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Abstract
Existing approaches to higher-order vectorisation, also known as
flattening nested data parallelism, do not preserve the asymptotic
work complexity of the source program. Straightforward exam-
ples, such as sparse matrix-vector multiplication, can suffer a se-
vere blow-up in both time and space, which limits the practical-
ity of this method. We discuss why this problem arises, identify
the mis-handling of index space transforms as the root cause, and
present a solution using a refined representation of nested arrays.
We have implemented this solution in Data Parallel Haskell (DPH)
and present benchmarks showing that realistic programs, which
used to suffer the blow-up, now have the correct asymptotic work
complexity. In some cases, the asymptotic complexity of the vec-
torised program is even better than the original.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; Polymorphism; Abstract data types

General Terms Languages, Performance

Keywords Arrays, Data parallelism, Haskell

1. Introduction
Data Parallel Haskell (DPH) is an extension to the Glasgow Haskell
Compiler (GHC) that offers nested data parallelism. With nested
parallelism, each parallel computation may spawn further paral-
lel computations of arbitrary complexity, whereas with flat paral-
lelism, they cannot; so nested data parallelism is vastly more ex-
pressive for the programmer. On the other hand, flat data paral-
lelism is far easier to implement, because flat data parallelism ad-
mits a simple load balancing strategy and can be used on SIMD
hardware (including GPUs). The higher-order vectorisation (or
flattening) transform [17] bridges the gap, by transforming source
programs using nested data parallelism into ones using just flat data
parallelism [1, 17]. That is, it transforms the program we want to
write into the one we want to run.

Unfortunately, practical implementations, including ours, have
had a serious flaw: the standard transformation only guarantees
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to preserve the parallel depth complexity of the source program,
and not its asymptotic work complexity as well. If our benchmark
machines had an infinite number of processors, this would be of
no concern, but alas they do not. Nor is this phenomenon rare:
while working on DPH we have encountered simple programs that
suffer a severe, and sometimes even exponential, blow-up in time
and space when vectorised.

This is a well-known problem that arises due to the flat represen-
tation of nested arrays in vectorised code [3, Appendix C]. Several
attempts have been made to solve it, but so far they have been either
incomplete [15], do not work with higher order languages [10], or
give up on flattening the parallelism [4, 8] or arrays [18] altogether.
In this paper, we will show how to overcome the problem for full-
scale higher-order vectorisation. Overall, we make the following
contributions:

1. We present the first approach to higher-order vectorisation
that, we believe, ensures the vectorised program maintains the
asymptotic work complexity of the source program, while al-
lowing nested arrays to retain their flattened form (§4). We only
require that vectorised programs are contained [2, 18], a prop-
erty related to the standard handling of branches in SIMD-style
parallel programming (§5.6).

2. We identify the key problem of mishandled index space trans-
forms, which worsen the asymptotic complexity of vectorised
code using prior flat array representations (§3).

3. We introduce a novel delayed implementation of the central in-
dex space transforms (§4) and discuss the pragmatics of achiev-
ing good constant factors, in addition to the required asymptotic
performance (§6).

4. Finally, we present performance figures for several realistic pro-
grams, including the Barnes-Hut n-body algorithm. This sup-
ports our claim that our delayed implementation of the in-
dex space transforms leads to vectorised programs that operate
within the required asymptotic bounds (§7).

The claim that our new approach to higher-order vectorisation is
work efficient is supported by experiments with a concrete imple-
mentation in GHC — but not yet by formal proof, which we leave
to future work. Nevertheless, our work presents a significant ad-
vance of the state of the art on a long-standing problem. Achieving
good space complexity is an orthogonal problem that we discuss in
§5.5. A reference implementation of our new array representation
is available in the companion technical report [13].
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2. The Asymptotic Complexity Problem
We start with an example illustrating vectorisation. The function
retrieve simultaneously indexes several arrays, the xss, each
of which is distributed across one subarray of indices contained
in iss. It returns a nested array of the results and uses nested
parallelism — an inner parallel computation (mapP indexP xss)
is performed for each of the outer ones.

retrieve :: [:[:Char:]:] -> [:[:Int:]:] -> [:[:Char:]:]
retrieve xss iss

= zipWithP mapP (mapP indexP xss) iss

Here is retrieve applied to two example arrays.1

retrieve [[A B] [C D E] [F G] [H]] (xss)
[[1 0 1] [2] [1 0] [0]] (iss)

==> [[B A B] [E] [G F] [H]]

In the type signature, [:Char:] refers to bulk-strict, parallel, one-
dimensional arrays. Elements of these arrays are stored unboxed,
so that demanding any element causes them all to be computed.
zipWithP and mapP are parallel versions of the corresponding
list functions, while indexP is array indexing — Figure 1 shows
these and other typical array operations. The work-complexity of
retrieve is linear in the number of leaf elements of the array iss
(seven here), since each is used once for indexing. (Technically it is
also linear in the number of sub-arrays in iss, since empty arrays
in iss would still cost.)

The vectorised form of retrieve is the following — the ac-
companying technical report [13] includes the full derivation.

retrieve_v :: PA (PA Char) -> PA (PA Int) -> PA (PA Char)
retrieve_v xss iss
= let ns = takeLengths iss

in unconcat iss
$ index_l (sum ns) (replicates ns xss)
$ concat iss

The type PA is a generic representation type that determines
the layout of the user-visible type [::] in a type-dependent
manner [6]. When applied to our example array, the function
first concatenates iss to yield a flat array of indices, and uses
takeLengths to get the lengths of the inner arrays of iss:

ns = takeLengths iss = [3 1 2 1]
iss1 = concat iss = [1 0 1 2 1 0 0]

The replicates function distributes the subarrays of xss across
the flat indices array. It takes an array of replication counts and an
array of elements, and replicates each element by its corresponding
count:

xss1 = replicates ns xss
= replicates [3 1 2 1] [[A B] [C D E] [F G] [H]
= [[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

Now we have one sub-array for each of the elements of iss1.
Continuing on, we use the lifted indexing operator index_l, which
has the following type:

index_l :: Int -> PA (PA e) -> PA Int -> PA e

Given an array of arrays, and an array of indices of the same length,
for each subarray-index pair, index_l retrieves the correspond-
ing element of the array. In other words, index_l is effectively
zipWithP indexP, except that it gets the length of the two arrays
as an additional first argument.

1 The concrete syntax for array literals is [:x1, ..., xn:]. To save
space, we elide the colon and comma.

lengthP :: [:e:] -> Int
indexP, (!:) :: [:e:] -> Int -> e
concatP :: [:[:e:]:] -> [:e:]
mapP :: (d -> e) -> [:d:] -> [:e:]
zipWithP :: (c -> d -> e) -> [:c:] -> [:d:] -> [:e:]
foldP :: (e -> e -> e) -> [:e:] -> e

Figure 1. User Visible Array Operators

data PA e = PA {length :: Int, pdata :: PData e}
data family PData e
data instance PData Int = PInt (Vector Int)
data instance PData Char = PChar (Vector Char)
data instance PData (PA e) = PNested Segd (PData e)
data Segd = Segd {lengths, indices :: Vector Int}
index :: PA e -> Int -> e
index_l :: Int -> PA (PA e) -> PA Int -> PA e
replicate :: Int -> e -> PA e
replicates :: Vector Int -> PA e -> PA e
concat :: PA (PA e) -> PA e
unconcat :: PA (PA e) -> PA e -> PA (PA e)

Figure 2. Baseline Array Representation and Parallel Primitives

Applying index_l to our example yields the following:

xss2
= index_l (sum ns) (replicates ns xss) (concat iss)
= index_l 7 [[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

[1 0 1 2 1 0 0]
= [B A B E G F H]

Finally, we use unconcat to reapply the original nesting structure
to this flat result:

xss3 = unconcat [[1 0 1] [2] [1 0] [0]] [B A B E G F H]
= [[B A B] [E] [G F] [H]]

In the vectorised function retrieve_v, all parallelism comes from
the implementation of the primitive flat parallel array operators
such as index_l and replicates. However, simply converting
nested parallelism to flat parallelism is not sufficient. We previ-
ously implemented replicates by physically copying each of the
subarrays. With that implementation, suppose we evaluate the fol-
lowing expression:

retrieve [[A B C D E F G H]] [[0 1 2 3 4 5 6 7]]

In terms of the source program, this expression takes eight steps,
one for each index in the second array. However, in the vectorised
program, replicates will also copy [A B C D E F G H] eight
times. As we have the same number of characters in the first array
as indices in the second array, vectorisation turned a function that
performs O(n) work into an O(n2) function: Disaster!

It turns out that the trouble with replicates is just one of a
class of problems related to the mishandling of index space trans-
forms during vectorisation. These transforms change the mapping
between elements in the source and result arrays, but do not com-
pute new element values. In addition to identifying index space
transforms as the culprit, in the next two sections we contribute a
novel delayed implementation, which enables vectorised programs
to remain within the required asymptotic complexity bounds. What
are those bounds? Consider an absolutely direct implementation of
DPH, in which a value of type [:a:] is represented by an ordinary
array of pointers to values of type a.

Complexity Goal: for the output of vectorisation to have
the same asymptotic work complexity as the direct im-
plementation, but with much better constant factors and
amenability to parallelism.
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3. Baseline Representation of Nested Arrays
A key idea of Blelloch’s vectorisation transformation is to flatten
the representation of nested arrays, as well as the parallelism itself.
More precisely: an array A of sub-arrays A0,A1, ...,An−1 (each with
its own length) is represented by (a) a single long array of data,
D = [A0,A1, ...,An−1] all laid out in one contiguous block, and (b)
a segment descriptor that gives the length of each Ai in the data
block D. We call Ai the segments of A. The idea is to divide the
data block D evenly over the processors, and process each chunk
independently in parallel. This provides both excellent granularity
and excellent data locality, which is intended to satisfy the second
part of our Complexity Goal. There is some book-keeping to do on
the segment descriptor; generating that book-keeping code is the
job of the vectorisation transformation.

Figure 2 gives the representation of nested arrays in Haskell,
using GHC’s data families [5]. An array of type (PA e) is repre-
sented by a pair PA n d, where n is the length of the array, and
d :: PData e contains its data. The representation of PData is
type-dependent — hence, its declaration as a data family. When
the argument type is a scalar, matters are simple: PData Int is
represented merely by a Vector Int, which we take as primitive
here2. Arrays of Char are represented similarly. On the other hand,
the data component of a nested array, with type PData (PA e) is
represented by a pair of a segment descriptor of type Segd, and the
data block of type PData e. The segment descriptor Segd has two
fields, lengths and indices. The latter is just the scan (running
sum) of the former, but we maintain both in the implementation to
avoid recomputing indices from lengths repeatedly. Each is a
flat Vector of Int values.

Using the example from the previous section, the array xss1
has type (PA (PA Char)) and is represented like this:

replicates [3 1 2 1] [[A B] [C D E] [F G] [H]]
= [[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

----------------------------------------------- (ARR0)
PA 7 (PNested
(Segd lengths: [2 2 2 3 2 2 1]

indices: [0 2 4 6 9 11 13])
(PChar [A B A B A B C D E F G F G H]))

We show the logical value of the array above the line, and its
physical representation below. The representation is determined
by the data type declarations in Figure 2. The result array is built
with an outer PA constructor, pairing its length, 7, with the pay-
load of type PData (PA Char). From the data instance for
PData (PA e), again in Figure 2, we see that the data field con-
sists of a PNested constructor pairing a segment descriptor with a
value of type PData Char. Finally, the latter consists of a PChar
constructor wrapping a flat Vector of Char values.

The process continues recursively in the case of deeper nesting:
the reader may care to write down the representation of a value of
type PA (PA (PA Int)). We will see an example in §4.4.

Now the problem with replicates becomes glaringly obvi-
ous. The baseline representation of arrays, which was carefully
chosen to give good locality and granularity, is physically inca-
pable of representing the sharing between subarrays in the re-
sult — and losing that sharing leads directly to worsening the
asymptotic complexity. It is not possible to simply eliminate the
call to replicates itself, because this function plays a critical
role in vectorisation. In the example from §2, replicates dis-
tributes shared values from the context of the outer computation
(zipWithP mapP) into the inner computation (mapP indexP).
Since we cannot eliminate replicates, the only way forward
is to change the representation of nested arrays.

2 It is provided by the vector library.
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Figure 3. New Array Representation

4. New Representation of Nested Arrays
The new array representation must support all index space trans-
forms that vectorisation introduces, in a way that allows the vec-
torised program to have the same asymptotic complexity as the
original unvectorised program. This is up to containment which is
discussed in §5.6. In most cases this comes down to having the
same complexity as the direct representation, where nested arrays
are stored as flat arrays of pointers to more arrays. However, we
cannot use this representation as described, because it would lose
the granularity and data locality benefits of the baseline segmented
representation. We need the best of both worlds.

4.1 Physical, Virtual and Scattered Segments
An example array with the same value as ARR0 is shown in Figure 3.
Our new representation has the following key features:

1. We distinguish between physical and virtual segments. Physical
segments consist of real element data in memory, while virtual
segments are defined by mapping onto physical segments. This
distinction enables us to define nested arrays with repeated
segments without copying element data.

2. The physical segments of a nested array may now be scattered
through several data blocks, instead of being contiguous. Al-
though we prefer segments to be contiguous for locality rea-
sons, we must also allow them to be scattered, so that we can
filter a nested array without copying element data.

In the example, there are seven virtual segments defined from four
physical segments. The physical segments lie scattered in two data
blocks. We will see why we need to allow physical segments to lie
in separate data blocks in §4.5. The overall segment descriptor is
now stratified into three layers: VSegd (virtual segments); SSegd
(scattered segments) and plain Segd (contiguous segments). In our
terminology, we refer to all of VSegd, SSegd and Segd as “segment
descriptors”, individually or grouped together. At the bottom layer,
Segd gives the length of each segment, and would be sufficient
to describe the array if all segments were contiguous in a single
block. The SSegd gives the index of the source data block, and
starting position for each physical segment in its block. The VSegd
provides the mapping between virtual and physical segments. We
have elided the indices field from the diagram for clarity, but also
include this in our new array representation as part of the Segd.
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data PA e = PA { length :: Int, pdata :: PData e }
data family PData e
data family PDatas e
data instance PData Int = PInt (Vector Int)
data instance PDatas Int = PInts (Vector (Vector Int))
data instance PData Char = PChar (Vector Char)
data instance PDatas Char = PChars (Vector (Vector Char))

data instance PData (PA e)
= PNested { vsegd :: VSegd, pdatas :: PDatas e }

data instance PDatas (PA e)
= PNesteds (Vector (PData (PA e)))

data VSegd -- Virtual-segment descriptor.
= VSegd { segmap :: Vector PsId, ssegd :: SSegd }

data SSegd -- Scattered-segment descriptor.
= SSegd { sources :: Vector DbId, starts :: Vector Int }

, segd :: Segd }

data Segd -- Contiguous-segment descriptor.
= Segd { lengths :: Vector Int, indices :: Vector Int }

type PsId = Int -- Physical segment Id, indexes ’sources’
type DbId = Int -- Data block Id, indexes ’pdatas’

Figure 4. Definition of the New Array Representation

4.2 The Concrete Definition
The concrete definition of our new array type is given in Figure 4.
The data type PA is unchanged from Figure 2: a pair of a length and
payload. The instances for PData Int and PData Char are also
unchanged. The difference is in the representation of nested arrays:

data instance PData (PA a)
= PNested { vsegd :: VSegd, pdatas :: PDatas a }

The payload is now a PDatas (plural) rather than PData. Where
PData represents a single data block, PDatas represents a vector of
data blocks. We use the type DbId (short for data-block identifier)
to index this vector of PData values.

The vsegd field holds the virtual segment descriptor. It consists
of a vector of physical segment identifiers (segmap), and a scattered
segment descriptor (ssegd). The segmap maps virtual segments
onto physical segments and corresponds 1-1 with the outer level of
the array being represented. In Figure 3, we have seven entries in
this map and seven subarrays in the overall nested array.

Each entry in the segmap is a physical segment identifier, of
type PsId. A PsId is the index of one of the physical segments
described by the SSegd and Segd types. Crucially, the segmap can
contain repeated use of the same physical segment. In Figure 3 we
have used [0 0 0 1 2 2 3] to indicate three copies of the first
physical segment, one copy of the second, and so on. This is how
we represent the sharing defined by replicates. Note that we can
not just store the replication counts [3 1 2 1] directly because
we must be able to map virtual segments to physical segments in
constant time.

The SSegd and Segd together describe the physical segments.
Together they contain four vectors, all of the same length, two of
them nested inside the segd field. The sources vector gives the
data block identifier, DbId, which is the index of one of the data
blocks in the pdatas field. The next two, starts and lengths,
give the starting position and length of the physical segment in
that data block. Finally indices is, as before, a cached copy of
the scan (accumuated sum) of lengths. Keeping SSegd and Segd
separate is helpful when optimising vectorised code for absolute
performance, which we discuss in §6.

Finally, the array representation must obey the following invari-
ants:

1. The lengths of the sources, starts, lengths, and indices
fields must all be the same.

2. Every PsId in the segmap must be less than the length of the
sources field.

3. Each DbId in sources must be less than the length of the
pdatas vector.

4. Each element of starts[i] must be less than the length of
pdatas[sources[i]].

5. The indices field is equal to init (scan (+) 0 lengths).

6. All physical segments defined by the SSegd and Segd types
must be reachable from the segmap. More precisely, the set
of physical segment identifiers in the segmap must cover
[0..np-1], where np is the length of the starts, sources,
lengths, and indices fields.

7. All pdata blocks must be reachable from the sources field.
More precisely, the set of sources must cover [0..nb-1],
where nb is the length of the pdatas vector.

Invariants 1 to 4 are standard well-formedness conditions. In-
variant 2 ensures that each physical segment identifier points to
a real physical segment. Invariant 3 ensures that each data block
identifier points to a real data block. Invariant 5 says that indices
is precomputed from lengths. The reason for this is discussed in
§6. Invariants 6 and 7 ensure that the size of the internal structure
of the array is bounded by the number of virtual segments, which
is necessary for the complexity bound on append (§4.5). Invari-
ant 7 is also needed to ensure that the parallel implementation of
reductions such as sum do not duplicate work (§5.4). However, an
implementation may be able to relax these last two invariants in
certain cases (§6).

4.3 Replicates again
Now let us implement replicates using our new array represen-
tation. The start is easy, because the result PA array must be built
with a PA constructor:

replicates :: Vector Int -> PA e -> PA e
replicates ns arr = PA (sum ns) (replicatesPR ns arr)

The real work is in replicatesPR. But now we encounter a
slight problem: since the representation of PData is indexed by the
element type e, we require a type-indexed function to operate over
PData values. That is, we need a type class, with an instance for
Int and an instance for (PA e):

class PR e where
replicatesPR :: Vector Int -> PData e -> PData e
...more methods...

instance PR Int where
replicatesPR = replicatesI
...

instance PR e => PR (PA e) where
replicatesPR = replicatesPA
...

The PR (Parallel Representation) class is given in Figure 5, and con-
veniently collects all the necessary primitive operations over arrays.
We will see more of them in this section, but replicatesPR is one.
So, in fact, we lied: the types of replicates and replicatesPR
are overloaded thus:

replicates :: PR e => Vector Int -> PA e -> PA e
replicatesPR :: PR e => Vector Int -> PData e -> PData e
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class PR e where
emptyPR :: PData e
lengthPR :: PData e -> Int

replicatePR :: Int -> e -> PData e
replicatesPR :: Vector Int -> PData e -> PData e

appendPR :: PData e -> PData e -> PData e

indexPR :: PData e -> Int -> e
indexvsPR :: PDatas e -> VSegd

-> Vector (Int, Int) -> PData e

extractPR :: PData e -> Int -> Int -> PData e
extractvsPR :: PDatas e -> VSegd -> PData e

packPR :: PData e -> Vector Bool -> PData e
combinePR:: Vector Bool -> PData e -> PData e -> PData e

lengthdPR :: PDatas e -> Int
emptydPR :: PDatas e
singletondPR :: PData e -> PDatas e
appenddPR :: PDatas e -> PDatas e -> PDatas e
indexdPR :: PDatas e -> Int -> PData e

------- Utility functions --------
sumV :: Vector Int -> Int
singletonV :: e -> Vector e
replicateV :: Int -> e -> Vector e
replicatesV :: Vector Int -> Vector e -> Vector e

Figure 5. Primitive Array Operators

(In what follows we will often omit the “PR =>” context from types
to save space.) Now we are ready to implement the two cases. The
case for Int is straightforward:

replicatesI :: Vector Int -> PData Int -> PData Int
replicatesI ns (PInt xs) = PInt (replicatesV ns xs)

where replicatesV is the Vector-level replication operation
shown in Figure 5. The interesting case is the one for nested ar-
rays:

instance PR e => PR (PA e) where
replicatesPR = replicatesPA

replicatesPA :: Vector Int -> PData (PA e) -> PData (PA e)
replicatesPA lens (PNested segmap pdatas)
= PNested (VSegd segmap’ ssegd) pdatas
where segmap’ = replicatesV lens segmap

With our new array representation, we can apply segmented
replicate to an array by using replicatesV on the segmap field.
The element data, pdatas, does not need to be copied, and is
untouched in the result. Continuing the example from §3, applying
replicates to the array from Figure 3 yields:

replicates [0 0 1 1 0 0 1] {Figure 3}
= [[A B] [C D E] [H]]
------------------------------------------------ (ARR1)
PA 3 (PNested
(VSegd segmap: [0 1 3]
(SSegd sources: [0 0 1 1] starts: [1 3 0 4])
(Segd lengths: [2 3 2 1] indices: [0 2 5 7]))
(PChars 0: [X A B C D E]

1: [F G X X H X X X])

In fact, the above definition of replicatesPA function is not
yet complete. Physical segments 0, 1 and 3 are used, but segment 2
is not, which violates invariant 6. We will discuss why this matters
in §4.6.

4.4 Plain replicate
Vectorisation also uses a simpler form of replication, which we
call replicate (singular). The call (replicate n x) returns
an array of n elements, each a (virtual) copy of x. This function
is introduced when an inner parallel computation uses a shared
constant or a free variable that is defined in an outer context. This
is essentially the same reason that the more general replicates
function is introduced, though with plain replicate the shared
value is used uniformly by all inner computations. We will see an
example in §6.1. Note that unlike replicates, the result of plain
replicate has a greater nesting depth than the source element.
The interesting case is for nested arrays:

replicatePA :: Int -> PA e -> PData (PA e)
replicatePA c (PA n pdata)
= replicatesPR (singletonV c)
$ PNested (singletonVSegd n) (singletondPR pdata)

singletonVSegd :: Int -> VSegd
singletonVSegd len
= VSegd (singletonV 0)
(SSegd (singletonV 0) (singletonV 0)
(Segd (singletonV len) (singletonV 0)))

To perform a replicate we simply add a new segment descriptor
on top of the old array. This furnishes us with an example array of
greater nesting depth:

replicate 2 {Figure 3}
------------------------------------------------ (ARR2)
PA 2 (PNested
(VSegd segmap: [0 0]
(SSegd sources: [0] starts: [0]
(Segd lengths: [7] indices: [0])))
(PNesteds
0: PNested

(VSegd segmap: [0 0 0 1 2 2 3]
(SSegd sources: [0 0 1 1] starts: [1 3 0 4])
(Segd lengths: [2 3 2 1] indices: [0 2 5 7]))
(PChars 0: [X A B C D E]

1: [F G X X H X X X])

Notice that the cost of (replicate n x) is O(n), regardless
of how much data x contains. With our new representation the
complexity of replicate is linear in the length of the created
segmap, which is also the length of the overall array.

4.5 Append
Let us consider another important operation: appending two arrays.

appendPA :: PA e -> PA e -> PA e

As mentioned in §4.2 we need invariants 6 and 7 to achieve the
Complexity Goal here. Append should be linear in the length of
the two argument arrays, regardless of how deeply nested they are.
This is impossible with the baseline representation from §3 because
we would need to copy all elements into a single data block.

With our new representation we do not need to copy array
elements. To append two nested arrays we append the two PDatas
and combine the segment descriptor fields. Although we can simply
append the lengths and starts fields, we need to recompute
the indices. We also need to increment the entries in the second
segmap and sources field to account for the physical segments
and data blocks defined by the first array. For this process to have
complexity linear in the length of the two argument arrays, the
lengths of their starts, sources, lengths and indices fields
can be no greater than the length of their segmap. To put this
another way: the number of physical segments can be no greater
than the number of virtual segments. Likewise, the length of the
two PDatas can be no greater than the sources fields. These
constraints are implied by invariants 6 and 7. The definition of
appendPR (the version that works on PData) is on the next page.
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appendPR :: PData (PA e) -> PData (PA e) -> PData (PA e)
appendPR (PNested vsegd1 pds1) (PNested vsegd2 pds2)

= PNested (appendVSegd (length pds1) vsegd1 vsegd2)
(pds1 ++ pds2)

appendVSegd ps1 (VSegd sm1 ssegd1) (VSegd sm2 ssegd2)
= VSegd (sm1 ++ map (+ lengthSSegd ssegd1) sm2)
$ appendSSegd ps1 ssegd1 ssegd2

appendSSegd ps1 (SSegd ss1 us1 segd1) (SSegd ss2 us2 segd2)
= SSegd (ss1 ++ ss2) (us1 ++ map (+ ps1) us2)
$ appendSegd segd1 segd2

appendSegd (Segd ls1 is1) (Segd ls2 is2)
= let n1 = sum ls1

in Segd (ls1 ++ ls2) (is1 ++ map (+ n1) is2)

Here is an example array that we will use in a moment:

[[K] [] [L M N O]]
------------------------------------------------- (ARR3)
PA 3 (PNested
(VSegd segmap: [0 1 2]
(SSegd sources: [0 0 0] starts: [0 1 1])
(Segd lengths: [1 0 4] indices: [0 1 1]))
(PChars 0: [K L M N O]))

Appending the array from Figure 3 with ARR3 above yields:

[[A B] [A B] [A B] [C D E] ... [K] [] [L M N O]
------------------------------------------------- (ARR4)
PA 10 (PNested
(VSegd segmap: [0 0 0 1 2 2 3 4 5 6]
(SSegd sources: [0 0 1 1 2 2 2] starts: [1 3 0 4 0 1 1]
(Segd lengths: [2 3 2 1 1 0 4] indices: [0 2 5 7 8 9 9])))
(PChars 0: [X A B C D E]

1: [F G X X H X X X]
2: [K L M N O]))

The data block of ARR3 joins the set of data blocks in the result
without any copying.

4.6 Culling Physical Segments
As mentioned in §4.5, we need invariants 6 and 7 to ensure that
appendPA has the correct asymptotic complexity. Suppose we wish
to append ARR1 from §4.3 to ARR3 above. Invariant 7 is already sat-
isfied, so this part is fine. However, as we produced ARR1 by using
a replicates operation with zero valued replication counts, phys-
ical segment 2 is no longer reachable from the segmap, which vio-
lates invariant 6. To recover this we use the following operations:

cullOnSegmap::Vector PsId-> SSegd-> (Vector PsId, SSegd)
cullOnSSegd :: SSegd -> PDatas e-> (SSegd, PDatas e)

The cullOnSegmap function takes the segmap and SSegd for
an array. It filters out the physical segments from the SSegd that are
unreachable from the segmap, returning an updated segmap and
SSegd. In the result, the number of physical segments is necessarily
bounded by the length of segmap. Likewise, cullOnSSegd filters
out data blocks in the PDatas not reachable from the sources field
of the SSegd. We need this second operation because performing
just the first could leave some data blocks unreachable from the
sources field, thus violating invariant 7. Culling ARR1 yields:

[[A B] [C D E] [H]]
------------------------------------------------ (ARR5)
PA 3 (PNested
(VSegd segmap: [0 1 2]
(SSegd sources: [0 0 1] starts: [1 3 4])
(Segd lengths: [2 3 1] indices: [0 2 5]))
(PChars 0: [X A B C D E]

1: [F G X X H X X X])

All array operators that filter out entries from the segmap
need to apply cullOnSegmap and cullOnSSegd to preserve
the invariants. For example, the invariant preserving version of
replicatesPA is as follows:

replicatesPA:: Vector Int -> PData (PA e) -> PData (PA e)
replicatesPA lens (PNested (VSegd segmap ssegd) pdatas)
= PNested (VSegd segmap’ ssegd’’) pdatas’
where (segmap’, ssegd’)

= cullOnSegmap (replicatesV lens segmap) ssegd
(ssegd’’, pdatas’)
= cullOnSSegd ssegd’ pdatas

We will now sketch how cullOnSegmap is implemented, leav-
ing the full details to the companion technical report [13]. The oper-
ation of cullOnSSegd is similar. We start by producing a vector of
flags that record which of the physical segments are reachable from
the segmap. For ARR1 this is [T T F T]. The flags are calculated
by first filling the target vector with the default value F and then
using concurrent writes to set elements referenced by the segmap
to T. Then, we use the flags vector to compute the physical seg-
ment identifiers that appear in the result: [0 1 3]. We expand this
vector to one that maps between the physical segment identifiers
in the result to the identifiers in the source: [0 1 X 2]. The X in-
dicates an unused element, which the implementation can fill with
any value. Finally, we use this mapping to permute the segmap,
sources, starts and lengths fields of the source array, and then
recompute the indices.

The work and space complexity of cullOnSegmap is lin-
ear in the length of the segmap being processed and the num-
ber of physical segments referenced. Likewise, the complexity of
cullOnSSegd is linear in the length of the SSegd and the number
of data blocks. This ensures that we do not break the complexity
budget of operations such as replicates that make use of these
functions.

5. Projection, Concatenation and Reduction
The replicates and append operators described in the previous
sections highlight the fundamental features of our array represen-
tation. The work efficient implementation of replicates requires
that we represent shared segments without copying element data.
As replicates may also drop segments, we must handle scattered
segments as well. In addition, the work efficient implementation of
append requires multiple data blocks with scattered segments as
well as the use of the culling operations from §4.6. Culling ensures
that the size of the physical representation of an array is bounded
by the size of its logical value. We now move on to describe the
other operators that we need to support with the new representation
when vectorising programs. Happily, we can support them with the
correct work complexity without any further extensions.

5.1 Index and Extract
Indexing into a nested array is straightforward. We use the segmap
to determine the target segment and then extract (slice) it from its
data block. We present this operation for expository purposes only:
indexing operators in the source program will be vectorised to lifted
indexing, which we discuss in a moment.

indexPA (PNested (VSegd segmap
(SSegd sources starts
(Segd lengths _))) pdatas) ix

= PA len (extractPR pdata start len)
where psegid = segmap ! ix

source = sources ! psegid
start = starts ! psegid
len = lengths ! psegid
pdata = indexdPR pdatas source
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For indexing to be constant time, extractPR must be as well.
When the returned value is a Vector Int, or some other vector
of scalars, the vector package provides constant time extract by
storing a starting index as well as the slice length in the returned
Vector. To extract a range of subarrays from a nested array we
extract their physical segment identifiers from the segmap and then
cull the other fields to enforce invariants 6 and 7 from §4. For
example, extracting the middle two segments from ARR4 yields:

[[F G] [F G]]
------------------------------------------------- (ARR6)

PA 2 (PNested
(VSegd segmap: [0 0]
(SSegd sources: [0] starts: [0]
(Segd lengths: [2] indices: [0])))
(PInts 0: [F G X X H X X X]))

Unfortunately, when indexPA returns a nested array, the called
extractPR instance must cull unused physical segments; hence,
the overall indexing operation is not constant time. For this reason,
our new array representation cannot perform all operations that the
direct pointer based one could within the same complexity bounds.
However, this does not worsen the complexity of vectorised pro-
grams relative to the baseline representation, because only lifted
index and extract operators are used in vectorised code. We can per-
form the lifted operations within the required complexity bounds.

Lifted indexing itself is a simple wrapper for the indexvsPR
function, whose signature is shown in Figure 5.

indexlPR :: Int -> PData (PA e) -> PData Int -> PData e
indexlPR c (PNested vsegd pdatas) (PInt is)

= indexvsPR pdatas vsegd $ zipV (enumFromN 0 c) is

The indexvsPR function takes a set of data blocks, a virtual seg-
ment descriptor, and an array of pairs of virtual segment identifiers
and element indices within those segments. As we wish to lookup
one element from each segment, we enumerate all the available seg-
ment identifiers with enumFromN. The indexvsPR function itself
implements virtual shared indexing, it retrieves several elements
from some shared data blocks (pdatas). It uses the index space
transform expressed by the vsegd to map the logical view of the
array referred to by the segment identifiers and element indices, to
the physical view of the array in terms of the pdatas. The defini-
tion of indexvsPR is similar to indexPR, though we leave the full
details for the technical report [13].

5.2 Concatenation
The central feature of Blelloch’s approach to flattening nested par-
allelism is that it does not need multiply lifted versions of source
functions in vectorised code. This is achieved by using the concat
and unconcat operators when vectorising higher order functions
such as mapP and zipWithP. Every source-level application of
such a function uses a concat/unconcat pair in the vectorised ver-
sion. An example of this is shown in retrieve_v from §2.

With the baseline array representation from Figure 2, both
concat and unconcat are constant time operations. To concate-
nate an array we simply remove the segment descriptor, and to
unconcatenate we reattach it. This is possible with the baseline
representation, because the form of the segment descriptor im-
plies that the physical segments lie contiguously in a single, flat
data block. The description of the segments consists fundamentally
of the lengths field, with the indices being computed directly
from it. There is no scattering information such as the starts and
sources fields of our SSegd.

As we have seen, the limitation of the baseline representation
is that it cannot represent index space transformations on nested
arrays except by copying element data. In our new representation,
we encode such index space transforms in the segment descriptor,

which avoids this copying. The price we pay is that the physical
segments in a nested array are no longer guaranteed to be contigu-
ous, so we cannot simply discard the segment descriptor to con-
catenate them. Instead, the concat function must now copy the
segment data through the index space transform defined by the seg-
ment descriptor, to produce a fresh contiguous array. This is essen-
tially a gather operation. The main job is done by extractvsPR
from Figure 5, with concat itself being a wrapper for it:

concat :: PA (PA e) -> PA e
concat (PA _ (PNested vsegd pdatas))
= let pdata = extractvsPR pdatas vsegd

in PA (lengthPR pdata) pdata

The extractvsPR function takes some data blocks, a seg-
ment descriptor that describes the logical array formed from those
blocks, and copies out the segment data into a fresh contiguous ar-
ray. Importantly, although both extractvsPR and concat are now
linear in the length of the result, this does not worsen the complex-
ity of the vectorised program compared with the baseline represen-
tation. The reason is that concat/unconcat trick is only needed
when vectorising higher order functions such as mapP. In terms
of the unvectorised source program, mapP is at least linear in the
length of its argument array, because it produces a result of the same
length. The vectorised version of mapP is implemented by concate-
nating the argument array, applying the (lifted) worker function,
and then unconcatenating the result. The concat and unconcat
functions can then be linear in the length of this result, because the
unvectorised version of mapP has this complexity anyway.

Note that the linear complexity of concat is independent of the
depth of nesting of the source array. To concatenate an array of
type (PA (PA (PA (PA Int)))) we only need to merge the two
outer-most segment descriptors. The third level segment descrip-
tors, and underlying Int data blocks are not touched. There is an
example of this in the accompanying technical report [13].

5.3 Demotion, Promotion and Unconcatenation
The unconcat function is defined in terms of generally useful de-
motion and promotion operators that convert between the different
segment descriptor types. We will discuss these operators first be-
fore continuing onto unconcat. The operators are as follows:

demoteVSegd :: VSegd -> SSegd
demoteSSegd :: SSegd -> Segd
promoteSegd :: Segd -> SSegd
promoteSSegd :: SSegd -> VSegd

Abstractly, demoting a VSegd to a SSegd or a SSegd to a Segd
discards information about the extended structure of the array, such
as how segments are shared or scattered through the store. Going
the other way, promoting a Segd to a SSegd or a SSegd to a VSegd
adds redundant information. In our concrete implementation, many
array functions (including unconcat) are defined in terms of these
operators. The fact that these functions are defined this way is also
used when optimising for absolute performance, which we will
discuss in §6.

5.3.1 Demotion
Demoting a segment descriptor eliminates fields from its represen-
tation. Consider the following example:

virtual segs: [ [B C D] [G] [] [B C D] [E F] [A] ]
physical segs: [ [A] [G] [B C D] [E F] [] ]
------------------------------------------------ (ARR7)
PA 6 (PNested
(VSegd segmap: [2 1 4 2 3 0]
(SSegd sources: [1 0 1 0 0] starts: [0 2 1 0 0]
(Segd lengths: [1 1 3 2 0] indices: [0 1 2 4 6])))
(PChars 0: [E F G] 1: [A B C D]))
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Here we have shown the virtual segments as described by the
VSegd, as well as the physical segments described by the SSegd.
Note that the virtual segments need not appear in the same order as
the physical segments are defined, which allows us to implement
permutation operations on nested arrays by permuting the segmap.
Demoting the VSegd to a SSegd pushes the information about
sharing encoded by the segmap into the other fields of the segment
descriptor. It also forces the entries in the SSegd to appear in the
same order as the logical array they define:

[ [B C D] [G] [] [B C D] [E F] [A] ]
------------------------------------------------------
(SSegd sources: [1 0 0 1 0 1] starts: [1 2 0 1 0 0]
(Segd lengths: [3 1 0 3 2 1] indices: [0 3 4 4 7 9]))
(PChars 0: [E F G] 1: [A B C D])

To demote the array we have computed new starts, sources
and lengths fields by permuting the originals using the segmap.
In practice, when we demote a VSegd, we must be mindful of the
potential for index space overflow. By this we mean that if a nested
array consists of many virtual copies of a large sub-array, then the
total number of elements in the virtual array may be larger than the
address space of the machine, even though all the physical data fits
within it. In this case the elements of the indices field may no
longer fit in a machine word. We will return to this point in §5.4.1.
Avoiding index space overflow is the main reason we use an explicit
segmap, instead of representing all arrays with the above demoted
form (without a segmap).

Continuing on, we demote a SSegd to a Segd by simply discard-
ing the outer SSegd wrapper, along with the sources and starts
fields. To represent the same logical array, we must then gather the
segment data into a fresh data block, similarly to the extractvsPR
function described in §5.1. For our example this produces:

[ [B C D] [G] [] [B C D] [E F] [A] ]
-------------------------------------------------------
(Segd lengths: [3 1 0 3 2 1] indices: [0 3 4 4 7 9])
(PChars 0: [B C D G B C D E F A])

As with the previous demotion, our nested array still has the
same logical value as the original. However, by giving up the
sources and starts fields we have lost information about how the
segments were originally scattered through the store. This forces us
to copy them into a fresh data block to represent the original logical
array, leaving us with the old array representation from Figure 2.

5.3.2 Promotion
Promoting an array fills in missing segment descriptor fields with
redundant information. To promote a Segd to a SSegd, we reuse
the existing indices field for starts and fill the sources with
all zeros. This indicates that all physical segments lie contiguously
in a single flat array. To promote the SSegd to a VSegd we then
enumerate the physical segments in the segmap. Performing both
promotions to the demoted array from the previous section yields
the following:

[ [B C D] [G] [] [B C D] [E F] [A] ]
------------------------------------------------ (ARR8)
PA 5 (PNested
(VSegd segmap: [0 1 2 3 4 5]
(SSegd sources: [0 0 0 0 0 0] starts: [0 3 4 4 7 9]
(Segd lengths: [3 1 0 3 2 1] indices: [0 3 4 4 7 9])))
(PChars 0: [B C D G B C D E F A]))

Note that promoting a segment descriptor does not change the
logical structure of the array, it just fills in redundant fields in the
representation. In our concrete implementation the initialisation of
the segmap and sources fields with these “boring” values can
often be avoided (§6).

5.3.3 Unconcatenation
To unconcatenate an array, we demote the source segment descrip-
tor down to a plain Segd and then re-promote it back to a VSegd,
before attaching it to the second array:

unconcatPR :: PA (PA a) -> PA b -> PA (PA b)
unconcatPR (PA n (PNested vsegd _)) (PA _ pdata)
= let segd = demoteSSegd $ demoteVSegd vsegd

vsegd’ = promoteSSegd $ promoteSegd segd
in PA n (PNested vsegd’ (singletondPR pdata))

We need the demotion-promotion process because the sharing and
scattering information in the VSegd is only relevant to the first
array, not the second array (of type (PA b)) that we attach it to.

Finally, we can normalise the physical structure of an array by
concatenating it down to atomic elements and then unconcatenating
to re-apply the nesting structure. This eliminates all unused array
elements from the data blocks, which improves locality of reference
for subsequent operations, and is useful when writing arrays to the
file system. Here is the version for triply nested arrays:

normalise3 :: PA (PA (PA e)) -> PA (PA (PA e))
normalise3 arr2
= let arr1 = concat arr2

arr0 = concat arr1
in unconcat arr2 (unconcat arr1 arr0)

Creating versions of normalise for other degrees of nesting is
straightforward. Normalising the doubly nested ARR7 from §5.3.1
yields exactly ARR8 from §5.3.2. Note that if we were to elide the
VSegd and SSegd layers, a normalised arrays have the same form
as the baseline representation from §3.

5.4 Reduction and Dynamic Hoisting
Consider the following function retsum, which indexes several
shared arrays, and adds the retrieved value to the sum of the array
it came from. This has a similar structure to retrieve from §2.

retsum :: [:[:Int:]:] -> [:[:Int:]:] -> [:[:Int:]:]
retsum xss iss
= zipWithP mapP

(mapP (\xs i. indexP xs i + sumP xs) xss) iss

Here is retsum applied to some example arrays:

retsum [[1 2] [4 5 6] [8]] (xss)
[[1 0 1] [1 2] [0]] (iss)

==> [[5 4 5] [20 21] [16]]

The subexpression sum xs duplicates work for every application of
the inner function abstraction, because it sums the entire xs array
once for each of the integer elements in the result. The result of
vectorisation, inlining and simplifying retsum is shown below —
the accompanying technical report [13] includes the full derivation.

retsum_v :: PA (PA Int) -> PA (PA Int) -> PA (PA Int)
retsum_v xss iss
= let ns = lengths iss

n = sum ns
yss’ = replicates ns xss

in unconcat iss
$ add_l n (index_l n yss’ (concat iss))

(sum_l n yss’)

In retsum_v, the fact that the original sum expression dupli-
cates work is revealed in the fact that the lifted version (sum_l) is
being applied to a replicated array. At runtime, the segments of the
first array are replicated according to the lengths of the segments in
the second. The intermediate result (replicates ns xss) is on
the next page.
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[[1 2] [1 2] [1 2] [4 5 6] [4 5 6] [8]]
----------------------------------------------- (ARR9)

PA 6 (PNested
(VSegd segmap: [0 0 0 1 1 2]
(SSegd sources: [0 0 0] starts: [0 2 5]
(Segd lengths: [2 3 1] indices: [0 2 5])))
(PInts 0: [1 2 4 5 6 8])

Our segmap directly encodes which of the physical segments
are being shared. Instead of repeatedly summing segments we
know to be identical, we can instead sum the physical segments
defined by the SSegd, and replicate the results according to the
segmap. By doing this we actually improve the asymptotic com-
plexity of the original program, by avoiding repeated computation
that it would otherwise perform. Note that this process depends on
Invariant 6 from §4, as we do not wish to sum unreachable physical
segments that are not part of the logical array.

Avoiding repeated computation in this way achieves the same
result as the hoisting or full laziness program transformation, but in
a dynamic way. In contrast, performing this transform statically at
compile-time would yield the following:

retsum xss iss
= zipWithP mapP

(mapP (\xs. let x = sumP xs
in \i. indexP xs i + x) xss) iss

However, the GHC simplifier will not in-fact perform the above
transform, as it does not generally improve performance [16]. Fi-
nally, although dynamic hoisting may seem like an opportunistic
improvement, perhaps not worth the trouble, failing to perform it
has other ramifications, which we discuss in the next section.

5.4.1 Fused Hylomorphisms and Index Space Overflow
A subtle point about the retsum example is that if an implemen-
tation does not perform dynamic hoisting, it could risk overflow-
ing machine words. This is a general problem with fused hylomor-
phisms, with a hylomorphism being a computation that first builds
a structure (like with replicates) before reducing it (like with
sum_l). Although it may be possible to fuse these two operations
together so the intermediate structure is never actually created, it
is problematic when the index space of that structure is larger than
the address space of the machine.

For example, suppose the xss array from the previous section
contains 10 elements and iss contains 500 million. Although this
amount of data is easily stored on current hardware, the total num-
ber of virtual elements produced by replicates would be 5 x 109.
This number is not representable in a 32-bit word. This problem is
acute because the function that defines the intermediate structure
(replicates) is introduced by vectorisation and does not appear
in the source program. Simply telling the user “you can’t do that”
would be unreasonable.

Managing this problem is the main reason that we include an
explicit segmap in our array representation. Without the segmap,
we would instead record each virtual segment separately, like with
the first demoted array of §5.3.1. However, in cases of index-space
overflow, elements of the indices field would become too large to
be stored. The indices field itself is needed when partitioning the
work in the implementation of sum_l. We also need the total size
of the array, which would again be too large.

Requiring 64-bit array indices and eliminating the segmap is an
alternate solution, but it is not clear whether this would be bet-
ter overall. On 32-bit machines, memory traffic to the indices
field would double because of the larger word size. On all ma-
chines, operations such as replicates would need to process both
the sources and starts field instead of touching the singular
segmap. On the other hand, indexing operations would not need to
dereference the segmap, or maintain invariant 6, but as as we will

see in §6 this can often be avoided anyway. The code to maintain
this invariant is localised, and very similar to that needed for invari-
ant 7, so it would not be a significant reduction in implementation
complexity. For now we choose to keep the segmap and leave the
quantitative comparison to future work.

5.5 Flattening and Space Usage
In contrast to the problem with replication outlined in §2, flattening
nested parallelism can increase the asymptotic space complexity
in a way that this paper does not address [14, 19]. For example,
suppose we vectorise the following function that takes an array of
n points and computes the maximum distance between any pair.
The full derivation is in the companion technical report [13].

furthest :: PA (Float, Float) -> Float
furthest ps = maxP (mapP (\p. maxP (mapP (dist p) ps)) ps)

The flattened version is a hylomorphism that first computes O(n2)
distances before reducing them to determine the maximum. Whereas
the unflattened version would run in O(n) space, the flattened ver-
sion needs O(n2) space to hold the intermediate vector of distances.
Note that vectorisation does not increase the asymptotic work com-
plexity, because these distances must be computed anyway.

5.6 Pack and Combine
The pack and combine functions from Figure 5 are used in the par-
allel implementation of if-then-else. The pack function takes
an array of elements, an array of flags of the same length, and
returns only those elements that have their flag set. This func-
tion is used to split the parallel context of if-then-else into
the elements associated with each branch. It can be implemented
in terms of replicates, using a replication count of 1 for True
flags and 0 for False flags. We mention it separately because
pack is the common name for this operation in the literature.
The combine function takes an array of flags, two arrays of ele-
ments, and intersperses the elements according to the flags. For ex-
ample combine [T F F T] [1 2] [3 4] = [1 3 4 2]. This
function is used to merge the results of each branch once they have
been computed. On a high level, the implementation of combine is
similar to append because the result contains elements from both
source arrays, though we leave the implementation to [13].

To achieve our Complexity Goal, both pack and combine must
be linear in the length of the flags array. This is because entering
a branch in the source program is a constant time operation. In
vectorised code, many branches are entered in one parallel step,
so the functions that implement this operation must be linear in
the number of elements being processed. Achieving this goal with
the baseline array representation is not possible, because packing
and combining nested arrays requires that we copy element data.
In contrast, with our new representation we can simply pack and
combine the segment descriptors, leaving the underlying element
data untouched. In [1], Blelloch suggested that it would be more
efficient to work on sparse segments, which we are now able to do.

As mentioned in §1 vectorisation can only preserve the com-
plexity of the source program up to containment. This problem
stems from the fact that flattening if-then-else causes the
computations that take each branch to be executed one after an-
other, instead of concurrently. In [18] Riely and Prins give an
example recursive function that calls itself in both branches of
an if-then-else, and where vectorisation worsens its asymp-
totic complexity independent of considerations of the array rep-
resentation. Luckily, the containment problem is rarely met in
practice. Riely and Prins prove that provided one branch in each
if-then-else executes with a constant number of parallel steps,
the containment problem is avoided. This constraint is met by the
base case of most recursive functions. However, their language is
first order, so their proof does not automatically apply to ours.
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6. Pragmatics
Although our new array representation allows the index space
transforms introduced by the vectoriser to have the correct asymp-
totic complexity, there are several cases where a direct imple-
mentation would perform poorly in absolute terms. For example,
implementing promoteSSegd from §5.3.2 by physically filling
the segmap with [0 1 2 ...] leaves something to be desired.
However, in many cases the construction of these fields can be
sidestepped using rewrite rules. For example, in our concrete im-
plementation we have the following functions:

sum_vs :: VSegd -> PDatas Int -> PData Int
sum_s :: Segd -> PData Int -> PData Int

Both of these can be used to implement lifted sum (sum_l) by using
a simple wrapper. The difference is that while sum_vs accepts a
full VSegd to describe the segmentation of the array, sum_s only
accepts a plain Segd. The implementation of the latter is simpler, as
it does not need to worry about the segmap, starts and sources
fields that define the sharing and scattering of segments. During
code transformation, we apply the following rewrite rule:

RULE "sum_vs/promote" forall segd arr.
sum_vs (promoteSSegd (promoteSegd segd))

(singletondPR arr) = sum_s segd arr

The rule says that to sum the segments of a nested array defined
by a promoted Segd, we can just use the Segd directly. Rules
like this one are frequently applicable because the definition of
key operations such as unconcat and extractvsPR explicitly
use promoteSegd and so on to construct their results. Note that
the ability to apply rules such as this depends critically on the
split between the VSegd, SSegd and Segd types, and the fact
that indices field is in Segd rather than SSegd. Abstractly, the
fact that an array is representable with just a Segd tells us that
all the segments lie contiguously in the store. The fact that it is
representable with just a SSegd tells us that the number of physical
segments matches the number of logical segments, though several
entries in the SSegd may still point to the same element data.

Another technique we use is to store a lazy, pre-concatenated
version of the array in the array structure itself. In our concrete im-
plementation, the PNested structure contains two extra fields hold-
ing a plain Segd and the PData corresponding to the concatenated
version of the overall array. Every function that constructs an array
is responsible for initialising these fields, either with pre-existing
concatenated data, such as produced by extractvsPR, or a sus-
pended computation that will concatenate when demanded. When
a consumer, such as mapP, requires a concatenated version of the
array, it can use these fields instead of explicitly concatenating the
data itself. With this method array consumers avoid repeatedly con-
catenating (and thus copying) arrays that the producers know are
already concatenated.

We use a similar method to avoid some applications of the
cullOnSegmap function discussed in §4.6. The key point here
is that while reduction operations like sum_l need invariant 6
to avoid duplicating work, indexing operations are oblivious to
unreachable physical segments. In our implementation, we suspend
calls to cullOnSegmap with lazy evaluation, and also keep an
unculled version of the SSegd in the array representation. If, say,
a nested array is packed and then immediately indexed, then the
indexing operation uses the unculled SSegd, avoiding the need to
call cullOnSegmap at all.

6.1 Rewrite Rules and Replication
A reader may be wondering why we cannot also use a rewrite rule
to eliminate calls to replication operators in the vectorised program,
instead of introducing a new array representation. Suppose we
vectorise the following function that gathers multiple character
values from a shared array called table.

gather :: [:Char:] -> [:Int:] -> [:Char:]
gather table indices
= mapP (\ix -> table !: ix) indices

The vectorised version is as follows:
gather_v :: PA Char -> PA Int -> PA Char
gather_v table indices
= index_l len (replicate len table) indices
where len = length indices

As per §2, index_l is lifted indexing. Note that with the old ar-
ray representation, this function would have the wrong asymptotic
complexity due to the use of replicate. However, suppose we
had a second version of indexing (index_s) that could retrieve el-
ements from a single shared array. This operation is also known as
backwards permutation.
index_l :: Int -> PA (PA a) -> PA Int -> PA a
index_s :: Int -> PA a -> PA Int -> PA a

Given index_s, a seemingly obvious way to optimise gather_v
is to apply the following rewrite rule:

RULE "index_l/index_s" forall c xs ys.
index_l c (replicate c xs) ys = index_s c xs ys

The problem is that this rule improves the asymptotic complexity
of the program, which turns out to be a bad thing engineering wise.
The left of the rule uses work and space O(length xs . length ys)
while the right uses O(length ys). These are different because
indexing is a projection, which does not inspect all of its input data.

The trouble is that for the rule to fire, the producer (replicate)
and consumer (index_l) of the replicated array must come to-
gether during code transformation. If the program is written in a
way that prevents this from happening, then replicate will not be
eliminated. For example, suppose we parameterised gather over a
function to apply to each index value:
gatherFun ::([:Char:] -> Int -> Char)

-> [:Char:] -> [:Int:] -> [:Char:]
gatherFun fun table indices = mapP (fun table) indices

Vectorising this function yields the following:
gatherFun_v :: PA (PA Char :-> Int :-> Char)

-> PA Char -> PA Int -> PA Char
gatherFun_v (AClo fv fl envs) table indices
= fl c envs (replicate c table) $:^ indices
where c = length indices

When we vectorize higher order functions, the parameter func-
tion is represented as an array closure. The array closure construc-
tor AClo bundles up the closure-converted version of the function
(fv), the lifted version (fl) and the environment that was captured
in its closure (envs). The lifted application operator ($:^) then
applies the closure to its final argument indices. See [11, 12] for
a more detailed explanation. The main point here is that the param-
eter function fl is unknown to the vectoriser. With just the code
above, it is impossible to eliminate the replicate operation, be-
cause we do not know what fl will turn out to be.

A tempting hack-around is to force every function in the pro-
gram to be inlined, and hope that follow on code transformation
discovers the true identity of fl. We used this approach in our pre-
vious implementation of DPH, and it turns out to be a slippery slope
to suffering. Small changes in the structure of the source program,
or behaviour of the various transforms, can result in a previously
well performing program becoming unrunnable due to the changed
asymptotic complexity. This approach also does not “fix” recursive
programs where the producer and consumer are the same function,
as the the same function cannot be inlined into itself indefinitely.
An example of such a program is given in §7.2. Our solution is
to instead provide a new array representation, that guarantees that
even with all follow-on optimisations disabled, the program will
still run with the correct asymptotic complexity.
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7. Benchmarks
In this section we present several programs where the baseline
array representation worsened the asymptotic complexity of the
vectorised program. All benchmarks were taken on an Intel i7
QuadCore / 8GB desktop machine. We have opted to present data
for the program running in single threaded mode only. We have not
finished adapting our parallel stream fusion framework to the new
array representation, so parallel speedup is currently dominated
by the creation of intermediate arrays such as the “boring” fields
described in §5.3.2 and §6. However, all of the underling primitives
we use operate on bulk arrays and are amenable to parallelisation.

7.1 Sparse Matrix-Vector Multiplication
This program multiples a sparse matrix by a dense vector and is
discussed in [11]. The matrix is represented as an array of rows,
where each row is an pair of a column index and the Double value
in that column.

smvm :: [:[:(Int, Double):]:] -> [:Double:] -> [:Double:]
smvm matrix vector
= let term (ix, coeff) = coeff * (vector ! ix)

sumRow row = sumP (mapP term row)
in mapP sumRow matrix

As vector is free in the definition of term, with the old array
representation it would be copied once for every non-zero ele-
ment of the matrix. With the new array representation the vec-
tor is not copied and it runs with the same asymptotic complex-
ity as an unvectorised reference implementation written with the
Data.Vector package. The Data.Vector version is currently
faster than with our new representation because stream fusion [7]
does a better job at eliminating intermediate values.

7.2 Tree Lookup
The following microbenchmark exposes the replicate problem in
sharp relief. It performs a divide-and-conquer of an indices array,
while referring to a top level table. In the base case, a single index
is used to access the top-level table, and the table is rebuilt during
the return calls.

treeLookup :: [:Int:] -> [:Int:] -> [:Int:]
treeLookup table indices

| lengthP indices == 1 = [:table !: (indices !: 0):]
| otherwise
= let half = lengthP indices ‘div‘ 2

s1 = sliceP 0 half indices
s2 = sliceP half half indices

in concatP (mapP (treeLookup table) [: s1, s2 :])

As table is partially applied to treeLookup, with the baseline
representation the entire table is copied once for every element of
indices. In the vectorised version the call to replicate cannot
be eliminated with the rewrite rules discussed in §6.1, because
the producer and consumer of the replicated array are in different
recursive calls. With our new array representation, the sharing is
managed by our segmap and the elements of table are not copied.

7.3 Barnes-Hut
The Barnes-Hut algorithm performs a two dimensional gravitation
simulation of many massive bodies. At each time step, the algo-
rithm builds a quad-tree to partition the space the bodies lie in, and
computes the centroid of all bodies in each branch. The tree is then
used to compute the force between each body and all the others,
approximating the force between distant bodies by using the cen-
troids. Whereas a naive algorithm would use work O(n2) in the
number of bodies, the Barnes-Hut approximation is O(n.log n).

With the baseline array representation, the copying replication
problem appears at the very top level. Once we have built the quad-
tree, we use it to compute the force on each body.
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This is done by the following function:

calcAccels :: Double -> Box -> [:MassPoint:] -> [:Accel:]
calcAccels epsilon boundingBox points
= mapP (\m -> calcAccel epsilon m tree) points
where tree = buildTree boundingBox points

As tree is free in the closure passed to mapP, it is copied once
for every body. As before, with the new array representation the
tree is not copied and the program runs with the same asymptotic
complexity as an unvectorised reference implementation written
with the Data.Vector package.

When divide and conquer algorithms such as Barnes-Hut are
vectorised, the resulting code increases the nesting level of the
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source array during the division phase (on the way down) and
concatenates the result on the way back up. We refer to such
algorithms as dynamically nested for this reason. As discussed in
§5.2, concat normalises the array representation, so the program
effectively switches between the old baseline representation and
our new scattered representation as it runs.

8. Related Work
Approaches to the implementation of irregular parallelism roughly
fall into two categories: thread-based implementations, like Man-
ticore [8] or Ct [9], and those based on flattening. Both have their
advantages and drawbacks. With the former approach, scheduling,
synchronisation, and granularity control are a concern, as well as a
more restricted set of target architectures, though they do not suf-
fer from the complexity problem described in this paper. However,
the problem we describe is a fundamental issue for all flattening
based approaches, and has been identified and discussed in several
publications.

The original first-order flattening transform and array represen-
tation shown in Figure 2 was introduced by Blelloch and Sabot in
in [1]. In this work the replicate function is called distribute
when applied to scalars and distribute-segment when applied
to arrays. As a possible extension to the handling of conditionals
they suggest operating on sparse segments instead of first elimi-
nating gaps between them with the pack operation. This idea is
not elaborated further. The single example program they present
(Quicksort) only uses distribute and pack on arrays of scalars,
and thus does not suffer problems with asymptotic complexity.

In [2] Blelloch proves that a subset of programs written with the
scan-vector instruction set can be vectorised while preserving their
asymptotic work and step complexity. Such programs must be both
contained, and not use indirect memory access, which is equiva-
lent to disallowing functions to have free variables. Appendix C of
the NESL manual [3] gives the work complexity of vectorised pro-
grams, and states that the contents of free variables is copied across
each iteration of the apply-to-each (map) construct. Finally, in
[4] the authors present a provably time and space efficient version
of NESL, but the operational semantics is based around fine grained
threads instead of SIMD style vectors.

In [15], Palmer et al. address the issue by disallowing partial
applications and removing some of the problematic cases using
rewrite rules. For Haskell, ruling out partial applications to appear
anywhere in a parallel context would be neither desirable nor stat-
ically enforceable. The rewrite rules used do not fire if the offend-
ing index space transform is applied indirectly as part of another
function. This is a general drawback of using rewrite rules, which
can be acceptable if the rewriting only leads to a constant improve-
ment, but not in our case, where the failure to identify problematic
expressions results in asymptotically worse performance.

In [18], Riely and Prins solve this problem by using vectors of
references, but at the time the article was written, there was no im-
plementation, so they could not provide any experimental data as
to the absolute performance. To the best of our knowledge, they
have not published any further results on this approach. The sug-
gested representation is similar to one of the states our representa-
tion can take on, for example, as a result of creating a nested vec-
tor by collecting a number of different flat arrays in a nested one.
However, the use of purely pointer based representations can lead
to poor locality and complicates distribution and load balancing. It
also increases garbage collection overhead, as every subarray must
be traversed individually. In contrast, our approach aims at keep-
ing the data representation as flat as possible, and only resorts to
the partially flattened representation whenever the completely flat
representation would lead to worse work complexity.
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