σ2 ⊑Σ′ σ1 ∨ σ2 (14)

Case: t = let x = t1 in t2 / TyLet / EvLet

Similarly to TyApp / EvAppAbs case.

288 APPENDIX A. PROOFS OF LANGUAGE PROPERTIES

Case: t = letregion r with {wi = δi} in t1 / TyLetRegion / EvLetRegion

(5) Γ, r : %, wi : κi | Σ ⊢ t1 :: τ ; σ

(6) Γ | Σ ⊢K κi :: ♦

(7) Γ | Σ ⊢T δi :: κi (8) δi well formed

(1) Γ | Σ ⊢ (letregion r with {wi = δi} in t1) :: τ ; σ

(9) H, propOf(∆i) ; δi ∆i (10) ρ fresh

(2) H ; letregion r with {wi = δi} in t1 −→ H, ρ, r ∼ ρ, ∆i ; t1[∆i/wi][ρ/r]

(3, 4) Σ |= H, Σ ⊢ H (assume)

(11) Γ[∆i/wi][ρ/r] | Σ ⊢ t1[∆i/wi][ρ/r]

:: τ1[∆i/wi][ρ/r] ; σ[∆i/wi][ρ/r] (Sub. Type/Value 5 7)

(12) Γ[∆i/wi][ρ/r] ≡ Γ (No Var Capture 1)

(13) σ[∆i/wi][ρ/r] ≡ σ[ρ/r] (No Wit. Vars in Effects 7 6)

(14) τ [∆i/wi][ρ/r] ≡ τ [ρ/r] (No Wit. Vars in Value Types 7 6)

(15) Σ′ = Σ, ρ, r ∼ ρ, ∆i (let)

(16) Γ | Σ′ ⊢ t1[∆i/wi][ρ/r] :: τ [ρ/r] ; σ[ρ/r] (Weak. Store Typing 11..15)

(17) τ ∼Σ′ τ [ρ/r] (SimHandle 15)

(18) σ ⊑Σ′ σ[ρ/r] (SubReflSim, SimHandle 15)

Case: t = if t1 then t2 else t3 / TyIf / EvIf

Similarly to TyApp / EvApp1 case.

Case: t = if t1 then t2 else t3 / TyIf / EvIfThen

(5) Γ | Σ ⊢ l :: Bool ρ ; σ1

(6) Γ | Σ ⊢ t2 :: τ2 ; σ2

(7) Γ | Σ ⊢ t3 :: τ3 ; σ3 τ2 ∼Σ τ3

(1) Γ | Σ ⊢ if l then t2 else t3 :: τ2 ; σ1 ∨ σ2 ∨ σ3 ∨ Read ρ

(2) H, l
ρ
7→ T ; if l then t2 else t3 −→ H, l

ρ
7→ T ; t2

(3, 4) Σ |= H, Σ ⊢ H (assume)

(8) Γ | Σ ⊢ t2 :: τ2 ; σ2 (Repeat 6)

(9) σ2 ⊑Σ σ1 ∨ σ2 ∨ σ3 ∨ Read ρ (SubJoin2)

289

Case: t = if t1 then t2 else t3 / TyIf / EvIfElse

Similarly to TyIf / EvIfThen case.

Case: t = True ϕ / TyTrue / EvTrue

(6) ρ ∈ Σ

(5) Γ | Σ ⊢T ρ :: %

(1) Γ | Σ ⊢ True ρ :: Bool ρ ; ⊥

l fresh

(2) H, ρ ; True ρ −→ H, ρ, l
ρ
7→ T ; l

(3, 4) Σ |= H, Σ ⊢ H (assume)

(7) Σ′ = Σ, l : Bool ρ (let)

(8) Γ | Σ′ ⊢ l :: Bool ρ ; ⊥ (TyLoc 7)

Case: t = False ϕ / TyFalse / EvFalse

Similarly to TyFalse / EvFalse case.

Case: t = update δ t1 t2 / TyUpdate / {EvUpdate1, EvUpdate2}

Similarly to TyApp / EvApp1 case.

Case: t = update δ t1 t2 / TyUpdate / EvUpdate3

(2) H, mutable ρ1, l1
ρ1
7→ V1, l2

ρ2
7→ V2 ; update mutable ρ1 l1 l2

−→ H, mutable ρ1, l1
ρ1
7→ V2, l2

ρ2
7→ V2 ; ()

(1) Γ | Σ ⊢ update mutable ρ1 l1 l2 :: ()

; σ1 ∨ σ2 ∨ Read ρ1 ∨ Read ρ2 (assume)

(3, 4) Σ |= H, Σ ⊢ H (assume)

(5) Γ | Σ ⊢ () :: () ; ⊥ (TyUnit)

Case: t = suspend δ t1 t2 / TySuspend / EvSuspend1

Immediate

Case: t = suspend δ t1 t2 / TySuspend / {EvSuspend2, EvSuspend3}

Similarly to TyApp / EvApp1 case.

290 APPENDIX A. PROOFS OF LANGUAGE PROPERTIES

Case: t = suspend δ t1 t2 / TySuspend / EvSuspend

(9) Γ, x : τ11 | Σ ⊢ t12 :: τ12 ; σ

(5) Γ | Σ ⊢ λ(x : τ11). t12 :: τ11
σ
→ τ12 ; ⊥

(8) τ11 ∼Σ τ2

(7) Γ | Σ ⊢ v◦ :: τ2 ; ⊥

(6) Γ | Σ ⊢T pure σ :: Pure σ

(1) Γ | Σ ⊢ suspend pure σ (λ(x : τ11). t12) v◦ :: τ12 ; ⊥

(2) H ; suspend pure σ (λ(x : τ11). t12) v◦ −→ H ; t[v◦/x]

(3, 4) Σ |= H, Σ ⊢ H (assume)

(10..12) Γ | Σ ⊢ t12[v
◦/x] :: τ ′

12 ; σ′,

τ ′
12 ∼Σ τ12, σ′ ⊑Σ σ (Sub. Value/Value 9 7 8)

(13) σ ⊑Σ ⊥ (SubPurify 6)

(14) σ′ ⊑Σ ⊥ (12 13)

