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Abstract
Stencil convolution is a fundamental building block of many sci-
entific and image processing algorithms. We present a declarative
approach to writing such convolutions in Haskell that is both effi-
cient at runtime and implicitly parallel. To achieve this we extend
our prior work on the Repa array library with two new features:
partitioned and cursored arrays. Combined with careful manage-
ment of the interaction between GHC and its back-end code gen-
erator LLVM, we achieve performance comparable to the standard
OpenCV library.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; Polymorphism; Abstract data types

General Terms Languages, Performance

Keywords Arrays, Data parallelism, Haskell

1. Introduction
This paper addresses an implicit challenge put to us by Rami
Mukhtar of NICTA (the Australian equivalent of INRIA). At the
time, Rami was starting a project on writing image processing al-
gorithms in declarative languages. Having read our previous work
on the Repa library for parallel arrays [15], he took it to heart, and
promptly implemented the Canny edge detection algorithm [6] as a
benchmark. Unfortunately, he then informed us that the Repa ver-
sion was more than 10x slower than the equivalent implementation
in OpenCV [5], an industry standard library of computer vision
algorithms. Due to this, he instead based his project around the Ac-
celerate EDSL [8] for writing parallel array codes on GPGPUs, pro-
duced by a competing (but friendly) faction in our research group.
Clearly, we could not let this stand.

Simply put, our aim is to implement parallel image processing
algorithms that run as fast (faster!) than the highly optimised ones
for imperative languages. We also want to write this code directly
in Haskell and use the GHC runtime system, instead of, say, im-
plementing an EDSL that produces LLVM or CUDA code. Using
Haskell directly gives us access to GHC’s powerful inliner and sim-
plifier, which we use to convert declarative code into the tight loops
we rely on for performance. The GHC runtime provides the primi-
tives we use to implement parallelism in a portable way.

[Copyright notice will appear here once ’preprint’ option is removed.]

At the core of many image processing algorithms is the 2D
convolution operator ∗, whose definition is as follows:

(A∗K)(x,y) = ∑
i

∑
j

A(x+ i,y+ j) K(i, j)

Here, A is the image being processed, and K is the convolution
kernel or stencil. The stencil is a small matrix, with typical di-
mensions 3x3 or 1x5, that defines a transformation on the image.
Typical transformations include the Gaussian blur, and the Sobel
differentiation operator, both of which are used in the Canny edge
detection algorithm. For this paper we focus on the efficient parallel
implementation of stencil convolution, though we will return to the
larger Canny algorithm near the end. As we are primarily interested
in image processing we also focus on arrays of rank 2, though our
techniques are equally applicable to arrays of higher rank.

Our contributions are as follows:

• An array fusion approach to writing stencil functions in Haskell
that yields performance comparable to the industry standard
OpenCV library.

• To achieve this we extend our previous approach [15] with two
new features: partitioned and cursored arrays. These features
allow us to optimise array programs that use different functions
to construct the various regions of the array, and to share sub-
computations of adjacent elements.

• A declarative API that allows us to write cache-friendly pro-
grams that access data in a block-wise manner, while cleanly
separating the evaluation code from the specification of the ar-
ray elements.

• As array fusion is sometimes perceived as “brittle” due to its
dependency on poorly understood code transformations, we
seek to mitigate this problem by summarising the main details
that must be accounted for to repeatably generate efficient ob-
ject programs. This includes the staging of inliner phases, and
the interaction between GHC and its back-end code generator,
LLVM.

• Finally, with the ultimate aim of writing declarative code that
runs as fast as competing libraries, we discuss the current chal-
lenges to array fusion and suggest directions for future research.

The Ypnos [22] and PASTHA [18] libraries also address stencil
convolution in Haskell, though [22] presents no performance fig-
ures and [18] lacks absolute numbers. On the other hand, Ypnos
deals elegantly with arrays of higher rank, and PASTHA also has
support for managing convergence conditions for iterative convo-
lution, which we don’t address here. Our philosophy of array pro-
gramming is also shared by the Chapel language [3], in that the
value of an array should be defined declaratively, using bulk oper-
ations. This specification is then mapped onto physical processors
in separate, orthogonal code.
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2. The Laplace Equation, Reloaded
Although we have found the general principle of Repa’s array rep-
resentation to work well, when applied to the problem of stencil
convolution we now have enough experience with it to point out
several infelicities. We will reuse our example from [15] of the nu-
merical solution of the Laplace equation. The overall structure of
this example is similar to the code in the original Canny implemen-
tation which we are trying to improve.

The solveLaplace function in Figure 1 solves the Laplace
equation ∇2u = 0 in a 2D grid, with constant value boundary
conditions. Numerically, the equation can be solved by applying
the following update function to every point in a grid until we reach
a fixed point:

u′(i, j) = (u(i−1, j)+u(i+1, j)+u(i, j−1)+u(i, j+1))/4

This process has the same effect as convolving the input image
with the Laplace stencil shown in Figure 3, and then dividing every
element in the result by four. Although in practice we would iterate
the above function to a fixed point, for benchmarking we simply
iterate it a fixed number of times, hence the steps parameter
to solveLaplace. The boundary conditions are specified by two
arrays, arrBoundValue and arrBoundMask. The first gives the
value to use at a particular point, while the second contains 0 where
the boundary applies and 1 otherwise. If we are too close to the
border of the array to apply the update function, then we return
the original value. The traverse function used in relaxLaplace
produces a new array by calling elemFn for every index in the
result. The elemFn worker is passed a lookup function get, which
it can use to get values from the source array. The type of traverse
is given in the same figure. The expression (Z :.i :.j) is an
array index to row i and column j. See [15] for further details.

Although solveLaplace gives the correct answer, it has sev-
eral runtime performance problems:

1. We test for the border at every iteration (the call to isBorder
in elemFn), even though in the vast majority of iterations we
are far from it. We will discuss border handling further in §4.1.

2. Every lookup of the source array must be bounds checked
by the library implementation. Concretely, the user-defined
elemFn might apply get to an out-of-bounds index (if, say,
isBorder was not implemented correctly), so get must con-
servatively check bounds before indexing the array.

3. As potentially arbitrary array indices could be passed to get,
the library performs computations of the form x + y*width
to gain the flat indices into the underlying buffer. However, in
Figure 1 the flat indices needed by get could be computed by
simple addition once the flat index of the center point is known.

We will return to these problems in later sections, but for now
note that the bounds checking overhead is the easiest to mitigate, as
we can simply disable it. Replacing the use of (!) in the definition
of traverse with an “unsafe” indexing operator removes the over-
head, but this is clearly unsatisfying. Far better would be to write
the code so that it is correct by construction. Nevertheless, in Fig-
ure 2 we present part of GHC’s Core Intermediate Representation
(IR) for the inner loop of an unsafe version of our solveLaplace
function. This is the code resulting from array fusion, after GHC
has unfolded all of the library functions, inlined the user defined
functions into them, and performed a large number of code transfor-
mations. The presented code loads the surrounding elements from
the source array, applies the stencil kernel and boundary conditions,
and updates the destination. The actual loop construct is defined in
the library, as a part of the force function used in solveLaplace.

In the Core IR, infix operators like +# and *# (one hash) work
on integers, while operators like +## and /## (two hashes) work on

type DIM2 = Z :. Int :. Int
type Image = Array DIM2 Float

solveLaplace :: Int -> Image -> Image -> Image -> Image
solveLaplace steps arrBoundMask arrBoundValue arrInit
= go steps arrInit
where go 0 arr = arr

go n arr
= let arr’ = force

$ zipWith (+) arrBoundValue
$ zipWith (*) arrBoundMask
$ relaxLaplace arr

in arr’ ‘seq‘ go (i - 1) arr’

{-# INLINE relaxLaplace #-}
relaxLaplace :: Image -> Image
relaxLaplace arr
= traverse arr id elemFn
where _ :. height :. width = extent arr

{-# INLINE elemFn #-}
elemFn get d@(Z :. i :. j)
= if isBorder i j

then get d
else (get (Z :. (i-1) :. j)

+ get (Z :. i :. (j-1))
+ get (Z :. (i+1) :. j)
+ get (Z :. i :. (j+1))) / 4

{-# INLINE isBorder #-}
isBorder i j
= (i == 0) || (i >= width - 1)
|| (j == 0) || (j >= height - 1)

{-# INLINE traverse #-} {- LIBRARY CODE -}
traverse :: Array sh a

-> (sh -> sh’) -> ((sh -> a) -> sh’ -> b)
-> Array sh’ b

traverse arr newExtent newElem
= Delayed (newExtent (extent arr)) (newElem (arr !))

Figure 1. Old implementation of Laplace using indexing

floats.1 Hashes imply that these operators work on native, unboxed
values. There is no overhead due to boxing, unboxing, or laziness,
and each unboxed operator essentially corresponds to a single ma-
chine operation. The fact that our (unsafe) inner loop is already so
“clean” gives us heart that we may reach the proverbial “C-like per-
formance”. Of course, it would be better if the code was fast and
safe, instead of just fast.

3. Delayed Arrays in Repa
In this section we give a quick summary of Repa’s original array
representation, which we will improve over in the next. The main
features of Repa are:

• shape polymorphism: functions can be written that operate on
arrays of arbitrary rank.

• implicit data parallelism: functions written with Repa can be
run in parallel without any extra work by the programmer.

• array fusion: we write array functions in a compositional style,
using “virtual” intermediate arrays, but the need to actually
create the intermediate arrays is eliminated during compilation.

1 In GHC proper, +## and *## actually work on doubles, but we’re using
them for floats for clarity.
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case quotInt# ixLinear width of { iX ->
case remInt# ixLinear width of { iY ->
writeFloatArray# world arrDest ixLinear
(+## (indexFloatArray# arrBV

(+# arrBV_start (+# (*# arrBV_width iY) iX)))
(*## (indexFloatArray# arrBM

(+# arrBM_start (+# (*# arrBM_width iY) iX)))
(/## (+## (+## (+##

(indexFloatArray# arrSrc
(+# arrSrc_start (+# (*# (-# width 1) iY) iX)))

(indexFloatArray# arrSrc
(+# arrSrc_start (+# (*# width iY) (-# iX 1)))))

(indexFloatArray# arrSrc
(+# arrSrc_start (+# (*# (+# width 1) iY) iX))))

(indexFloatArray# arrSrc
(+# arrSrc_start (+# (*# width iY) (+# iX 1)))))

4.0)))
}}

Figure 2. Old core IR for solveLaplace using unsafe indexing

In this paper, as we are dealing with stencils of a fixed rank,
shape polymorphism is not of particular help so we will not con-
sider it further. What is of interest is parallelism and fusion. Repa
achieves this by using the following representation for arrays,
which we will extend in §4.1.

data Array sh a
= Manifest (Vector a)
| Delayed (sh -> a)

Our array type is polymorphic over sh (shape), which is the
type used for the indices, and a, which is the type of the elements
contained. A manifest array is one represented by real data, that is
held in flat unboxed array provided by the Data.Vector library.
A delayed array is represented by an element function that takes
an array index and produces the corresponding element. Delayed
arrays are the key to Repa’s approach to array fusion. For example,
the map function for arrays is defined as follows:

{-# INLINE map #-}
map :: (Shape sh, Elt a, Elt b)

=> (a -> b) -> Array sh a -> Array sh b
map f arr
= case arr of

Manifest vec -> Delayed (f . (vec !))
Delayed g -> Delayed (f . g)

Here, Shape is the class of types that can be used as indices,
and Elt the class of types that can be used as array elements. Both
cases of map produce a Delayed array, and the second corresponds
to the following familiar identity:

map f (map g xs) = map (f . g) xs

Similar traversal functions such as zipWith are defined in the
same way. We also support reductions such as sum and foldl, but
do not support general filtering operations as the resulting array
is not necessarily rectangular. Fusion is achieved via the judicious
use of INLINE pragmas, and the magic of the GHC simplifier.
During compilation, the outer structure of functions such as map is
eliminated, leaving code that applies the worker function directly
to each element of the array. Parallelism is introduced by using the
force function:

force :: (Shape sh, Elt a)
=> Array sh a -> Array sh a

For Manifest arrays, force is the identity. For Delayed ar-
rays, force allocates a fresh mutable Vector, and then forks off

SobelX −1 0 +1
−2 0 +2
−1 0 +1

 RobertsX[
+1 0

0 −1

] KirschW 5 −3 −3
5 0 −3
5 −3 −3


PeakPoint −1 −1 −1
−1 8 −1
−1 −1 −1


HighPass

0 1 −1 1 0
1 −2 4 −2 1
1 4 −13 4 1
1 −2 4 −2 1
0 1 −1 1 0


Binomial7X[

1 6 15 20 15 6 1
] Laplace 0 1 0

1 0 1
0 1 0


Figure 3. Common convolution stencils

several concurrent threads. Each thread is responsible for calling
the element function for a subset of array indices, and updating the
array with the results. Finally, the array is frozen, treating it as con-
stant from then on. This freezing operation is a type-cast only, and
does not incur any copying overhead. Importantly, although we use
destructive update in the implementation of force, as this function
allocates the resulting vector itself, it is given a pure interface.

In our implementation, we also include INLINE pragmas on
the definition of force. During compilation, GHC creates a fresh
unfolding at each use. In most cases we are left with intermediate
code consisting of a loop that computes and updates each value
of the array directly, without any intermediate function calls, or
boxing/unboxing of numeric values.

Finally, note that the programmer is responsible for inserting
calls to force in the appropriate place in their code. Forcing the
array at different points has implications for sharing and data lay-
out, though in practice we have found there are usually only a small
number of places where forcing would “make sense”, so the choice
presents no difficulty.

4. Stencils, Borders and Partitioned Arrays
Several common stencils are shown in Figure 3. For stencil names
written with subscripts, the subscript indicates that it is just one
member of a closely related family of stencils. For example, SobelX
differentiates along the X axis only, but rotating it 90 degrees
yields SobelY which differentiates along the Y axis. By “rotate”
we mean to permute the coefficients of the matrix, so that +1 is
in the top-left in this example. The SobelX ,Y stencils are used in
Canny edge detection, while RobertsX and KirschW also perform
discrete differentiation. The PeakPoint stencil is used for noise
detection, HighPass is a high-pass filter, and Binomial7X is a low-
pass filter. The Laplace stencil is used to compute the average
of four surrounding pixels, which we discussed in §2. How these
stencils are derived is not important to the discussion, but see
[21] for a nice introduction to stencil convolution and other image
processing algorithms. For the example stencils, we note several
features of computational interest, along with exceptions:

1. All coefficients are statically known.

2. Most coefficients are small integers.

3. Many coefficients are zero.

4. All stencils are symmetric.
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Figure 4. Application of a 3x3 stencil in the border region

5. All stencils contain repeated coefficients.

6. Most stencils fit in a 5x5 matrix.

7. Most stencils are square. (except Binomial7X )

8. Most stencils have odd dimensions. (except RobertsX )

Points 1 and 2 suggest that we can specialise our stencil func-
tions based on the values of the coefficients. For example, multi-
plication by two can be achieved by addition, and multiplication
by one is no-op. This is opposed to, say, writing a general purpose
function that reads coefficients from an array, and performs all mul-
tiplications explicitly. Points 3, 4 and 5 suggest that there are sav-
ings to be had by common sub-expression and dead-code elimina-
tion. Point 6 suggests that being able to handle stencils smaller than
a certain fixed size would allow us to support most of the common
cases. Points 7 and 8 have implications for border handling, which
we discuss in the next section.

4.1 Partitioned Arrays
When implementing convolution, an immediate concern is what to
do when the stencil “falls off” the edge of the array. For example,
Figure 4 shows the application of a 3x3 stencil in this circumstance.
The white squares indicate the internal region, where the stencil
is entirely within the array. The grey squares indicate the border,
where part of the stencil falls outside. There are several ways of
handling the border case, with two popular options being to return
a constant value (like zero) for out-of-bounds elements, or to return
the same value as the nearest in-bounds element.

With the array sizes commonly encountered during image pro-
cessing, only a tiny fraction of the elements are in the border re-
gion. This fact implies that for optimal performance, we should
avoid testing for the border each time we compute an element. To
achieve this, we represent the partitioning of the array into vari-
ous regions directly. Partitioning allows us to define the result array
using element functions specialised to each region, and guarantee
that the one producing the internal elements is not applied in the
border region. In effect, partitioning the array allows us to lift the
if-expression that tests for the border out of the main loop of our
program, and have the library code construct the border and inter-
nal regions separately. With partitioned arrays, it does not matter if
the element function for the border takes a little longer to evaluate
than the one for the internal region, as the former is only applied a
small number of times. Provided the simpler, internal case is well
optimised, we will still get good overall performance.

Our new data types are shown in Figure 5. An Array is defined
as an extent, and a list of distinct Regions. In the rank-2 (two-
dimensional) case the extent will represent the width and height
of the array. Each region has a Range that defines the set of in-
dices belonging to the region. A Range can either be RangeAll,
which indicates the entire array, or a RangeRects which gives a
list of rectangles (of arbitrary rank). Given a RangeRects, we can
determine whether a particular index is inside the range either by

data Array sh a
= Array { arrayExtent :: sh

, arrayRegions :: [Region sh a] }
data Region sh a

= Region { regionRange :: Range sh
, regionGen :: Generator sh a }

data Range sh
= RangeAll
| RangeRects { rangeMatch :: sh -> Bool

, rangeRects :: [Rect sh] }
data Rect sh

= Rect sh sh

data Generator sh a
= GenManifest { genVector :: Vector a }

| forall cursor.
GenCursored { genMake :: sh -> cursor

, genShift :: sh -> cursor -> cursor
, genLoad :: cursor -> a }

Figure 5. New Repa array types

checking whether it falls in any of the Rects, or using the predicate
rangeMatch. This predicate gives the same result as the former, but
can use a more efficient implementation than checking each Rect
individually. In general, for “local” array operations such as index-
ing a single element, we use the predicate to quickly determine
which region the provided index is in. In contrast, rangeRects is
used when forcing the entire array, and allows us to create a loop
specialised to each region.

Each Region also has a Generator that encodes how the array
elements in that region should be computed. As before, genera-
tors of Manifest arrays are just flat vectors of unboxed values that
hold the elements in row-major order. Delayed arrays are now rep-
resented in cursored form. The cursored representation allows us to
share indexing computations when forcing adjacent array elements,
which is discussed further in §5. The regions of a partitioned array
must provide full coverage, meaning that every array element must
be within some region. Regions are permitted to overlap, with the
first one in the list taking precedence. Using overlapping allows us
to define a default value for array elements with a RangeAll, while
carving out specific areas with a RangeRects earlier in the list.

In general, partitioning an array allows us to generate loops
specialised to each region. Specialisation can occur on both a per-
element and per-region basis. An example of the first is the optimi-
sation of border handling, which we discussed earlier. An example
of the second is to use different loop code to evaluate regions of
different sizes. For example, when evaluating a region that is short
and wide it is best to operate in a row-wise manner, computing an
entire row before moving to the next. This helps to recover sharing
between horizontally adjacent elements. In contrast, to evaluate a
region that is tall but thin it is best to operate column-wise, to ex-
ploit sharing between vertically adjacent elements. As the Region
type provides a direct description of the size of each region, we
can specialise the library code based on this information. The user
invokes the appropriate specialisation automagically with each ap-
plication of force. We discuss specialisation further in §5.3.

4.2 Bounds Checking and co-Stencils
Firstly, with respect to bounds checking, we sheepishly admit that
the old version of Repa didn’t actually do any. This issue was men-
tioned in [15]. As such, it was possible for buggy client programs
to crash at runtime. The trouble is that bounds checking each array
access adds a substantial overhead, and the comparison and branch-
ing constructs involved interfere with fusion. We tried adding it, by
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having the Data.Vector library check each of the indexing oper-
ations on the underlying manifest array, but this resulted in a 35%
slowdown for our Laplace example applied to a 300x300 array.

Ultimately, the problem is that client code written by the user
of a library is “untrusted”, meaning that the library must assume
it will index out-of-bounds elements. With respect to the code in
Figure 1, without a more “heavy weight” technology like dependent
types, or some clever analysis, the compiler cannot prove that when
the predicate isBorder succeeds, the indexing operations in the
else branch of elemFn are guaranteed to be valid. This problem
is compounded by the fact that to support shape polymorphism
we must check indices of arbitrary rank against the array bounds.
Failing that we could check the linear indexing of the underlying
manifest vector, but we would still need to manage the mapping
between these indices and the original indices of arbitrary rank.

Our solution to this problem is to invert the relationship between
the stencil definition (elemFn) and the source array. Instead of
having the (untrusted) elemFn fetch elements from the source array
itself, we instead write the client code to combine source elements
fed to it by the (trusted) library. This distinction is similar to the one
between recursive and co-recursive functions in stream fusion [10],
where the latter is the “co-stencil” case. Related work on Ypnos
[22] mentions the co-monadic structure of grid computations, but
does not discuss the relationship with bounds checking.

Figure 6 gives the data type that represents stencils, while Fig-
ure 7 contains our new implementation of solveLaplace. Figure
6 also gives the definition of makeStencil which is a utility func-
tion defined by our library. The type Stencil sh a specifies a
stencil function of shape sh that operates on arrays of element type
a. It consists of a size such as Z:.3:.3 for the 3x3 case, as well as
a zero value and accumulator function which define a fold opera-
tion over array elements. Figure 7 shows how to define the Laplace
stencil. The iterateBlockwise function repeatedly applies its
parameter function to an array, forcing it after each iteration. In
this and latter code we have elided INLINE pragmas, as well as the
Shape and Elt type class constraints to save space. We have also
elided explicit matches against the input arrays arrBoundMask,
arrBoundValue and arrInit that require them to be manifest.
These matches are needed in our concrete implementation for per-
formance reasons, but we hope to improve the compiler so they are
not required in future. This is discussed further in §7.4.

The lambda abstraction in the definition of laplace defines the
coefficient function for the Laplace stencil. The coefficient function
gives the coefficients for each position in the stencil, and has type
(sh -> Maybe a). It gives the coefficient at a particular offset
from the focus of the stencil, or if that coefficient is zero it returns
Nothing instead. Handling of zeros is discussed further in the next
section. As a syntactic convenience, our library also provides some
Template Haskell code to make listing the coefficients easier. An
example of this syntax is in the niceLaplace function of Figure 7.

The operation of computing the sum-of-products of array el-
ements and stencil coefficients is defined by the Just case of
makeStencil. We could have embedded the coefficient function
directly in the definition of Stencil, but instead define stencils
in terms of a more general fold operation. Using a fold leaves the
door open for other stencil-like operations that are not expressed
as a sum-of-products, such as the creation of a histogram of the
neighbourhood of each pixel.

Returning to the issue of bounds checking, with our new defi-
nitions, client code does not need direct access to the source array
at all. All of the library functions used in Figure 7 operate on the
whole array at a time, and their safety depends on the correctness
of the library, instead of the correctness of the client.

Finally, we note that in virtually all related work using imper-
ative languages it is simply assumed that bounds checking is not

data Stencil sh a
= Stencil { stencilSize :: sh

, stencilZero :: a
, stencilAcc :: sh -> a -> a -> a }

makeStencil :: sh -> (sh -> Maybe a) -> Stencil sh a
makeStencil ex getCoeff
= Stencil ex 0
$ \ix val acc

-> case getCoeff ix of
Nothing -> acc
Just coeff -> acc + val * coeff

Figure 6. Stencils and stencil construction

solveLaplace :: Int -> Image -> Image -> Image -> Image
solveLaplace steps arrBoundMask arrBoundValue arrInit
= iterateBlockwise steps arrInit
$ zipWith (+) arrBoundValue
. zipWith (*) arrBoundMask
. map (/ 4) . mapStencil2 (BoundConst 0) laplace

laplace :: Stencil sh a
laplace = makeStencil (Z :. 3 :. 3)

$ \ix -> case ix of
Z :. 0 :. 1 -> Just 1
Z :. 0 :. -1 -> Just 1
Z :. 1 :. 0 -> Just 1
Z :. -1 :. 0 -> Just 1
_ -> Nothing

niceLaplace :: Stencil sh a
niceLaplace = [stencil2| 0 1 0

1 0 1
0 1 0 |]

Figure 7. Stencil based Laplace function

performed. The focus of recent papers such as [11] and [16] is usu-
ally on optimising cache usage, and they presume the existence of
correct, heavily optimised straight line code for computing the indi-
vidual array elements. In contrast, we are trying to produce a (safe!)
general purpose functional array library, which also has support for
efficient stencil convolution.

4.3 Zeros in Stencil Definitions
Although the stencils we use often contain zero-valued coefficients,
we want to avoid wasting cycles performing the corresponding
multiplications, as they do not contribute to the final sum of prod-
ucts. The simple, neat and wrong solution is to allow terms of the
form 0∗x in the intermediate code, but then add a GHC rewrite rule
[23] to implement the obvious identities 0∗x≡ 0 and x+0≡ x. Un-
fortunately, the first one of these is invalid for standard IEEE-704
floating point numbers because the operation 0 ∗∞ is supposed to
produce NaN (Not a Number). Although this hardly matters for im-
age processing, we still don’t want to add the rule as it would apply
globally and we risk breaking other code. Instead, we define the co-
efficient function to return Nothing where the stencil does not ap-
ply, and use this to skip over the associated term in makeStencil.
Nevertheless, in the literature, stencils are usually specified using
zeros. Due to this we allow zeros in our Template Haskell version,
but eliminate them while desugaring to the coefficient function.

5. Sharing and Cursored Arrays
Suppose we apply a 3x3 stencil to a single internal point in an
image, and that every coefficient is non-zero. At the least, this
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Figure 8. Overlapping support of four adjacent 3x3 stencils

application would require nine floating point values to be loaded
from the source array, and one store to the result. Now, as the
computation of a single point in the result does not depend on
any others, we can evaluate elements of the result in an arbitrary
order. This makes stencil convolution an embarrassingly parallel
operation, which gives us much flexibility in the implementation.

However, as we want our convolution to run with good absolute
performance on a finite number of processors, it is often better to
impose a specific order of evaluation to improve efficiency. Figure
8 shows the evaluation of four horizontally adjacent points. If we
were to evaluate each of these points independently, we would need
4× 9 = 36 loads of the source array, and four stores to the result.
However, evaluating all four points in one operation requires only
18 loads, as well as the four stores to the result. There is also
the potential to share the evaluation of array indices, and well as
multiplications, depending on the form of the stencil.

The potential for sharing indexing computations can be seen in
Figure 2 which shows the Core IR for part of the inner loop of
our Laplace example. Although this code only computes a single
point in the result, note that the second argument to each applica-
tion of indexFloatArray# produces the offset into the array for
each point in the stencil. Computation of these offsets is performed
with the familiar expression x + y * width, where x and y are
the coordinates of the element of interest. However, as the spacial
relationship between the elements is fixed, we could instead com-
pute the index of the focus (center) of the stencil, and then get to
the others by adding +1/-1 or +width/-width. In the case where we
compute four elements of the result array in a single operation, the
potential savings for index computations are even greater.

Recovering this sort of sharing is a well known problem in com-
piler optimisation and is the target of the Global Value Numbering
(GVN) [2, 25] transformation performed by some compilers. Un-
fortunately, no current Haskell compiler implements this transform,
so we are not home free yet. However, GHC can now compile via
LLVM [27], and LLVM does implement a GVN pass. Provided we
expose enough of the internal indexing computations, the LLVM
compiler will do the rest for us. This brings us to cursored arrays.

5.1 Cursored Arrays
Recall the new Repa array representation from Figure 5. The defi-
nition of element generators is repeated below for reference.

data Generator sh a
= GenManifest { genVector :: Vector a }

| forall cursor.
GenCursored { genMake :: sh -> cursor

, genShift :: sh -> cursor -> cursor
, genLoad :: cursor -> a }

A cursor is an abstract representation of an index into the array.
The specific form of the cursor is defined by the producer of the
array, while the consumer must use the provided cursor functions

to access elements. As hinted in the previous section, for stencil
functions we represent the cursor by a linear index into the array.
Given the coordinates of an element, genMake computes the linear
index of that element, the genShift function shifts a cursor by an
offset, and genLoad produces the array element for a given cursor.
Using cursors allows us to avoid repeated indexing computations
like x + y * width, as we can now just compute the linear index
of the centre of the stencil, then shift it around to get the other
neighbouring elements.

As well as enabling sharing between index computations, cur-
sored arrays strictly subsume our old delayed array representation.
To see this, suppose we added an alternative to our Generator type
that implemented delayed arrays as given in §3

data Generator sh a
= ...
| GenDelayed { genGetElem :: sh -> a }

It turns out this alternative is unnecessary, because we can write
functions to convert between the delayed and cursored representa-
tions. Given a cursored array, we construct the element function for
the delayed version making a cursor then immediately loading from
it. Given a delayed array, we construct the cursored one by using
the index itself as the cursor. This is possible due to the existential
quantification of the cursor type.

delayedOfCursored :: Generator sh a -> Generator sh a
delayedOfCursored (GenCursor make _ load)

= GenDelayed (load . make)

cursoredOfDelayed :: Generator sh a -> Generator sh a
cursoredOfDelayed (GenDelayed getElem)

= GenCursored id addIndex getElem

addIndex :: Shape sh => sh -> sh -> sh
addIndex = ...

To see that cursored arrays also support the delayed array ap-
proach to fusion, note that we can implement map by composing
its parameter with the load function of the cursored array. The fol-
lowing code gives the definition of mapGen which operates on the
generator. The version for arrays is easily defined in terms of it.

mapGen :: (a -> b) -> Generator sh a -> Generator sh b
mapGen f gen
= case arr of

GenManifest vec
-> GenCursored id addDim (\ix -> f (vec ! ix))

GenCursored make shift load
-> GenCursored make shift (f . load)

Finally, note that although we use cursored arrays internally to
the library, there is usually no need for client programs to construct
them explicitly. In the clients we have written, arrays are usually
constructed with higher level utility functions, and combinators
such as map and fold produce the same result independent of the
representation of their arguments.

5.2 Applying the Stencil
Now that we have the definition for cursored arrays, we can see
about creating one. Figure 9 gives the definition of mapStencil2
which takes the definition of a rank 2 stencil, a source array, and
produces a cursored result array. The definitions of the rectangles
for the border and internal regions have been elided to save space,
as have the inInternal and inBorder predicates, though they are
straightforward.

We have also elided the INLINE pragmas for the make, shift
and load* functions. When compiling with GHC we must de-
fine these functions as separate bindings and give them INLINE
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data Boundary a
= BoundConst a
| BoundWrap
| ...

mapStencil2
:: Boundary a -> Stencil DIM2 a
-> Array DIM2 a -> Array DIM2 a

mapStencil2 boundary stencil@(Stencil sExtent _ _) arr
= let (Z :. aHeight :. aWidth) = extent arr

(Z :. sHeight :. sWidth) = sExtent

rectsInternal = ...
rectsBorder = ...
inInternal ix = ...
inBorder ix = ...

make (Z:.y:.x)
= Cursor (x + y*aWidth)

shift (Z:.y:.x) (Cursor offset)
= Cursor (offset + x + y*aWidth)

loadBorder ix = case boundary of ...

loadInner cursor
= unsafeAppStencil2 stencil arr shift cursor

in Array (extent arr)
[ Region (RangeRects inBorder rectsBorder)

(GenCursored id addIndex loadBorder)

, Region (RangeRects inInternal rectsInternal)
(GenCursored make shift loadInner) ]

unsafeAppStencil2
:: Stencil DIM2 a -> Array DIM2 a
-> (DIM2 -> Cursor -> Cursor) -- shift cursor
-> Cursor -> a

unsafeAppStencil2
stencil@(Stencil sExtent sZero sAcc)
arr@(Array aExtent [Region RangeAll (GenManifest vec)])
shift cursor

| _ :. sHeight :. sWidth <- sExtent
, sHeight <= 3, sWidth <= 3
= template3x3 loadFromOffset sZero

| otherwise = error "stencil too big for this method"

where getData (Cursor index)
= vec ‘unsafeIndex‘ index

loadFromOffset oy ox
= let offset = Z :. oy :. ox

cur’ = shift offset cursor
in sAcc offset (getData cur’)

template3x3 :: (Int -> Int -> a -> a) -> a -> a
template3x3 f sZero

= f (-1) (-1) $ f (-1) 0 $ f (-1) 1
$ f 0 (-1) $ f 0 0 $ f 0 1
$ f 1 (-1) $ f 1 0 $ f 1 1
$ sZero

Figure 9. Applying the stencil to an array

pragmas, instead of writing them as lambda abstractions directly
in the body of the let expression. Defining the functions this
way ensures that when an array created with mapStencil2 is fi-
nally forced, these definitions are inlined into the unfolding of
the force function, as well as the element evaluation function
fillCursoredBlock2 which we will discuss in the next section.
If we do not do this, then the definitions would not be appropri-
ately inlined, and we would suffer a function call overhead for each
application. We will return to this delicate point in §7.4.

The values of the border elements depend on the boundary
parameter, and two options are shown at the top of the figure.
The inner elements are defined via unsafeAppStencil2, which
produces a function from the cursor value to the corresponding
array element. Note that this function requires the provided source
array to be manifest, so that elements can be extracted directly from
the underling vector using unsafeIndex. We use unsafeIndex to
access the vector because this function performs no bounds checks,
so we do not suffer the associated overhead. The safety of these
accesses depends on the correctness of our library code, namely
the rectsInternal list from mapStencil2, so that loadInner
is not applied too close to the border.

Computation of the inner array elements is performed by the
loadFromOffset and template3x3 functions. The latter spells
out every possible offset from the centre of a 3x3 stencil. We must
spell out these offsets “long hand” instead of writing a recursive
function to compute the result because we need each application
of f to be specialised for the provided offset. During compilation,
f will be bound to a coefficient function like the one defined
in laplace of Figure 7. In effect, we are using template3x3
to select every possible coefficient that the coefficient function
could have defined. By virtue of makeStencil of Figure 6, if the
coefficient function returns a valid coefficient for a particular offset
then we end up with a term that multiplies that coefficient with
data from the source array. If not, then the Nothing branch of
makeStencil comes in to play and the result is unperturbed. Note
that this mechanism permits us to use any stencil that fits inside the
3x3 template. For example, stencils of size 3x1 and 2x2 also work.

Sadly, the fact that we must spell out every possible offset means
that our unsafeAppStencil2 function is limited to handling sten-
cils of a particular maximum size. In this case we have set the max-
imum to 3x3, so that it fits on the page. However, the limit is easy
to increase and our concrete implementation currently uses 7x7.
Limiting the size of the stencil in this way does not affect what co-
efficients or zero elements can be used, it just requires the entire
stencil to fit inside the template. If we had instead written a recur-
sive version of the template function, then GHC would not inline
it, killing performance. In general, repeatedly inlining a recursive
function may not terminate, leading to divergence at compile time.
We can think of several ways of addressing this issue, but all require
modification to the compiler, and we defer further discussion to
§7.2. If the stencil does not fit inside the template then we fall back
to the standard approach of loading the coefficients into a mani-
fest array and iterating directly over that. This gets the job done,
but obviously misses out on the benefits of the cursored approach.
A follow on effect of spelling out every offset is that it also lim-
its mapStencil2 to arrays of rank 2. It is straightforward to write
versions for other ranks, as the general structure is the same as the
rank-2 case, but we don’t have a way of doing this polymorphically.

Finally, note that unsafeAppStencil2 defines a function be-
tween a cursor and a single array element. The task of actually
filling the result array while exposing sharing between adjacent el-
ements is performed by fillCursoredBlock2, which we discuss
in the next section.
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case quotInt# ixLinear width of { iX ->
case remInt# ixLinear width of { iY ->
case +# iX (*# iY width) of { ixCenter ->
writeFloatArray# world arrDest ixLinear
(+## (indexFloatArray# arrBV

(+# arrBV_start (+# (*# arrBV_width iY) iX)))
(*## (indexFloatArray# arrBM

(+# arrBM_mask (+# (*# arrBM_width iY) iX)))
(/## (+## (+## (+##

(indexFloatArray# arrSrc
(+# arrSrc_start (+# ixCenter width)))

(indexFloatArray# arrSrc
(+# arrSrc_start (+# ixCenter 1))))

(indexFloatArray# arrSrc
(+# arrSrc_start (+# ixCenter (-1)))))

(indexFloatArray# arrSrc
(+# arrSrc_start (+# ixCenter (*# (-1) width)))))

4.0))) }}

Figure 10. New core IR for Laplace with index sharing

fillCursoredBlock2
:: IOVector a -- vector to write into
-> (DIM2 -> cursor) -- makeCursor
-> (DIM2 -> cursor -> cursor) -- shiftCursor
-> (cursor -> a) -> Int -- loadElem, width
-> Int -> Int -> Int -> Int -- coords of block
-> IO ()

fillCursoredBlock2 !vec !make !shift !load
!width !x0 !y0 !x1 !y1 = ... fillRow4 ...

where
fillRow4 !y !x -- fill a single row in the block
| x + 4 > x1 = ... -- less than 4 elems remaining
| otherwise
= do let srcCur0 = make (Z:.y:.x)

let srcCur1 = shift (Z:.0:.1) srcCur0
let srcCur2 = shift (Z:.0:.1) srcCur1
let srcCur3 = shift (Z:.0:.1) srcCur2

let val0 = load srcCur0
let val1 = load srcCur1
let val2 = load srcCur2
let val3 = load srcCur3
touch val0; touch val1; touch val2; touch val3

let !dstCur0 = x + y * width
unsafeWrite vec (dstCur0) val0
unsafeWrite vec (dstCur0 + 1) val1
unsafeWrite vec (dstCur0 + 2) val2
unsafeWrite vec (dstCur0 + 3) val3
fillRow4 y (x + 4)

Figure 11. Block evaluation function for cursored DIM2 arrays

5.3 Filling the Array, and Interaction with LLVM
Using our original force function (not shown), but with cursored
arrays, produces a loop whose inner fragment consists of the Core
IR shown in Figure 10. The loop as a whole iterates through the
linear indices of the result vector. In the body, each linear index
(ixLinear) is converted to a rank-2 index, then back to a cursor
value ixCenter. As the source and destination arrays have the
same dimensions, ixLinear and ixCenter will have the same
value. The intermediate conversion is successfully eliminated by
the LLVM optimiser, so doesn’t appear in the object code.

Note how each of the elements of the source array are indexed
relative to the cursor ixCenter. To recover sharing between adja-
cent elements we must evaluate several in the same iteration, which
requires a new version of force. The inner loop of this new ver-

sion is defined by fillCursoredBlock2 in Figure 11, which is
also part of the library. This function takes a mutable IOVector,
along with the functions that form a cursored array, and uses them
to fill a rectangular block in the vector. Parallelism is introduced by
having force fork off several threads, with each filling a different
block of array elements. Performing block-wise evaluation also im-
proves cache usage, as the evaluation of each successive row in a
block usually requires source elements that were loaded into cache
during the evaluation of previous rows.

In the definition of fillCursoredBlock2 we have manually
applied the unroll-and-jam transformation [7] to evaluate groups
of four consecutive elements per iteration. We operate row-wise,
which is good for regions that are at least four elements wide. To
evaluate narrow regions such as the one pixel wide left-hand border
from Figure 4 it is better to operate column-wise, using a separate
filling function derived from the presented code.

The touch function in the inner loop is used to place a de-
pendency on the computed array values, and prevent GHC from
floating the srcCur* and val* bindings into the applications of
unsafeWrite. The touch function has the following type, and is
defined in terms of the GHC primitive operation touch#.

touch :: Elt a => a -> IO ()

We need all four element values to be computed before any
of them are written to the result array. This is to avoid a hairy
interaction with the LLVM optimiser. Specifically, LLVM does
not know that the low-level representation of the source and result
arrays do not alias, nor does it know that the result array and GHC
stack do not alias. Any write to the result array or stack is assumed
to also modify the source array, which invalidates data held in
registers at that point. This in turn breaks the GVN (Global Value
Numbering) optimisation which we depend on to recover sharing.

The disassembled x86 64 object code for the inner part of our
loop is given in Figure 12. This is for the SobelX stencil shown
in Figure 3. Floating point loads are marked with round bullets,
while floating point stores are marked with diamonds. There are
18 loads and 4 stores, and examining Figure 8 shows that this
is the optimal number for such a 3x3 stencil. However, we still
have a slight inefficiency due to aliasing issues. Note the repeated
instruction mov 0x6(rbx),rcx after each floating point store. The
rbx register contains a pointer to the stack, and each floating
point store invalidates the previously loaded value in rcx. Aliasing
becomes more of a problem when compiling to architectures with
insufficient floating point registers. For example 32bit x86 code can
only address 8 of the 16 XMM registers available in 64bit mode. If
the LLVM compiler runs out of registers then it spills values to the
stack, which also invalidates previously loaded values. Fixing this
will require more work on GHC’s LLVM backend, and/or a type
system or analysis that recovers the non-aliasing of heap objects.

Finally, note that the optimal number of elements to compute
per iteration depends on the form of the stencil, namely how many
coefficients overlap when several stencils are placed side-by-side.
Computing too few elements per iteration limits how much sharing
can be recovered, while computing too many increases register
pressure and can cause intermediate values to be spilled to the
stack. Currently, we always compute four at once, which works
well for most 3x3 stencils. In future work we intend to add a size-
hint to our Array type, which would be set by mapStencil2.
The fillCursoredBlock2 function would use this hint to choose
between several loops, all with the same form as fillRow4, but
computing a different number of elements per iteration.

6. Benchmarks
In this section we discuss the performance of our stencil bench-
marks. All measurements were taken on a 2GHz 2xQuadCore Intel
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9b0: mov 0x2e(rbx), rcx

9b4: mov 0x1e(rbx), rdx

9b8: mov rdx, rsi

9bb: imul rcx, rsi

9bf: mov 0x36(rbx), rdi

9c3: lea 0x4(r14,rdi,1), r8

9c8: add r14, rdi

9cb: lea 0x1(rcx), r9

9cf: imul rdx, r9

9d3: lea 0x2(r9,rdi,1), r10

9d8: mov 0x6(rbx), r11

9dc: mov 0xe(rbx), r15

• 9e0: movss 0x10(r15,r10,4), xmm7

9e7: lea (r8,r9,1), r10

• 9eb: movss 0x10(r15,r10,4), xmm8

9f2: subss xmm7, xmm8

9f7: lea (r8,rsi,1), r10

• 9fb: movss 0x10(r15,r10,4), xmm9

a02: addss xmm9, xmm9

a07: addss xmm8, xmm9

a0c: lea 0x2(rsi,rdi,1), r10

• a11: movss 0x10(r15,r10,4), xmm8

a18: movaps xmm8, xmm10

a1c: mulss xmm0, xmm10

a21: addss xmm9, xmm10

a26: dec rcx

a29: imul rdx,rcx

a2d: add rcx,r8

• a30: addss 0x10(r15,r8,4), xmm10

a37: lea 0x1(r9,rdi,1), rdx

• a3c: movss 0x10(r15,rdx,4), xmm9

a43: lea 0x3(r9,rdi,1), rdx

• a48: movss 0x10(r15,rdx,4), xmm11

a4f: subss xmm9, xmm11

a54: lea 0x3(rsi,rdi,1), rdx

• a59: movss 0x10(r15,rdx,4), xmm12

a60: addss xmm12, xmm12

a65: addss xmm11, xmm12

a6a: lea 0x1(rsi,rdi,1), rdx

• a6f: movss 0x10(r15,rdx,4), xmm11

a76: movaps xmm11, xmm13

a7a: mulss xmm0, xmm13

a7f: addss xmm12, xmm13

a84: lea 0x3(rcx,rdi,1), rdx

• a89: addss 0x10(r15,rdx,4), xmm13

a90: lea (rdi,r9,1), rdx

• a94: subss 0x10(r15,rdx,4), xmm7

a9b: addss xmm8, xmm8

aa0: addss xmm7, xmm8

aa5: lea 0x1(rcx,rdi,1), rdx

aaa: lea 0x2(rcx,rdi,1), r8

aaf: lea (rdi,rsi,1), r10

• ab3: movss 0x10(r15,r10,4), xmm7

aba: mulss xmm0, xmm7

abe: addss xmm8, xmm7

• ac3: movss 0x10(r15,r8,4), xmm8

aca: addss xmm8, xmm7

acf: lea (rdi,rcx,1), r8

• ad3: subss 0x10(r15,r8,4), xmm7

ada: add rax, rdi

add: add rdi, r9

• ae0: subss 0x10(r15,r9,4), xmm9

ae7: addss xmm11, xmm11

aec: addss xmm9, xmm11

af1: lea (rdi,rsi,1), r8

• af5: movss 0x10(r15,r8,4), xmm9

afc: mulss xmm0, xmm9

b01: addss xmm11, xmm9

• b06: movss 0x10(r15,rdx,4), xmm11

b0d: addss xmm11, xmm9

b12: add rcx, rdi

• b15: subss 0x10(r15,rdi,4), xmm9

b1c: add r14,rsi

� b1f: movss xmm9,0x10(r11,rsi,4)

b26: mov 0x6(rbx),rcx

� b2a: movss xmm7,0x14(rcx,rsi,4)

b30: subss xmm11,xmm13

b35: mov 0x6(rbx),rcx

� b39: movss xmm13,0x18(rcx,rsi,4)

b40: subss xmm8,xmm10

b45: mov 0x6(rbx),rcx

� b49: movss xmm10,0x1c(rcx,rsi,4)

b50: lea 0x8(r14),rcx

b54: lea 0x4(r14),r14

b58: cmp 0x26(rbx),rcx

b5c: jle 9b0

Figure 12. x86 64 assembly for SobelX applied to four consecu-
tive pixels. FP loads and stores are marked with • and �.
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E5405 Harpertown server which has 6MB of L2 cache per proces-
sor and no hardware threading.

6.1 Laplace Again
Figure 13 shows the performance of our Laplace benchmark. The
Safe Get version uses the code from Figure 1 with bounds checked
indexing, while Unsafe Get is the same code with unchecked in-
dexing. Unsafe Unrolled Get is the bounds checked version, but
using the unrolled filling function in Figure 11. Safe Unrolled Sten-
cil uses the unrolled filling function, as well as our cursored arrays.
The single threaded Handwritten C version is about 45% faster than
our best Haskell result, which is achieved with 3 threads. The C
version beats the Haskell one because it doesn’t need the initial
x + y * width calculations corresponding to the application of
make in Figure 11, and there isn’t enough sharing inherent in the
Laplace stencil for the Haskell version to exploit. For this, note the
small amount of overlap in four Laplace stencils placed side-by-
side. Still, it’s not an unreasonable result for a Haskell program,
considering that the C version produces an inner loop that appears
close to optimal. We tried eliminating the application of make, but
this turned out not to be an improvement due to the extra register
required to maintain the centre index between loop iterations.

Figure 13 also contains an important lesson for anyone inter-
ested in parallelism in functional languages. The least efficient ver-
sion of our solver has best speedup graph, yet the most efficient
one has the worst. To argue that a particular parallel computing
system is useful, one cannot simply present the speedup vs num-
ber of cores, as this does not discount the possibility of large linear
inefficiencies. In practice we have found the failure of unboxing
or fusion on a given benchmark to cause in excess of a 10x linear
slowdown, while maintaining a good speedup graph.

For this benchmark we used an image size of 300x300, match-
ing to our earlier work in [15]. In the end, it appears as though the
speedup of this benchmark is limited by scheduling issues. Figure
14 shows the huge variation in runtime for 100 consecutive runs
using 4 threads. Increasing the efficiency of our inner loop has also
reduced the grain size of the computation. When the grain size is
small, there is a high chance that some threads will have started (or
completed) their work before the others are scheduled by the OS.
To fix this problem we expect that we need gang scheduling [12],
which ensures that all threads run in lockstep, instead of being in-
dependently scheduled whenever the OS “feels like it”.

6.2 Sobel Operator
Figure 15 shows the runtimes of the Sobel stencil applied to three
image sizes. Also shown is a single threaded version using the
cv::Sobel function of OpenCV 2.2.0. This is using 32bit floats for
the array values. To mitigate variance in runtime due to scheduling
issues, we took the best result of 10 runs for each point. In this case,
single threaded OpenCV is faster than our single threaded Haskell
code primarily because it is using SSE SIMD intrinsics that we do
not have access to from Haskell. The LLVM compiler also does not
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Figure 15. Sobel and Canny runtimes, 100 iterations

yet support auto-vectorisation to collect separate operations into
fused SIMD instructions itself. With SSE, the OpenCV version is
able to perform loads, stores, additions and multiplications on four
packed 32bit floats at a time. However, in all cases we are able
to match OpenCV, with the larger image sizes only needing two
threads to break even.

6.3 Edge Detection
Figure 16 shows the result of applying the Canny algorithm to an
example image, with our implementation using two thresholds for
edge linking hysteresis. Our implementation is broken into several
stages: 1) convert the input RGB image to greyscale; 2) perform a
Gaussian blur to suppress high frequency noise; 3) differentiate the
image with SobelX ,Y ; 4) compute magnitude and orientation of the
vector gradient; 5) classify local maxima of the gradient into strong
and weak edges using the thresholds; 6) select points marked as
strong edges; 7) link weak edges that are attached to strong edges.
The output consists of all points marked as strong edges, as well as
any weak edges that are attached to strong edges. A breakdown of
runtimes for each of these stages applied to a 1024x1024 image is
shown in Figure 17, while other sizes are also in Figure 15.

When all is said and done our single threaded implementation
is about 4 times slower than OpenCV. With 8 threads it’s about
50% slower with a 512x512 image, 10% slower for 768x768, and
on par for 1024x1024. We feel this is a good result considering
that the blur and differentiation stages for the OpenCV version
use SIMD operations that we cannot access from Haskell. The

Figure 16. Application of Canny edge detector to an image

GCC 4.4.3 GHC 7.0.2 + Repa with # threads
OpenCV 1 2 4 8

Grey scale 10.59 12.05 6.19 3.25 2.08
Gaussian blur 3.53 17.42 9.70 5.92 5.15
Detect 18.95 68.73 43.81 31.21 28.49

Differentiate fused 11.90 7.41 5.38 5.22
Mag / Orient fused 27.09 16.11 10.45 7.85
Maxima fused 12.87 7.84 4.83 3.32
Select strong fused 10.01 5.68 3.60 5.16
Link edges fused 6.86 6.77 6.95 6.94

TOTAL (ms) 33.05 98.25 59.70 40.38 35.72

Figure 17. Canny edge detection, 1024x1024 image

OpenCV implementation also uses different data formats for the
various stages, converting between 8-bit unsigned and 16-bit signed
integers during the application of SobelX ,Y . The other stages are
performed in a mixture of 8 and 16 bit integer formats. In our own
code we also perform the greyscale conversion and edge linking
with 8 bit integers. However, using integer operations for the other
stages does not help us due to the lack of registers and the aliasing
issues mentioned in §5.3.

The OpenCV implementation also hand-fuses the “local max-
ima” and “select strong” stages, recording an array of indices for
strong edges pixels while computing the local maxima. To dupli-
cate this behaviour we would need to provide a joint mapFilter
operation, with a corresponding version of fillCursoredBlock2.
The delayed array approach cannot recover this form of fusion au-
tomatically as it cannot be expressed by simple function composi-
tion.

On the positive side, the performance of our Haskell code is
more than adequate for real-time edge detection of a video stream.
We have an OSX demo available from the Repa homepage [24].

7. Challenges of Array Fusion
In this section we summarise the main challenges we have encoun-
tered with this work, and suggest avenues for future research.

7.1 Lack of Support for SIMD Operations
At face value, using 4-way SIMD instructions such as available in
the SSE or MMX set has the potential to improve the performance
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of certain algorithms 4-fold. This assumes that our application isn’t
memory bound, though note that even a 1024x1024 image of 32bit
floats sits comfortably in the 12MB cache of our test machine. Of
course, the fact we are using a super-scalar architecture implies that
we won’t necessarily get a 4-fold speedup on a linear instruction
stream, though we note that using SIMD also effectively increases
the size of the register set. Expanding the register set would help
to avoid the aliasing issues discussed in §5. Whether it’s better to
introduce SIMD instructions in Haskell code, or have the LLVM
compiler reconstruct them is an open question.

7.2 Manual Unwinding of Recursive Functions
As mentioned in §5.2 we must manually unfold loops over regions
and rectangles as GHC avoids inlining the definitions of recursive
functions. The nice way to fix this would be some form of super-
compilation [4, 19]. Support for supercompilation in GHC is cur-
rently being developed, though still in an early stage. Failing that,
we could perhaps add a new form of the INLINE pragma that un-
folded recursive functions indiscriminately, or a fixed number of
times. The downside of the first is potential divergence at compile
time, the downside of the second is lack of generality.

7.3 Unboxing Outside of Loops
As mentioned in §4.2 we currently need to add some boilerplate
code to functions such as solveLaplace to ensure that arrays are
unboxed outside of loops, instead of once per iteration. This code
has the following form, and is applied to each input array:

f arr@(Array _ [RangeAll (GenManifest _)])
= arr ‘deepSeqArray‘ ...

The deepSeqArray function places a demand on every boxed
object in arr before returning its second argument. The pattern
match is added to functions that we know will only ever be passed
forced arrays, and ensures that indexing operations in the body of
the function are specialised for this case. The root problem is that
unboxing operations are represented as case matches, but while let-
bindings can be floated out of loops, case matches cannot. We hope
to fix this particular infelicity in the near future.

7.4 INLINEs and Whole Program Compilation
As almost every function definition in the Repa library has an
INLINE pragma, we are essentially doing whole program compu-
tation, at least for the array part. In a syntactic sense, the INLINEs
do clutter up the code, and we have spent hours hunting perfor-
mance problems that were due to a lack of an INLINE. In a deeper
sense, we feel uneasy about the fact that performance depends so
heavily on the syntactic structure of the code, but we don’t have a
general solution for this. In §5.2 we mentioned the need to write the
make, shift and load functions as separate function bindings, and
attach INLINE pragmas. The need to write separate bindings is sim-
ply driven by the need to add INLINEs, as in GHC this information
is attached to the name of the function binding to be inlined.

Although we could imagine adding a desugaring pass that con-
verted the source code to the desired form, in practice we also want
to manually attach inlining stage numbers to many of the bindings.
Stage numbers are used to ensure that some bindings are inlined
and specialised before others. This can avoid the need for the com-
piler to optimise large swathes of code only to discard it due to case
specialisation later in the compilation.

7.5 Promises of Purity
Figure 18 shows the code for the force function that produces a
manifest array from a delayed one. This function also has the dis-
tinction of being the interface between the IO code that fills the

force :: Array sh a -> Array sh a
force arr
= unsafePerformIO
$ do (sh, vec) <- forceIO arr

return $ sh ‘seq‘ vec ‘seq‘
Array sh [Region RangeAll (GenManifest vec)]

where forceIO arr’
= case arr’ of

Array sh [Region RangeAll (GenManifest vec)]
-> return (sh, vec)

Array sh regions
-> do mvec <- new (size sh)

mapM_ (fillRegionP mvec sh) regions
vec <- unsafeFreeze mvec
return (sh, vec)

Figure 18. The interface between pure and monadic code

array using concurrent threads, and our pure Repa API. Construct-
ing the pure interface consists of two aspects, which are embodied
by the following functions:

unsafePerformIO :: IO a -> a
unsafeFreeze :: MVector IO a -> IO (Vector a)

The unsafePerformIO function breaks the monadic encapsu-
lation of an IO action. Remembering that we’re using a lazy lan-
guage, this is effectively a promise by the programmer that the re-
sult can be evaluated at any time without affecting its final value.
Similarly, unsafeFreeze coerces a mutable vector (MVector) to
an immutable one (Vector), and serves as a promise that after
that point in time, the underlying data will not be mutated fur-
ther. Importantly, failing to respect the two promises results in
undefined behaviour at runtime, and neither of the promises can
be statically checked by the compiler. Due to this, we would pre-
fer if such promises were enforced by someone else. Actually, the
Data.Vector library almost provides what we want:

create :: (forall s. ST s (MVector (ST s) a)) -> Vector a

This function takes an ST action that produces a mutable vector,
evaluates it, then coerces the result to an immutable one. The
soundness of the coercion is guaranteed by the ST state variable (s),
which ensures that no references to the mutable vector can escape
from the scope of the action that produced it [17]. Unfortunately,
there is no equivalent version of create for the IO monad, and
we need IO because the primitive functions we use to implement
parallelism produce IO actions.

More specifically, the readMVar and putMVar functions oper-
ate on mutex variables, and the result of the first can depend on the
order in which concurrent threads are scheduled. Note that it is con-
currency, not destructive update that is the essential problem here,
as destructive update by itself can be safely encapsulated in ST. In
related work, the type system of Deterministic Parallel Java (DPJ)
[1] can express that concurrent writes to non-overlapping partitions
of an array do not interfere. However, the published version of DPJ
does not support parametric polymorphism of value or effect ex-
pressions. This lack of polymorphism makes it impractical to work
with the higher order functions we use in Repa. Until a more fine-
grained control over effects makes it into a higher-order system, it
seems that we are forced to use primitives like unsafePerformIO
and subvert the guarantees of our purely functional language.

On a happy note, although we can’t statically check the sound-
ness of our purifying coercions, at least they are confined to a single
place in the code – the force function. This function is also the log-
ical place for such coercions, as it converts the “abstract” delayed
array into a concrete, manifest one.
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8. Related Work
Stencil computations are central to a wide range of algorithms in
scientific computing. Recent implementations based on the imper-
ative or object oriented paradigm include the Fortran CAPTools
toolkit [14], which is designed to automate the process of paral-
lelising sequential Fortan 77 code as much as possible; Co-array
Fortran [20], an extension to Fortran 95 which includes explicit
notation for data decomposition; and the parallel Java dialect Tita-
nium [13].

From the declarative language community, the work on Single
Assignment C (SAC) [26] has exerted the most influence on our
work on Repa. However, SAC does not have specific support for
stencil computations, as far as we know. ZPL [9], a predecessor
of Chapel [3] is a parallel array language with Modula-2 like
syntax. Both languages define array values in a declarative fashion,
similarly to our own approach.

There are two other Haskell libraries targeting parallel stencil
computations: Ypnos [22], which in contrast to Repa, provides a
special stencil pattern matching syntax for one and two dimen-
sional stencils. Ypnos also supports historic stencils, meaning that
the stencil can reference arrays computed in previous iterations.
The paper does not provide any performance figures, so we can-
not compare this aspect to Repa. It would be interesting to in-
vestigate whether Repa would be a suitable backend for Ypnos.
PASTHA [18], whose implementation is based around IOUArray,
supports historic stencils and includes the specification of the con-
vergence condition as part of the stencil problem definition. In the
paper, only relative speedup numbers are provided, so we were not
able to compare PASTHA’s performance to Repa.

Accelerate [8] is a high-level embedded language for multidi-
mensional array computations. In contrast to Repa, it has at its core
an online code generator which targets NVIDIA’s CUDA GPGPU
programming framework. Accelerate recently gained support for
stencil generation as well, but follows a rather different approach,
due is its embedded nature.
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