
ZU064-05-FPR Main 8 November 2013 20:58

Under consideration for publication in J. Functional Programming 1

Mechanized soundness for a type and effect
system with region deallocation

BEN LIPPMEIER
School of Computer Science and Engineering

University of New South Wales, Australia
(e-mail: benl@cse.unsw.edu.au)

Abstract

Previous formalizations of region calculi with deallocation have been limited to a monomorphic or
first-order fragment, or have not supported mutable references because they do not model the store.
Extending the existing monomorphic approach with System-F style polymorphism quickly leads to
trouble, because type substitution breaks a key freshness invariant on region identifiers. We present a
new approach that uses frame stacks to manage region lifetimes, and to provide the required freshness
invariants in a way compatible with type substitution. Our language is polymorphic, higher-order,
supports mutable references, and is mechanized with the Coq proof assistant.

1 Introduction

A region is a set of store locations where an object may exist at runtime. Region and
effect systems (Lucassen & Gifford, 1988) are used to reason about how computations that
mutate objects in a shared heap may interfere. These systems encode information about
separation and aliasing, and are related to similarly named separation logics (Reynolds,
2002) and alias type systems (Smith et al., 2000). Some region typing systems also enable
region based memory management, where a group of objects can be allocated into a single
region of the store, and then deallocated in constant time when no longer needed by the
program. Region-based memory management has been used as an alternative to tracing
garbage collection, largely because the time to perform a deallocation cycle is small and
constant, rather than being proportional to the amount of live data.

The original work on region typing (Lucassen, 1987) suggests that regions could be
used for memory management, but does not provide an operational semantics, or proof
of soundness for this feature. Later work by Tofte and Talpin (1993) provides a proof of
soundness phrased in terms of translation correctness from a pure source language, though
their system does not support destructive update as per the original. As noted by Helsen and
Thiemann (2000), Tofte and Talpin’s work proves soundness of their region calculus, and
translation correctness from the pure source language in one go. This makes it non-obvious
how to add destructive update back to the underlying region calculus, as it is not supported
by the pure source language. This observation lead Helsen and Theimann to develop a
simpler proof which factors soundness and translation correctness into separate statements,
though their evaluation semantics is simplified and does not include a mutable store. In

ZU064-05-FPR Main 8 November 2013 20:58

2 Ben Lippmeier

later work Calcagno et al. (2002) give a syntactic soundness proof whose semantics does
include a mutable store, but the presentation lacks the polymorphism of the original region
calculus.

It turns out that adding System-F style polymorphism to the language of (Calcagno et al.,
2002) in the obvious way would break a critical freshness invariant on region identifiers, so
to prove soundness for such a system we must at least refactor the existing semantics. We
describe the exact problem in §1.6. The related language of (Henglein et al., 2004) instead
depends on implicit alpha conversion to maintain freshness, but also does not include a
store. With this in mind, we make the following contributions:

• We present a mechanized semantics and soundness proof for an explicitly typed,
polymorphic functional language based on call-by-value System-F with 1) a region
and effect system with separate Read, Write and Alloc effects; 2) stack based regions
in the style of Tofte and Talpin; 3) destructive update of mutable references. We refer
to this language as System-Fre (System-F with regions and effects).

• Our semantics refactors the existing systems, using an explicit stack to remember
which regions are currently live, and gives liveness conditions between the stack and
store. Our use of an explicit stack avoids breaking the required freshness invariants
when polymorphism is added, and is the key difference to prior work.

• Our language also supports region extension, which was described in the original
work of (Lucassen, 1987) but does not appear in any of the latter formalizations.
Region extension allows a function to destructively initialize mutable objects without
the associated write effects being visible to the calling context.

The Coq proof script is available as an on-line supplement to this paper. The overall
aim is to define a verified compiler intermediate representation which is amenable to the
same sort of optimising program transformations as the Glasgow Haskell Compiler (GHC)
core language (Peyton Jones & Santos, 1998), but with direct support for region based
memory management and computational effects. The examples we present are explicitly
typed, though we intend to define an implicitly typed surface language in future work.

1.1 Regions and Effects

Before presenting the formal semantics we give a quick overview of how System-Fre

supports regions. The following example summarizes their basic use:

let tally : Nat→ Nat
= λ start : Nat.

private r in
let acc : Ref r Nat = alloc r start in

let eat : Nat Read r + Write r−→ Unit
= (λ z : Nat. let current : Nat = read r acc

in write r acc (current+ z)) in

... eat 1 ... eat 5 ... eat 2 ...
in read r acc

in tally 0

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 3

The tally function takes a natural number start, and then creates a private region
named r, where r is a type variable which is in scope in the body of the private construct.

The tally function then allocates a new accumulator acc, represented by a mutable
reference in region r. This accumulator has type Ref r Nat, revealing the region it lies
in. The inner function eat reads the current value of the accumulator, then writes a new
value consisting of the current value added to the parameter z. We have written ...eat 1...
and so on a place-holder for some representative applications of eat. The last line of tally
reads the final value of the accumulator and returns it to the caller.

At runtime, a new store region will be allocated when entering the body of the private
construct, and then deallocated when leaving it (just before returning from tally). In the
body of the private construct we refer to the new region with the region variable r.
The inner function eat is assigned the type Nat Read r + Write r−→ Unit, which includes effect
(Read r +Write r) indicating that eat reads and writes to an object in region r. Atomic
effects terms like Read r are collected in an upwards semi-lattice ordered by set inclusion,
where we write + for l.u.b. An unannotated arrow has effect ⊥ (pronounced “pure”).

Importantly, the type of tally itself does not include an effect on region r, because reads
and writes to objects in the private region r are not visible to the calling context. This mask-
ing of non-observable effects comes from the original work on effect systems (Lucassen,
1987), and provides a powerful abstraction mechanism: allowing us to treat functions that
use local side effects as observationally pure. Monadic state threads (Launchbury & Peyton
Jones, 1994) provide a similar encapsulation mechanism, though without distinguishing
between separate read and write effects.

1.2 Region Deallocation

When leaving the scope of a (private r in body) construct, all objects in region r are
deallocated. To ensure that further evaluation does not attempt to access the deallocated
objects, the type system requires that the bound region variable r is not free in the type of
body. For example, consider the following erroneous function:

broken : Nat→ Nat Read r→ Nat
= λy : Nat. private r in

let ref : Ref r Nat = alloc r y
in (λ z : Nat. (read r ref)+ z)

When broken is applied to its first argument it creates a private region r and then allocates
a new mutable reference ref into this region. The result of applying broken to this first
argument is a functional value that takes a second argument (for z) and reads the original
reference ref . This behavior is invalid, because the storage for ref will be deallocated when
leaving the scope of the original private construct. If the caller of broken tries to apply
the inner function then the call to read will fail.

In System-Fre and related systems, effect typing is used to expose which store objects
a functional value may access when applied. In the above example, the inner function has
type Nat Read r−→ Nat, which violates the requirement that r not be free in the type of the body
of the outer private construct. Indeed, the overall type for broken was already suspect,
because the private region variable r is not in scope.

ZU064-05-FPR Main 8 November 2013 20:58

4 Ben Lippmeier

1.3 Region and Effect Polymorphism

Region and effect polymorphism are necessary tools for a practical language. For example,
suppose we want a function that reads two references to Nat values and returns their
sum in another reference. In System-Fre we would write this as follows, using Λ for type
abstraction, and overloading (+) as the addition operator on plain values of type Nat.

add : ∀r1 r2 r3 : Region. Ref r1 Nat→ Ref r2 Nat
Read r1+Read r2+Alloc r3−→ Ref r3 Nat

= Λr1 r2 r3 : Region. λ (y : Ref r1 Nat). λ (z : Ref r2 Nat).
let y′ : Nat = read r1 y in
let z′ : Nat = read r2 z in
alloc r3 (y′+ z′)

If System-Fre was used as as the core language of a compiler, then we could view Nat
as the type of primitive unboxed natural numbers, and type Ref r1 Nat as the type of boxed
natural numbers. The add function above then performs boxed addition, which must be
region polymorphic so that we can add boxed naturals from any region. In the type of add
we use Region as the kind of region variables. Region variables are type variables with
this special kind. As an example of effect polymorphism, the following function takes a
functional parameter and applies it to the provided argument twice:

twice : ∀a : Data. ∀e : Effect. (a e→ a)→ a e→ a
= Λa : Data. Λe : Effect. λ f : a e→ a. λ z : a. f (f z)

In the type of twice, we use Data as the kind of data types, which is similar to the
kind ∗ (star) used in Haskell. All representable values have types with kind Data. We
use Effect as the kind of effect types. Note that in the signature for twice, the fact that this
function applies its functional argument is revealed in by the e annotation on the right-most
function arrow.

1.4 Region Extension

Region extension allows store objects to be destructively initialized without revealing the
associated write effects to the calling context. For example, the following function ties a
recursive knot through the store, producing a reference to a function that always diverges
when applied.

tie : ∀r1 : Region. Unit
Alloc r1−→ Ref r1 (Nat

Read r1−→ Nat)
= Λr1 : Region. λ : Unit.
extend r1 with r2 in

let zero : Ref r2 Nat = alloc r2 0 in

let foo : Nat
Read r2−→ Nat = (λ : Nat. read r2 zero) in

let ref : Ref r2 (Nat
Read r2−→ Nat) = alloc r2 foo in

let loop : Nat
Read r2−→ Nat = (λx : Nat. let f : Nat

Read r2−→ Nat = read r2 ref
in f x) in

let : Unit = write r2 ref loop
in ref

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 5

The construct (extend r1 with r2 in body) creates a new region r2 which is private
to body, evaluates body, and then merges all objects that were allocated in r2 into r1. The
introduced variable r2 is only in scope in body. In a concrete implementation, the merging
process would be carried out in constant time, by modifying runtime region descriptors or
other store meta-data, and not by copying the objects themselves.

Using a separate region variable r2 allows us to assign an effect to the extend expression
that properly reflects the overall modification to the store. In particular, although the body
of our example performs reads and writes on region r2, because region r2 is local to the
enclosing function, these effects are not visible to the calling context and can be masked.
As far as the calling context is concerned, once tie has returned, all that has happened is
that a new ref object has been allocated into region r1. The overall effect of the extend

expression is thus Alloc r1, which is also the effect of the enclosing function.

1.5 Dangling references

As with the languages described by Lucassen (1987) and Tofte & Talpin (1993), System-
Fre allows the expression under evaluation to refer to objects in regions that have been
deallocated, provided those objects are never accessed. Consider the following example:

dangle : Nat→ Nat→ Nat
= λy : Nat. private r1 in

let goodbye : Ref r1 Nat = alloc r1 y
in (λ z : Nat. private r2 in

let dref : Ref r2 (Ref r1 Nat) = alloc r2 goodbye in z)

When dangle is applied to its first argument, it creates a private region named r1 and
allocates a reference goodbye into this region. It then returns an inner function that allocates
a new reference dref into a separate private region each time it is called. However, when
the inner function is returned outside the scope of the enclosing private r1 construct,
region r1 will be deallocated, and goodbye along with it. This means that every time the
inner function is subsequently called, it will allocate a new dref object that refers to the
missing goodbye. We say that the inner function holds a dangling reference to goodbye.

Importantly, the dangle function above is accepted as valid because the original goodbye
object is never accessed after it has been deallocated. In terms of a concrete implementa-
tion, it is acceptable for the inner function to hold a pointer to goodbye after the object
itself has been deallocated, provided this pointer is never dereferenced (followed). This
restriction is enforced by the type system. If the inner function erroneously accessed the
goodbye object then it would have a Read r or Write r effect. This would violate the
restriction that the type of the body of the private r1 construct not mention r1, as per
the broken example from §1.2.

1.6 The problem with polymorphism and private regions

The operational semantics for a language with region based memory management typically
introduces a phase distinction that separates source level region variables from run-time
region identifiers. Region variables are written by the user in their program, while region

ZU064-05-FPR Main 8 November 2013 20:58

6 Ben Lippmeier

identifiers identify chunks of memory at runtime, and are allocated by the system during
evaluation. In our notation we write source level region variables as r and runtime region
identifiers as p. Using the phase distinction, a candidate evaluation rule for private

expressions would be something like the following, though we will improve on this in
a moment.

ss | private r in x−→ ss | x[(rgn p)/r], p fresh (PrivPlain)

This rule takes a state consisting of a store ss, and an expression (private r in x) , and
produces a new store and expression — using x as a meta-variable for whole e(x)pressions.
In the above rule we allocate a fresh region identifier p, wrap it into a type by writing
rgn p, then substitute this type into the body of the private expression. We refer to a
type like rgn p as a region handle to distinguish it from the plain region identifier p. In
terms of a concrete implementation, we imagine p as being the numeric index of a region
relative to the number of regions allocated so far, and rgn p as being a pointer to some
runtime data structure that specifies where it lies in memory.

Although rule (PrivPlain) describes allocation well enough, it says nothing about deallo-
cation. In the language described by Lucassen (1987), regions are allocated and deallocated
in a stack-like order, following the nesting structure of private constructs in the source
program, but we have not retained enough information to do this.

The language of Lucassen (1987) tracks the order in which regions are allocated by
wrapping the result in an auxiliary expression that holds the new region identifier:

ss | sp | private r in x−→ ss | p, sp | *private* p in x[(rgn p)/r], p /∈ sp (PrivAux)

This rule takes a state consisting of a store ss, store properties sp and expression, and
produces a new store, store properties and expression. The store properties is a set which
records the region identifiers that have been used so far, and the side condition p /∈ sp en-
sures the new identifier p is fresh relative to this set. The auxiliary *private* expression
creates a context for its body to evaluate in. The intention is for the body expression to
reduce to a value v, and then for store objects in region p to be deallocated using a rule like
the following:

ss | sp | *private* p in v−→ deallocRegion p ss | sp | v (PrivDealloc)

Now, although the (PrivAux) and (PrivDealloc) rules above provide a moral under-
standing of how allocation and deallocation should work, to complete a formal proof of
soundness we must deal with subtle issues of name collision and capture. The following
example demonstrates name collision:

private p in (let x =(*private* p in 5) in < ... read from object in region p ... >

Reduction of the above expression will fail because evaluation of the let binding will
deallocate all objects that might be read in the let body. To avoid this problem we must
ensure that every region identifier mentioned by a *private* expression is distinct.

The following example demonstrates a related issue, which looks like the familiar vari-
able capture problem from pure lambda calculus. Suppose we have the following type
application:

(Λr : Region. *private* p in f r z) (rgn p)

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 7

Reducing this application with the usual System-F style evaluation rule requires we per-
form the substitution (*private* p in f r z)[(rgn p)/r]. Note that in Lucassen’s language
(1987) this is not quite a “variable capture” problem, because region identifiers like p are
treated as constructors (or atoms) rather than variables. The *private* expression holds
the region identifier p but does not bind it. In the larger semantics, such an identifier may
appear in the description of the run-time store, so it cannot be treated as a variable name
local to a single *private* expression. The informal commentary in (Lucassen, 1987)
and the later work (Lucassen & Gifford, 1988) makes it clear that above substitution is
invalid, though it does not give a complete soundness proof for their language.

Calcagno et al. (2002) give a complete syntactic soundness proof for a monomorphic
version of the region calculus (where they write region for *private*). In this work
they give the following typing rule:

te | se ⊢ x :: t ; e p /∈ fr(te, e)
te | se ⊢ *private* p in x :: t ; mask p e

(TyPrivate)

The judgment te | se ⊢ x :: t ; e reads: “under type environment te and store en-
vironment se, expression x has type t and effect e”. The type environment maps value
variables to their types, and the store environment maps store locations to their types. In
the consequent, the meta-expression (mask r e) masks out (erases) the atomic effects in e
that mention region identifier p. The premise p /∈ fr(te, e) ensures that p is not one of the
free region identifiers mentioned in the type environment or effect of the body expression x.
Now, although the above rule works for a monomorphic language, to add System-F style
polymorphism and produce a syntactic soundness proof we must deal with the capture
problem. During the proof, to show Preservation for type applications we require a type
substitution lemma like the following, where ke is the kind environment that maps type
variables to their kinds.

If ke, a : k2 | te | se ⊢ x1 :: t1 ; e1

and ke ⊢ t2 :: k2

then ke | te[t2/a] | se ⊢ x1[t2/a] :: t1[t2/a] ; e2[t2/a]

Sadly, this lemma is not true for the obvious extension of (TyPrivate), where we simply
add a kind environment to the two typing judgments. A counter-example is just the invalid
substitution (*private* p in f r z)[(rgn p)/r] we mentioned before, with appropriate
types for f and z.

If r : Region | f : ∀(r′ : Region). Ref r′ Nat→ Unit, z : Ref r Nat | ·
⊢ *private* p in f r z :: Unit ; ⊥

and · ⊢ rgn p :: Region

then · | f : ∀(r′ : Region). Ref r′ Nat→ Unit, z : Ref (rgn p) Nat | ·
⊢ *private* p in f (rgn p) z :: Unit ; ⊥

The consequent in the above statement does not type check under the extended (TyPri-
vate) rule because the region identifier p appears in the type environment.

How do we fix this? If a *private* expression actually did bind the region identifier p
then we could perhaps perform an alpha-conversion to avoid capture. However, as we
mentioned earlier, *private* is not a binding construct, and the region identifier p may

ZU064-05-FPR Main 8 November 2013 20:58

8 Ben Lippmeier

also appear in the runtime description of the store. Instead, we could perhaps add a global
renaming process that rewrote the machine state to avoid conflicting region identifiers —
but this is a kludge. As we describe next, the above substitution, and hypothetical renaming
process, would never be performed during the evaluation of a well-typed program.

Assume the initial state of the machine consists of a closed source expression in an
empty store. The source expression will not contain any *private* expressions because
no regions have yet been created. Now, the only evaluation rule that introduces *private*
expressions would be one like (PrivAux) which we repeat here:

ss | sp | private r in x−→ ss | p, sp | *private* p in x[(rgn p)/r], p /∈ sp (PrivAux)

When a *private* expression is introduced into the program the fresh region identi-
fier p is allocated and then the region handle containing it is substituted into the body. As
the context of the private expression thus has no knowledge of p, it cannot also contain
the type argument (rgn p) that gave rise to the offending substitution. The counter-example
above is really a problem with the formalization of the semantics, rather than a problem
with the underlying language. However, such an informal apology about contexts does not
count as a formal proof.

As discussed in the rest of this paper, to avoid capture we give up on auxiliary *private*
expressions. We instead extend the machine state with a frame stack, which makes the
context of the expression under evaluation explicit. We also use the stack to manage the
lifetime of regions. The context information previously expressed by *private* is thus
held in a different part of the machine state, and there is never a need to to substitute
types into it. Instead of the freshness criteria that appeared in (TyPrivate) we use liveness
conditions between the stack and store, as we will see in the next section.

2 Language

The grammar for System-Fre is shown in Fig. 1. We use a hybrid presentation with both
named variables and de Bruijn indices. The Coq formalization uses de Bruijn indices
natively, but as an aid to the reader we also include suggestive variable names when
describing the language and stating the main theorems. We write concrete de Bruijn indices
as underlined natural numbers, like 0, 1, 2 and so on.

Kinds
A kind can be a constructor Data, Region or Effect. These are the primitive kinds of
data types, region types and effect types respectively. We use () as the function kind
constructor, using a different arrow symbol to distinguish it from the type constructor (→).

Types
Type variables are written ix{a}, where ix is the de Bruijn index and {a} is a suggestive
variable name. In all cases, if the reader prefers the concrete de Bruijn representation for
binders, then they can simply erase the names between {} braces.

We join effect types with type+ type, and the kinding rules in Fig. 2 constrain both type
arguments to have the Effect kind. The effect of a pure computation is written ⊥.

The type tyconn is a primitive type constructor of arity n. To simplify the presentation, all
type constructors except (→) must be fully applied. In a larger language, partial application
of the other constructors could be encoded using type synonyms.

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 9

Indices Names
ix → (debruijn index) a, r, e → (type variables)
p → (region identifier) z → (term variables)
l → (store location)

Kinds (k)
kind ::= Data | Region | Effect (kind constructors)

| kind kind (function kind)

Types (t, r, e)
type ::= ix{a} (debruijn index{variable})

| ∀{a} : kind. type | type type (universal quantifier, type application)
| type + type | ⊥ (effect join and bottom)
| tyconn (type constructor)
| rgn p (region handle)

Type Constructors (tc)
tycon0 ::= (→) | Unit | Bool | Nat
tycon1 ::= Read | Write | Alloc
tycon2 ::= Ref

Values (v)
val ::= ix{z} | const (debruijn index{variable}, constant)

| λ{z} : type. exp | Λ{a} : kind. exp (value and type abstraction)
| loc l (store location)

Expressions (x)
exp ::= val | val val | val type (value, value and type application)

| let {z} : type = exp in exp (let-binding)
| opn val n (fully applied pure operator)
| private {r} in exp (define a private region)
| extend type with {r} in exp (extend an existing region)
| alloc type val (allocate a store binding)
| read type val (read a store binding)
| write type val val (write a store binding)

Constants (c)
const ::= unit | tt | ff | 0 | 1 | 2 | ... (data constants)

Pure Operators (o)
op1 ::= isZero | succ (pure operators)

Fig. 1. System-Fre grammar.

The type rgn p is a region handle which contains a natural number p that identifies
a runtime region. A region handle is a static capability, whose existence in a well typed
expression indicates that region p currently exists; can have new store bindings allocated
into it, and can be read from and written to. Region handles are similar to the capabilities
of (Walker et al., 2000), except that they appear directly in the type language rather than
being present in a separate environment of the typing judgment. Region handles can also
be captured in function closures and appear in functional values held in the store.

ZU064-05-FPR Main 8 November 2013 20:58

10 Ben Lippmeier

Values and Expressions
Values are the expressions that cannot be reduced further. Expression variables are written
ix{z}, where ix is again a de Bruijn index and {z} a suggestive variable name.

The value loc l is a store location that contains a natural number l giving the address
of a mutable reference. All store locations have type Ref t1 t2, where t1 is the region that
location is in and t2 is the type of the value at the location.

Function applications and primitive operators work on values rather than reducible ex-
pressions. As we will see in §4, this restriction ensures that the dynamic semantics only
needs to deal with two reduction contexts, namely the right of a let binding, and a context
that includes a new region variable. The expression let {z} : t1 = x1 in x2 first reduces
x1 to a value before substituting it for z in x2 (or for index 0 using the de Bruijn notation).

The expression opn val
n is a fully applied, pure primitive operator, where n is the arity

of the operator. The pure operators do not affect the store.
The expression private {r} in x creates a new region, then substitutes the corre-

sponding region handle for variable r in body x. It then reduces this new body to a value v
and deallocates the region. The result of the overall expression is v.

The expression extend t1 with {r2} in x takes the handle t1 of an existing region,
and creates a new region for r2, which is available in body x. It then reduces x to a value v.
Once the reduction of x has completed, all store bindings in the new region r2 are merged
into the original region with handle t1. The result of the overall expression is v.

The expression alloc t v takes a region handle t, a value v, and allocates a new store
binding in that region containing the given value. The expression read t v takes a region
handle t, a store location v in that region, and reads the value at the location. Finally,
write t v1v2 takes a region handle t, a location v1 in that region, a new value v2, and
overwrites the value in the store binding at location v1 with the new value v2.

3 Static Semantics

Fig. 3 shows the environments we use in both the kinding rules of Fig. 2 and typing rules
of Fig. 4. In the Coq formalization these are de Bruijn environments, indexed by number,
starting from the right. Following our hybrid presentation we also include suggestive vari-
able names. We index environments from the right so that they appear as stacks that grow
to the left. For example, consider the following kind environment:

{a1} : Data, {e1} : Effect, {r1} : Region

Here, index 0 refers to the element {r1} : Region and index 1 to {e1} : Effect. For this
reason we write the corresponding type variables as 0{r1} and 1{e1} respectively. In typing
judgments we write an empty environment using a single · dot.

In Fig. 3, the kind environment kienv and type environment tyenv consist of a list of
kinds and types as usual. The store environment stenv gives the type of each location in
a store, and the store properties stprops records the identifiers of regions that have been
created so far. When a region is deallocated all the bindings in that region of the store are
marked as dead. However, we retain the corresponding entry in the list of store properties
so that any dangling references to those bindings are still well typed.

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 11

kienv | stprops ⊢t type :: kind (KindT)

k = get ix{a} ke
ke | sp ⊢t ix{a} :: k

(KiVar)
region p ∈ sp

ke | sp ⊢t rgn p :: Region
(KiRgn)

ke, {a} : k | sp ⊢t t :: Data
ke | sp ⊢t ∀{a} : k. t :: Data

(KiForall)
ke | sp ⊢t ⊥ :: Effect

(KiBot)

k12 ̸= Region
ke | sp ⊢t t1 :: k11 k12 ke | sp ⊢t t2 :: k11

ke | sp ⊢t t1 t2 :: k12
(KiApp)

ke | sp ⊢t t1 :: Effect ke | sp ⊢t t2 :: Effect
ke | sp ⊢t t1 + t2 :: Effect

(KiSum)

k = kindOfTyCon0 tc
ke | sp ⊢t tc :: k

(KiCon0)

ke | sp ⊢t t1 :: k1
k1 k = kindOfTyCon1 tc

ke | sp ⊢t tc t1 :: k
(KiCon1)

ke | sp ⊢t t1 :: k1
ke | sp ⊢t t2 :: k2
k1 (k2 k) = kindOfTyCon2 tc

ke | sp ⊢t tc t1 t2 :: k
(KiCon2)

kindOfTyCon0 (→) = Data Effect Data Data
Unit = Data
Bool = Data
Nat = Data

kindOfTyCon1 Read = Region Effect
Write = Region Effect
Alloc = Region Effect

kindOfTyCon2 Ref = Region Data Data

Fig. 2. Kinds of Types

kienv ::= {a} : kind (kind environment) tyenv ::= {z} : type (type environment)

stenv ::= {l} : type (store environment) stprops ::= region p (store properties)

Fig. 3. Environments

3.1 Kinds of Types

In Fig. 2 the judgment ke | sp ⊢t t :: k reads: “with kind environment ke and store
properties sp, type t has kind k.”

Rule (KiVar) retrieves the kind of a type variable from position ix in the kind environ-
ment ke, using the ‘get’ meta function.

Rule (KiRgn) requires a region handle to have a corresponding entry in the store proper-
ties list. The store properties model which regions currently exist in the store, so we know
that if a region handle exists in the program then the corresponding region exists in the
runtime store.

ZU064-05-FPR Main 8 November 2013 20:58

12 Ben Lippmeier

Rule (KiForall) requires the body type to have kind Data to mirror the corresponding
formation rule for type abstractions, (TvLAM) in Fig. 4.

Rules (KiSum) and (KiBot) require the types used as arguments to a type sum to have
Effect kind. During the development of this work we tried an alternate presentation where
effects and effect sums were separated into their own syntactic class, instead of including
them in the general type language, but this introduced much superficial detail in the formal-
ization. If effects were separated into their own syntactic class then we would also need
separate effect abstraction and effect application forms in the expression language. We
would also need to prove administrative properties about de Bruijn lifting and substitution
separately for effects as well as general types. Including effect sums in the general type
language turned out to be much simpler.

Rule (KiApp) prevents the result of a type application from having Region kind. This
restriction is needed to provide the canonical forms Lemma 3.1 which states that every
closed type of kind Region is a region handle. If we allowed type applications to have
Region kind then this would not be true. We have not thought of a situation where relaxing
this restriction would be useful.

Rules (KiCon0) - (KiCon2) give the kinds of primitive type constructors, using the aux-
iliary meta-level functions ‘kindOfTyCon0’ – ‘kindOfTyCon2’. These auxiliary functions
are used for proof engineering reasons: they reduce the number of kinding rules and allow
us to add new type constructors without disturbing the body of the proof.

3.2 Properties of the kinding rules

Lemma 3.1. A closed type of kind Region is a region handle.

If · | sp ⊢t t :: Region
then (exists p. t = rgn p)

Used in the proof of Progress (Theorem 4.2) to ensure that the region types passed to
primitive operators like read and write are indeed region handles.

Lemma 3.2. We can insert a new element into the kind environment at position ix, provided
we lift existing references to elements higher than this across the new one.

If ke | sp ⊢t t :: k1

then insert ix k2 ke | sp ⊢t t ↑ix :: k1

The syntax t ↑ix is the de Bruijn index lifting operator for type expressions. The application
(insert ix k2 ke) inserts element k2 at position ix in the list ke, using the meta-function
‘insert’.

Lemma 3.3. Adding a new store property to the start or end of the list preserves the
inferred kind of a type.

If ke | sp ⊢t t :: k
then ke | sp, p ⊢t t :: k

If ke | sp ⊢t t :: k
then ke | p, sp ⊢t t :: k

These weakening lemmas are used when adding allocating a new region in the store. In
this paper presentation we overload the comma operator to add elements to the beginning
and end of an environment, as well as to append two environments.

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 13

3.3 Types of Expressions

Fig. 4 contains the mutually recursive judgments that assign a type to a value, and a type
and effect to an expressions. The judgment ke | te | se | sp ⊢v v :: t reads: “with kind
environment ke, type environment te, store environment se and store properties sp, value v
has type t”. Similarly judgment ke | te | se | sp ⊢x x :: t ; e reads: “... expression x has
type t and effect e”.

Rule (TvVar) retrieves the type of an expression variable from the type environment te.
The second premise requires all expression variables to have kind Data, which is needed
for Lemma 3.4, to ensure that the data type and effect produced by the typing judgments
have the corresponding kinds. Although this restriction is not commonly enforced in semi-
formal presentations of the ambient System-F calculus, it is useful in a mechanized proof
so we do not need to manage a separate statement of well-formedness for the type environ-
ment.

Rule (TvLoc) retrieves the type of a location from the store environment se. As with rule
(TyVar), we require the types in the store environment to have kind Data. All store locations
are mutable references, so we can always attach the corresponding region variable to their
types.Values of primitive types such as Nat and Bool are not tagged with a region variable,
and do not appear naked in the store.

Rule (TvLam) checks the body of the function abstraction x2 in a type environment
extended with the parameter of the abstraction. The type of the overall abstraction includes
the effect e2 of evaluating its body. The first premise rejects functional values for which no
corresponding arguments exist, and ensures that types of higher kind are not added to the
type environment. For example, the expression (λ{z} : Ref . 5) can never be applied because
there is no way to introduce an argument of type Ref (of kind Region Data Data)
other than by wrapping it in a similarly bogus function abstraction.

Rule (TvLAM) checks the body of a type abstraction x2 in a kind environment extended
with the parameter of the abstraction. As we are using the de Bruijn representation for
binders, when we push the new kind k2 onto the front of the kind environment, we must
also lift type indices in the existing type and store environments across the new element.
In this paper we overload the ↑ symbol to represent the lifting operators for type and
store environments, as well as for individual types and expressions. We write a plain ↑
as shorthand for ↑0, meaning that lifting starts at index 0.

We require the body of a type abstraction to be pure (have effect ⊥) to avoid the well
known soundness problem with polymorphic mutable references (Leroy, 1993). In ML
dialects this problem is typically mitigated by some version of the value restriction (Gar-
rigue, 2002). Using an effect system it is possible to handle the problem more gracefully,
while still allowing the body of a type abstraction to have side effects (Talpin & Jouvelot,
1994). However, the matter of polymorphic mutable references is orthogonal to region
deallocation, so for this paper we just require the body of a type abstraction to be pure.

Rule (TvConst) uses the meta-function ‘typeOfConst’ to get the type of a constant,
which helps keep the number of typing rules down.

Rule (TxVal) injects values into the syntax of expressions, indicating that values are
always pure.

ZU064-05-FPR Main 8 November 2013 20:58

14 Ben Lippmeier

Rule (TxLet) checks the body of the let-expression x2 in a type environment extended
with the type of the binding t1. This is a non-recursive let-binding, so we check the bound
expression with the original type environment te. Similarly to the (TvLam) rule, we require
the bound variable to have a type of kind Data. Without this premise we could prove that
the other typing rules require the right of the binding x1 to have kind Data anyway, but
writing this fact explicitly avoids needing to prove it separately.

Note that the effect of a let-expression includes the effect of evaluating the binding
e1 as well as the body e2, so the overall expression has effect e1 + e2. This is also the
only rule that performs an effect join. We gain this property from the fact that we use a
let-normalized presentation, where applications are always between values.

Rule (TxApp) performs a function application that unleashes the effect e1, which then
appears in the consequent.

Rule (TxAPP) performs type application by substituting the argument t2 into the type of
the body t12. In Fig. 4 we write t12[t2/0{a}] to indicate that t2 is substituted for type index
0 in t12.

Rule (TxPrivate) checks the body of a private construct in a kind environment ex-
tended with a new region variable. As with rule (TvLAM), we need to lift indices in the
type and store environment across this new element. As discussed in §1.1, because the
region {r} is entirely local to the body of the private expression, we can mask effects on
it. This masking is performed by the type expression (maskOnVarT 0{r} e) which replaces
the atomic Read, Write and Alloc effects in e that mention r with the pure effect ⊥. As the
body of a private expression is checked in a environment extended with the new region,
we then need to lower indices in the data type and effect of the body (t and e) before
producing the type and effect of the overall expression (t ′ and e′). In Fig. 4 we write the
lowering operator as ↓.

The lowering operator ↓ only succeeds if its argument type does not contain the type
index 0, corresponding to the bound variable {r}. In rule (TxPrivate), the effect being
lowered is guaranteed not to include 0{r} because we mask all terms that contain this
index. However, in an ill-typed program it would be possible for the type expression t to
include a use of 0{r}. The fact that the lowering of t succeeds only when it does not contain
0{r} is equivalent to including the premise r /∈ f v(t) (checking that the free variables of
t do not include r). This latter premise is seen in presentations of effect system that use
named binders rather than de Bruijn indices.

Rule (TxExtend) checks the body of an extend construct in a kind environment ex-
tended with the new region variable {r2}. The type of the overall expression is then the
type of the body, but with the outer region type t1 substituted for 0{r2}. This substitution
reflects the fact that once the evaluation of the body has completed, all store bindings in
the inner region {r2} will be merged into the outer region, represented by t1. As with Rule
(TxPrivate) we also mask the effects on the new region, though in this case the overall
expression is assigned an Alloc t1 effect to reflect the fact that store bindings that were
allocated into the new region are retained instead of being deallocated.

Rules (TxAlloc), (TxRead) and (TxWrite) are straightforward. Each act on a reference
in a region of type t1 and produce the corresponding effect.

Rule (TxOpPrim) uses the auxiliary function ‘typeOfOp1’ to get the types of each
primitive operator.

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 15

kienv | tyenv | stenv | stprops ⊢v val :: type (TypeV)

t = get ix{z} te ke | sp ⊢t t :: Data
ke | te | se | sp ⊢v ix{z} :: t (TvVar)

Ref r t = get l se ke | sp ⊢t Ref r t :: Data
ke | te | se | sp ⊢v loc l :: Ref r t (TvLoc)

ke | sp ⊢t t1 :: Data ke | te, {z} : t1 | se | sp ⊢x x2 :: t2 ; e2

ke | te | se | sp ⊢v λ{z} : t1. x2 :: t1
e2→ t2

(TvLam)

ke, {a} : k1 | te ↑ | se ↑ | sp ⊢x x2 :: t2 ; ⊥
ke | te | se | sp ⊢v Λ {a} : k1. x2 :: ∀{a} : k1. t2

(TvLAM)

t = typeOfConst c
ke | te | se | sp ⊢v c :: t (TvConst)

kienv | tyenv | stenv | stprops ⊢x exp :: type ; type (TypeX)

ke | te | se | sp ⊢v v1 :: t1
ke | te | se | sp ⊢x v1 :: t1 ; ⊥ (TxVal)

ke | sp ⊢t t1 :: Data
ke | te | se | sp ⊢x x1 :: t1 ; e1 ke | te, {z} : t1 | se | sp ⊢x x2 :: t2 ; e2

ke | te | se | sp ⊢x let {z} : t1 = x1 in x2 :: t2 ; e1 + e2
(TxLet)

ke | te | se | sp ⊢v v1 :: t11
e1→ t12 ke | te | se | sp ⊢v v2 :: t11

ke | te | se | sp ⊢x v1 v2 :: t12 ; e1
(TxApp)

ke | te | se | sp ⊢v v1 :: ∀{a} : k11. t12 ke | sp ⊢t t2 :: k11
ke | te | se | sp ⊢x v1 t2 :: t12[t2/0{a}] ; ⊥ (TxAPP)

e′ = (maskOnVarT 0{r} e) ↓
t ′ = t ↓ ke, {r} : Region | te ↑ | se ↑ | sp ⊢x x :: t ; e

ke | te | se | sp ⊢x private {r} in x :: t ′ ; e′
(TxPrivate)

ke | sp ⊢t t1 :: Region e′ = (maskOnVarT 0{r2} e) ↓
t ′3 = t3[t1/0{r2}] ke,{r2} : Region | te ↑ | se ↑ | sp ⊢x x :: t3 ; e
ke | te | se | sp ⊢x extend t1 with {r2} in x :: t ′3 ; e′+Alloc t1

(TxExtend)

ke | sp ⊢t t1 :: Region ke | te | se | sp ⊢v v2 :: t2
ke | te | se | sp ⊢x alloc t1 v2 :: Ref t1 t2 ; Alloc t1

(TxAlloc)

ke | sp ⊢t t1 :: Region ke | te | se | sp ⊢v v2 :: Ref t1 t2
ke | te | se | sp ⊢x read t1 v2 :: t2 ; Read t1

(TxRead)

ke | te | se | sp ⊢v v2 :: Ref t1 t2
ke | sp ⊢t t1 :: Region ke | te | se | sp ⊢v v3 :: t2

ke | te | se | sp ⊢x write t1 v2 v3 :: Unit ; Write t1
(TxWrite)

t11
e→ t12 = typeOfOp1 op ke | te | se | sp ⊢v v1 :: t11

ke | te | se | sp ⊢x op v1 :: t12 ; e (TxOpPrim)

Fig. 4. Types of Values and Expressions

ZU064-05-FPR Main 8 November 2013 20:58

16 Ben Lippmeier

typeOfConst unit = Unit

typeOfConst tt = Bool typeOfConst 0 = Nat
typeOfConst ff = Bool typeOfConst 1 = Nat ...

typeOfOp1 isZero = Nat→ Bool
typeOfOp1 succ = Nat→ Nat

Fig. 5. Types of Primitive Constants and Operators

3.3.1 Properties of the typing rules

Lemma 3.4. The data type and effect produced by a typing derivation have the appropri-
ate kinds.

If ke | te | se | sp ⊢x x :: t ; e
then ke | sp ⊢t t :: Data and ke | sp ⊢t e :: Effect

Lemma 3.5. Two typing derivations for the same expression produce the same data type
and effect.

If ke | te | se | sp ⊢x x :: t1 ; e1 and ke | te | se | sp ⊢x x :: t2 ; e2

then (t1 = t2) and (e1 = e2)

Lemma 3.6. We can insert a new element into the kind environment at position ix, provided
we lift existing references to elements higher than ix over the new one.

If ke | te | se | sp ⊢x x1 :: t1 ; e1

then insert ix k2 ke | te ↑ix | se ↑ix | sp ⊢x x1 ↑ix
t :: t1 ↑ix ; e1 ↑ix

In this lemma the lifting operator ↑ix
t applies to the type indices in an expression, which is

indicated by the t subscript on the arrow.

Lemma 3.7. We can insert a new element into the type environment at position ix, provided
we lift existing references to elements higher than ix over the new one.

If ke | te | se | sp ⊢x x1 :: t1 ; e1

then ke | insert ix t2 te | se | sp ⊢x x1 ↑ix
x :: t1 ; e1

In this lemma the lifting operator ↑ix
x applies to the expression indices in x, which is

indicated by the x subscript on the arrow.

Lemma 3.8. Substitution of types in expressions.

If get ix ke = k2

and ke | te | se | sp ⊢x x1 :: t1 ; e1

and delete ix ke | sp ⊢t t2 :: k2

then delete ix ke | te[t2/ix] | se[t2/ix] | sp ⊢x x1[t2/ix] :: t1[t2/ix] ; e1[t2/ix]

This is the type substitution lemma discussed in the motivation in §1.6. In the proof of
Preservation it is used to show that the result of a type application has the correct type.

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 17

Lemma 3.9. Substitution of values in expressions.

If get ix te = t2
and ke | te | se | sp ⊢x x1 :: t1 ; e1

and ke | delete ix te | se | sp ⊢v v2 :: t2
then ke | delete ix te | se | sp ⊢x x1[v2/ix] :: t1 ; e1

This lemma is used in the proof of Preservation to show the result of a function application
has the correct type.

Lemma 3.10. Adding closed types to the end of the store environment preserves the in-
ferred type and effect.

If ke | te | se1 | sp ⊢x x :: t1 ; e1 and (Forall t in se2. ClosedT t)
then ke | te | se2, se1 | sp ⊢x x :: t1 ; e1

The ‘ClosedT’ predicate checks that its argument does not contain free type indices. Through-
out this paper, when we describe a judgement informally instead of giving an explicit
definition we write it with in prefix form (as with ClosedT t) instead of mixfix using a
turnstyle symbol ⊢. See the accompanying Coq script for full details.

Lemma 3.11. Adding a new property to the start or end of the store properties lists pre-
serves the inferred type and effect.

If ke | te | se | sp ⊢x x :: t ; e
then ke | te | se | sp, p ⊢x x :: t ; e

If ke | te | se | sp ⊢x x :: t ; e
then ke | te | se | p, sp ⊢x x :: t ; e

4 Dynamic Semantics

Fig. 6 contains the small step dynamic semantics for System-Fre. We use a frame stack to
hold the continuation when evaluating a let binding, as well as to remember the set of
currently live regions. The single step semantics is defined in the next section, and there is
a trace of an example expression in Fig. 14.

4.1 Small Step Evaluation

The small step semantics of Fig. 6 is split into two judgment forms, one for the pure
evaluation rules that do not affect the store or frame stack, and one for the others. We
will describe the form of the store and frame stack when we discuss the specific rules that
act upon it. The judgment x −→ x′ reads: “expression x evaluates to expression x′”. The
judgment ss | sp | fs | x −→ ss′ | sp′ | fs′ | x′ reads: “with store ss, store properties sp and
frame stack fs, evaluation of expression x produces a new store ss′, properties sp′, frame
stack fs′ and expression x′.” We refer to a quadruple (ss | sp | fs | x) as a machine state, so
our evaluation judgment takes one machine state and produces a new one.

ZU064-05-FPR Main 8 November 2013 20:58

18 Ben Lippmeier

4.1.1 Pure Evaluation Rules

Rules (SpAppSubst) and (SpAPPSubst) are the usual value and type application rules for
System-F based languages. Because expressions contain both expression and type indices,
we disambiguate the substitution operator with a subscript indicating which sort of index
it operates on. In (SpAppSubst) we write x12[v2/0{x}]x to substitute v2 for the expression
index 0 in x12. Likewise we write x12[t2/0{x}]t for type substitution.

Rules (SpSucc) and (SpZero) evaluate our representative pure primitive operators. For
the meta-level implementation of these operators, we use the Coq library functions ‘S’ and
‘beq nat’ to take the successor and test for zero respectively.

Rule (SfStep) embeds a pure evaluation rule in one that contains the store and frame
stack.

4.1.2 Frame Stacks, let-continuations and Deallocation

Fig. 7 gives the definition of frame stacks. A frame stack is a list of frames, where a frame
can either be a let-continuation or region context. A let-continuation let {z} : t = ◦ in x2

holds the body of a let binding x2 while the bound expression is being evaluated. We use the
◦ to indicate the part of the expression currently under evaluation. A region context frame
priv mode p records the fact that region p has been created and can have new bindings
allocated into it. The mode field says what to do with the store bindings in that region when
we leave the scope of the construct that created it. For the private construct we use mode
d, which indicates that all store bindings in p should be deallocated. For extend we use
a mode like (m p′) which indicates that all store bindings in the inner region p should be
merged into the outer region p′.

Returning to Fig. 6, rule (SfLetPush) enters a let-binding by pushing a continuation
holding the body x2 onto the stack, and then begins evaluation of the bound expression x1.

Rule (SfLetPop) matches when the expression has reduced to a value and there is a let-
continuation on the top of the stack. In this case we substitute the value into the body of
the original let-expression x2.

Rule (SfPrivatePush) allocates a new region. For this we use meta-function ‘allocRegion’
to examine the current list of store properties and produce a fresh region identifier p. The
definition of ‘allocRegion’ in the Coq script just takes the maximum of all existing region
identifiers and adds one to it. In a concrete implementation we could instead base the
new identifier on a counter of previously allocated regions, or use the starting address of
the new region as a fresh identifier. Having generated a fresh identifier, we then push a
priv d p frame onto the stack to record that the region has been allocated. As we will see
in §4.3, we use the set of priv frames currently on the stack to determine what locations
in the store are safe to access, and the new frame also indicates that all store bindings in
region p are live (not yet deallocated). Finally, we substitute the region handle rgn p for
the original region variable in the body expression x1. This substitution performs the region
phase change, which means that any effects of x1 had that mentioned the region variable
0{r} now mention rgn p instead — so an effect like Read r changes to Read (rgn p).
In our proof of Preservation we manage this phase change with the visible subsumption
judgment described in §4.5.

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 19

exp−→ exp (StepP)

(λ{z} : t11. x12) v2 −→ x12[v2/0{z}]x (SpAppSubst)

(Λ{a} : k11. x12) t2 −→ x12[t2/0{a}]t (SpAPPSubst)

succ n−→ n′

where n′ = S n
isZero n−→ b′

where b′ = beq nat n 0 (SpSucc/Zero)

store | stprops | stack | exp−→ store | stprops | stack | exp (StepF)

x−→ x′
ss | sp | fs | x−→ ss | sp | fs | x′ (SfStep)

ss | sp | fs | let {z} : t = x1 in x2
−→ ss | sp | fs, let {z} : t = ◦ in x2 | x1

(SfLetPush)

ss | sp | fs, let {z} : t = ◦ in x2 | v1
−→ ss | sp | fs | x2[v1/0{z}]x

(SfLetPop)

ss | sp | fs | private {r} in x1
−→ ss | region p, sp | fs, priv d p | x1[rgn p/0{r}]t

where p = allocRegion sp
(SfPrivatePush)

ss | sp | fs, priv d p | v1 −→ ss′ | sp | fs | v1
where ss′ = map (deallocB p) ss

(SfPrivatePop)

ss | sp | fs | extend (rgn p1) with {r} in x1
−→ ss | region p2, sp | fs, priv (m p1) p2 | x1[rgn p2/0{r}]t

where p2 = allocRegion sp
(SfExtendPush)

ss | sp | fs, priv (m p1) p2 | v1 −→ ss′ | sp | fs | v1
where ss′ = map (mergeB p1 p2) ss

(SfExtendPop)

ss | sp | fs | alloc (rgn p) v1 −→ p with v1, ss | sp | fs | loc l
where l = length ss

(SfStoreAlloc)

ss | sp | fs | read (rgn p) (loc l)−→ ss | sp | fs | v
where p with v = get l ss

(SfStoreRead)

ss | sp | fs | write (rgn p) (loc l) v2 −→ ss′ | sp | fs | unit
where p with v1 = get l ss

ss′ = update l (p with v2) ss
(SfStoreWrite)

Fig. 6. Small Step Evaluation

stack ::= frame (frame stacks)
frame ::= let {z} : type = ◦ in exp (let-continuation)

| priv mode p (region context)
mode ::= d | m p (deallocate / merge)

store ::= stbind (mutable stores)
stbind ::= p with val (live store binding)

| p with • (dead store binding)

Fig. 7. Stores and Store Bindings

ZU064-05-FPR Main 8 November 2013 20:58

20 Ben Lippmeier

Rule (SfPrivatePop) matches when the expression has reduced to a value v1. When the
top-most frame on the stack is a priv d p we deallocate all bindings in region p and pop
the frame. Fig. 7 shows that a store is a list of store bindings, which themselves may be
live or dead. A live store binding p with val holds a value val, tagged with the region it
is in p.

We model deallocation by replacing the value contained in the store binding by the
placeholder •, which indicates that the value is no longer available. This is also the ap-
proach taken by Calcagno et al. (2002). In Fig. 6 the deallocation of a single binding is
performed using the meta-function ‘deallocB’, which takes a region identifier p, and a
store binding, and replaces the contained value with • if the binding is tagged with p. Note
that in the formal semantics we cannot simply remove dead bindings from the store. If we
removed them, then any dangling references to these bindings would no longer be well
typed. Dangling references were discussed in §1.5.

Rules (SfExtendPush) and (SfExtendPop) are similar to (SfPrivatePush) and (SfPri-
vatePop), except that the version for extend also records the identifier of the outer region
in the stack frame. In (SfExtendPop) when the frame priv (m p1) p2 is popped from the
stack we use the meta-function ‘mergeB’ to merge all objects in region p2 into region
p1, instead of simply deallocating them as before. The ‘mergeB’ function rewrites the
region annotation on store bindings, so p2 with v becomes p1 with v for any v,
and p2 with • becomes p1 with •. In the formal semantics we must also rewrite the
region annotations on dead bindings to ensure that dangling references retain their correct
types, though in a concrete implementation we would not need to perform this operation at
runtime.

Rule (SfStoreAlloc) appends a new store binding in region p to the store, using the
meta-function ‘length’ to get the location of this new binding.

Rule (SfStoreRead) reads the value of the binding at location l. The binding must be live
for this to succeed. The Preservation theorem in §4.5.1 ensures that well typed programs
never try to read dead bindings.

Rule (SfStoreWrite) first retrieves the binding at location l to ensure that it is live, and
then overwrites it with the new value.

4.2 Store Environment and Well Formedness

The store environment contains the types of each location in the store, and was defined in
Fig. 3. Well formedness for stores is defined in Fig. 8. The judgment se | sp ⊢ ss ; fs wf
reads: “with store environment se and store properties sp, store ss and frame stack fs
are well formed”. To keep the formalism manageable, this well-formedness judgment is
defined in terms of several auxiliary judgments. The first says that all types in the store
environment must be closed. We describe the others in turn.

The judgment se | sp ⊢s ss reads: “with store environment se and store proper-
ties sp, store ss is well typed.” A judgment of this form specifies that all store bind-
ings in the store are closed and well typed with respect to their corresponding entries
in the store environment. This judgment form is defined in terms of an auxiliary one
ke | te | se | sp ⊢b b :: t that checks the type of a single store binding b. In the notation
used in rule (StoreT), a statement like ‘Forall2 b, t in ss,se. P(b, t)’ asserts that property P

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 21

stenv | stprops ⊢ store ; stack wf (WfFS)

Forall t in se. (ClosedT t)
se | sp ⊢s ss sp ⊢p fs covered se ⊢m ss models

se | sp ⊢ ss ; fs wf (WfFS)

stenv | stprops ⊢s store (StoreT)

Forall2 b, t in ss, se. (· | · | se | sp ⊢b b :: t)
se | sp ⊢s ss (StoreT)

kienv | tyenv | stenv | stprops ⊢b stbind :: type (TypeB)

region p ∈ sp ke | te | se | sp ⊢v v :: t
ke | te | se | sp ⊢b p with v :: Ref (rgn p) t (TbValue)

region p ∈ sp
ke | te | se | sp ⊢b p with • :: Ref (rgn p) t (TbDead)

stprops ⊢p stack covered (StoreP)

forall p. If (priv p) ∈ fs then (region p) ∈ sp
forall p. If (priv (m p)) ∈ fs then (region p) ∈ sp

sp ⊢p fs covered (StoreP)

stenv ⊢m store models (StoreM)

length se = length ss
se ⊢m ss models (StoreM)

Fig. 8. Store Typing, Coverage, and Model

is true for pairs of elements b and t taken from the lists ss and se. The quantifier ‘Forall2’
comes as part of the standard Coq libraries, along with many administrative lemmas.

Rule (TbValue) says that a value v in some region p, written p with v, is well typed
when the value itself is well typed and the region identifier p exists in the store properties.
Rule (TbDead) is similar, though a deallocated value can be assigned any type, similarly
to the undefined value from Haskell.

The judgment sp ⊢p fs covered reads: “with store properties sp, the frame stack fs
is covered”. The only inference rule (StoreP) ensures that every region identifier p that
appears in a priv frame on the stack also appears in the store properties.

The judgment se ⊢m ss models reads: “the store environment se models the store ss”.
The only inference rule (StoreM) requires both se and ss to have the same length, which
together with (StoreT) ensures that there are no entries in the store environment that do not
have corresponding entries in the store.

ZU064-05-FPR Main 8 November 2013 20:58

22 Ben Lippmeier

4.2.1 Properties of the Store Typing

The following are the key lemmas used to show that the well formedness of the store is
preserved during evaluation. We have one lemma for each of the rules of Fig 6 that modify
the store.

Lemma 4.1. Pushing a new priv frame on the stack, and appending the corresponding
entry to the store environment preserves well formedness of the store.

If se | sp ⊢ ss ; fs wf
then se | region p, sp ⊢ ss ; fs, priv d p wf

If se | sp ⊢ ss ; fs wf and region p1 ∈ sp
then se | region p2, sp ⊢ ss ; fs, priv (m p1) p2 wf

During evaluation, new region identifiers are created by the (SfPrivatePush) and (SfEx-
tendPush) rules of Fig 6. Note that the well formedness judgment itself does not require
that the new region identifiers are fresh with respect to existing identifiers. Freshness is
enforced by the (TypeF) judgment of Fig. 10, which we will discuss in §4.4.

Lemma 4.2. Adding a closed store binding to the store, and corresponding entry to the
store environment preserves the well formedness of the store.

If · | · | se | sp ⊢v v :: t and region p ∈ sp
and se | sp ⊢ ss ; fs wf

then Ref (rgn p) t, se | sp ⊢ p with v, ss ; fs wf

Lemma 4.3. Updating a store location with a closed well typed binding preserves the well
formedness of the store.

If get l se = Ref p t
and · | · | se | sp ⊢v v :: t and region p ∈ sp
and se | sp ⊢ ss ; fs wf

then se | sp ⊢ update l (p with v) ss ; fs wf

Lemma 4.4. Deallocating a region preserves the well formedness of the store.

If se | sp ⊢ ss ; fs, priv d p wf
then se | sp ⊢map (deallocB p) ss ; fs wf

The bare fact that deallocating a region preserves the well formedness of the store is
straightforward to prove, because the (TbDead) rule of Fig. 8 allows deallocated bindings
to have the same types as they did before deallocation. Proving that subsequent reduction
does not get stuck requires further machinery, which we discuss in §4.3.

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 23

Lemma 4.5. Merging bindings into an existing region preserves the well formedness of
the store.

If se | sp ⊢ ss ; fs, priv (m p1) p2 wf
and region p1 ∈ sp

then map (mergeT p1 p2) se | sp ⊢map (mergeB p1 p2) ss ; fs wf

When we merge bindings from one region into another, we must update their corresponding
types in the store environment to match. This is achieved with the ‘mergeT’ meta-function,
where the application (mergeT p1 p2 t) rewrites all region identifiers p2 to p1 in type t.

4.3 Liveness

Fig. 9 gives the key liveness invariants that ensure a running program will only accesses
store bindings that exist in the store, and have not yet been deallocated. The judgment
fs ⊢e e live reads: “frame stack fs is live relative to effect e”, and the judgment ss ⊢s fs live
reads: “store ss is live relative to frame stack fs”. The first says that for every region
identifier p in some effect e, there is a corresponding priv m p frame on the stack fs.
The second says that for every region identifier mentioned in a priv frame on the stack,
all the store bindings in the corresponding regions are live. The fact that every read and
write statement in the program is assigned an appropriate effect by the rules of Fig. 4 then
makes it straightforward to reason that the evaluation of these statements only accesses
store bindings that currently exist in the store.

In the (LiveE) rule of Fig. 9 the meta-function ‘flattenT’ takes a compound effect and
produces a list of its atomic components. For example, effect Read r1+(Write r2+Write r3)

flattens to the list Read r1, Write r2, Write r3.

4.3.1 Properties of Liveness

The following lemmas are used to ensure that the liveness invariants between the store,
frame stack and effect of an expression are preserved under during evaluation.

Lemma 4.6. If the store is live relative to the frame stack, and frame stack live relative to
an atomic effect on some region p, then all store bindings in region p are live.

If ss ⊢e fs live and fs ⊢s e live
and b = get l ss
and p = regionOfStBind b = handleOfEffect e
then exists v. b = p with v

Lemma 4.7. Masking effect on some variable with index ix preserves the liveness rela-
tionship with the frame stack.

If fs ⊢e maskOnVarT ix{v} e live
then fs ⊢e e live

The lemma is “obviously true”, because the rule (LiveE) rule only mentions region handles
rather than the region variables that are being masked, though its proof requires some
boilerplate to deal with the fact that the effect e being flattened in the rule.

ZU064-05-FPR Main 8 November 2013 20:58

24 Ben Lippmeier

Lemma 4.8. If there is a priv m p frame on the frame stack, for some mode m, then
substituting rgn p for variable 0 in some effect e preserves liveness of the stack relative
to that effect.

If fs, priv m p ⊢e e live
then fs, priv m p ⊢e e[rgn p/0] live

Suppose the evaluation of the private expression creates a new region with identifier
p. Given (fs ⊢e e live), it is trivial to show that the weakened version (fs, priv d p ⊢e

e live) is also true. Using the above lemma, we can then substitute p into the body of the
private expression e and show that the resulting frame stack is still live relative to the
phase changed effect, (fs, priv d p ⊢e e[rgn p/0] live).

Lemma 4.9. If there is a priv d p frame on the top of the frame stack, then provided p
is not used in a priv frame lower in the stack (NoPrivFs p fs), then popping the top frame
while deallocating all store bindings in region p preserves liveness of the store relative to
the frame stack.

If ss ⊢s fs, priv d p live
and NoPrivFs p fs

then map (deallocB p) ss ⊢s fs live

This key lemma shows that the liveness invariant between the store and the frame stack
is preserved when applying rule (SfPrivatePop) of Fig. 6. Assuming the frame on the top
of the stack is priv d p, once the body of the associated private expression reduces to
a value, we pop the top frame and deallocate all store bindings in region p. Due to the
NoPrivFs premise, we know that all store bindings in regions mentioned by priv frames
deeper in the stack are still live.

Lemma 4.10. If all store bindings in region p2 are live, and the store is live relative to the
frame stack fs, then merging region p2 into some other region p1 preserves liveness of the
store relative to the frame stack.

If (forall b. b ∈ ss implies b ⊢bp p2 live)
and ss ⊢s fs live

then map (mergeB p1 p2) ss ⊢s fs live

This lemma shows that the liveness invariant between the store and frame stack is preserved
when applying rule (SfExtendPop) of Fig. 6. If all store bindings in region p2 are live, then
when we merge them into region p1 they are still live.

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 25

stack ⊢e type live (LiveE)

Forall e1 in (flattenT e).
(forall p. If p = handleOfEffect e1 then (exists m. priv m p ∈ fs)

fs ⊢e e live
handleOfEffect (Read (rgn p)) = p

(Write (rgn p)) = p
(Alloc (rgn p)) = p

store ⊢s stack live (LiveS)

forall b f . b ∈ ss ∧ f ∈ fs implies b ⊢b f f live
ss ⊢s fs live

stbind ⊢b f frame live (LiveBF)

b ⊢b f let t : x = ◦ in live

b ⊢bp p live
b ⊢b f priv d p live

b ⊢bp p1 live b ⊢bp p2 live
b ⊢b f priv (m p1) p2 live

stbind ⊢bp p live (LiveBP)

p1 with v ⊢bp p2 live p1 ̸= p2
p1 with • ⊢bp p2 live

Fig. 9. Liveness of Effects and Frame Stacks

4.4 Types of Configurations and Frame Stacks

A configuration combines a frame stack fs with some expression x and is written fs/x. As
discussed earlier, the frame stack describes the context in which the expression evaluates.
The typing rules for configurations and frame stacks are given in Fig. 10. At the top of
the figure, the judgment ke | te | se | sp ⊢c fs/x :: t ; e reads: “with kind environment
ke, type environment te, store environment se and store properties sp, frame stack fs with
expression x has type t and effect e”. The second judgment form checks the frame stack
itself, where ke | te | se | sp ⊢ f fs :: t1(t2 ; e reads “... frame stack fs takes an expression
of type t1 to a result of type t2, causing effect e”. Here, the effect e is the effect of evaluating
all the suspended let-continuations contained on the stack.

In Fig. 10, rule (TcExp) checks the type of an entire configuration. As with the other
rules in the same figure, (TcExp) is a “dynamic typing” rule that is only needed when
checking the program during evaluation. Before a source program has commenced evalua-
tion it has no associated frame stack, so the static typing rules of Fig. 4 suffice to check it.
The premise ke | sp ⊢ e1 + e2 ≡ e3 :: Effect is needed to normalize the syntactic form of the
overall effect e3. The premise allows us to treat an effect term such as (e1+⊥) as simply e1,
and use the usual commutativity and associativity properties of +. In hand written proofs
these properties are typically used without mention, but in a mechanical proof we must be
explicit. The equivalence judgment itself is defined in Fig. 11 and discussed in the next
section.

ZU064-05-FPR Main 8 November 2013 20:58

26 Ben Lippmeier

kienv | tyenv | stenv | stprops ⊢c stack/exp :: type ; type (TypeC)

ke | sp ⊢ e1 + e2 ≡ e3 :: Effect
ke | te | se | sp ⊢ f fs :: t1(t2 ; e2 ke | te | se | sp ⊢x x1 :: t1 ; e1

ke | te | se | sp ⊢c fs/x1 :: t2 ; e3
(TcExp)

kienv | tyenv | stenv | stprops ⊢ f stack :: type(type ; type (TypeF)

ke | sp ⊢t t :: Data
ke | te | se | sp ⊢ f · :: t(t ; ⊥ (TfNil)

ke | te | se | sp ⊢ f fs :: t2(t3 ; e3
ke | sp ⊢t t1 :: Data ke | te, {z} : t1 | se | sp ⊢x x2 :: t2 ; e2

ke | te | se | sp ⊢ f fs, let {z} : t1 = ◦ in x2 :: t1(t3 ; e2 + e3
(TfConsLet)

region p ∈ sp NoPrivFs p fs
ke | te | se | sp ⊢ f fs :: t1(t2 ; e2 fs ⊢e e2 live

ke | te | se | sp ⊢ f fs, priv d p :: t1(t2 ; e2
(TfConsPriv)

region p1 ∈ sp region p2 ∈ sp
fs ⊢e e2 +Alloc (rgn p1) live FreshFs p2 fs FreshSuppFs p2 se fs
ke | te | se | sp ⊢ f fs :: (mergeT p1 p2 t1)(t2 ; e2

ke | te | se | sp ⊢ f fs, priv (m p1) p2 :: t1(t2 ; e2 +Alloc (rgn p1)
(TfConsExt)

Fig. 10. Types of Configurations and Frame Stacks

Rule (TcNil) shows that an empty frame stack takes an expression of type t to another
expression of type t (itself), performing no effects.

Rule (TfConsLet) gives the type of a frame stack where the top most frame is a let-
continuation. Recall that a let-continuation holds the body of a let-expression while the
binding is being evaluated. In the rule, the binding has type t1 and the body x2 has type t2.
As per rule (SfLetPop) from Fig. 6, once the let-binding has reduced to a value it will be
substituted into the body x2 held in the let-continuation. Further evaluation of the body will
then produce a value of type t2 which will cause the next frame on the rest of the stack fs to
be popped, and so on. For this reason fs has type t2(t3, where t3 is the type of the overall
value that the configuration produces.

Rule (TfConsPriv) gives the type of a frame stack with a priv d p frame on top, for
some region identifier p. Recall from the discussion of (SfPrivatePop) in §4.1.2 that a frame
priv d p indicates that when the expression being evaluated has reduced to a value then
we should deallocate all store bindings in region p and pop the frame. Unlike the previous
case with (SfLetPop), in this case when we pop the frame we keep the original value, so
the rest of the stack fs must also accept this value — hence we have t1 (t2 in both the
premise and conclusion. The premise NoPrivFs p fs says that the region identifier p cannot
be mentioned in priv frames in the rest of the stack fs, which inductively ensures that all
region identifiers in priv frames on the stack are distinct. Finally, the premise fs ⊢s e2 live
ensures that the liveness of the overall stack (fs, priv d p) relative to e2 will be preserved
once we come to pop the priv d p frame later in the evaluation.

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 27

kienv | stprops ⊢ type≡ type :: kind (EquivT)

ke | sp ⊢t t :: k
ke | sp ⊢ t ≡ t :: k (EqRefl)

{ke | sp ⊢t ti :: k}i←1..2

ke | sp ⊢ t1 ≡ t2 :: k
ke | sp ⊢ t2 ≡ t1 :: k (EqSym)

ke | sp ⊢ t1 ≡ t2 :: k ke | sp ⊢ t2 ≡ t3 :: k
ke | sp ⊢ t1 ≡ t3 :: k (EqTrans)

ke | sp ⊢ t1 ≡ t ′1 :: Effect ke | sp ⊢ t2 ≡ t ′2 :: Effect
ke | sp ⊢ t1 + t2 ≡ t ′1 + t ′2 :: Effect

(EqSumCong)

ke | sp ⊢t t :: Effect
ke | sp ⊢ t ≡ t +⊥ :: Effect (EqSumBot)

ke | sp ⊢t t :: Effect
ke | sp ⊢ t ≡ t + t :: Effect (EqSumIdemp)

{ke | sp ⊢t ti :: Effect}i←1..2

ke | sp ⊢ t1 + t2 ≡ t2 + t1 :: Effect (EqSumComm)

{ke | sp ⊢t ti :: Effect}i←1..3

ke | sp ⊢ t1 +(t2 + t3)≡ (t1 + t2)+ t3 :: Effect (EqSumAssoc)

Fig. 11. Type Equivalence

Rule (TfConsExt) gives the type of a frame stack with a priv (m p1) p2 frame on top,
for outer and inner region identifiers p1 and p2. From the discussion of rule (SfExtendPop)
from §4.1.2, recall that the frame priv (m p1) p2 indicates that when the expression being
evaluated has reduced to a value, then we should merge region p2 into region p1 and pop the
frame. The merging process rewrites p2 into p1 in both the value and in all store bindings,
hence we must also rewrite the type of the value to match. The rest of the stack fs thus
has type (mergeT p1 p2 t1)(t2, as it expresses a continuation that takes the value after
merging.

The premise FreshFs p2 fs says that none of the frames in stack fs may mention the
region identifier p2, which prevents it from appearing in let-continuation frames as well as
priv frames. This FreshFs predicate is stronger than the NoPrivFs predicate used in rule
(TfConsPriv). We need the stronger version here because if an intermediate let-continution
in fs actually did mention p2 then its type would also change during the merging process.
However, at runtime such a let-continuation cannot be constructed, because from the form
of the stack we know that p2 will have been created after any let-continuations deeper in
the stack were pushed. The premise FreshSuppFs p2 se fs says that for all store locations
mentioned in fs, their corresponding types from se cannot mention region identifier p2

(where “Supp” is short for “Support”). This premise is needed for the same reason as the
previous one: if fs mentioned any locations that had types involving p2 then these would
change during merging, but such locations cannot exist because p2 is guaranteed to be
created after the locations.

ZU064-05-FPR Main 8 November 2013 20:58

28 Ben Lippmeier

kienv | stprops ⊢ type⊒ type :: kind (SubsT)

ke | sp ⊢ t1 ≡ t2 :: k
ke | sp ⊢ t1 ⊒ t2 :: k (SbEquiv)

ke | sp ⊢ t1 ⊒ t2 :: k ke | sp ⊢ t2 ⊒ t3 :: k
ke | sp ⊢ t1 ⊒ t3 :: k (SbTrans)

ke | sp ⊢t t :: Effect
ke | sp ⊢ t ⊒⊥ :: Effect (SbBot)

ke | sp ⊢ t1 ⊒ t2 :: Effect ke | sp ⊢ t1 ⊒ t3 :: Effect
ke | sp ⊢ t1 ⊒ t2 + t3 :: Effect (SbSumAbove)

ke | sp ⊢ t1 ⊒ t2 :: Effect ke | sp ⊢t t3 :: Effect
ke | sp ⊢ t1 + t3 ⊒ t2 :: Effect (SbSumBelow)

ke | sp ⊢ t1 ⊒ t2 + t3 :: Effect
ke | sp ⊢ t1 ⊒ t2 :: Effect (SbSumAboveLeft)

ke | sp ⊢ t1 ⊒ t2 + t3 :: Effect
ke | sp ⊢ t1 ⊒ t3 :: Effect (SbSumAboveRight)

Fig. 12. Type Subsumption

4.5 Type Equivalence and Subsumption

The rules for type equivalence are given in Fig. 11. As discussed in the previous section,
we use type equivalence in rule (TcExp) of Fig. 10 to normalize the effect of the reduction.
The rules of Fig. 11 are completely standard, though note that the relation also requires
the types mentioned to be well kinded. This property is needed to prove the administrative
lemmas that are used in the body of the proof.

Interestingly, the type (and effect) equivalence relation is not sufficient to make a general
statement of Preservation. An example trace that highlights the problem is given in Fig. 14.
On the left of the figure we have the evaluation state as per the small step evaluation rules
of Fig. 6, and on the right we have the effect of the configuration. This is the effect gained
by applying the (TcExp) rule Fig. 10, using an empty kind and type environment. Note that
the syntactic effect of the configuration is not preserved during evaluation. For example,
the effect if the initial state is (Write (rgn 0)), but it changes to⊥ in the next state and then
increases to (Alloc (rgn 1)+Write (rgn 1)) in the next.

The point about Fig 14 is that a running program dynamically allocates and deallocates
new regions, and the effect we assign to intermediate states rightly reflects these changes.
As we expose this runtime detail, we must define what it means for such an effect to be
“valid”, as it would not make sense for it to change to something completely arbitrary. As
far as the client programmer is concerned, the observable effect of a closed, well typed
program that begins evaluation in an empty store is precisely nothing. Such a program may
allocate and deallocate new regions during evaluation, but because it cannot affect any
existing bindings in the store (because there were none), it must be observationally pure.

We relate the effects of each successive program state with visible subsumption, defined
in Fig 13. The judgment ke | sp ⊢vis e1⊒ e2 †sp′ reads “with kind environment ke and store
properties sp, effect e1 visibly subsumes effect e2 relative to the new store properties sp′”.

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 29

kienv | stprops ⊢vis type⊒ type † stprops (SubsVisibleT)

ke | sp ⊢ e⊒maskNotVisible sp′ e′ :: Effect
ke | sp ⊢vis e⊒ e′ † sp′

(SubsVisibleT)

maskNotVisible sp′ e′ def
= maskOnT (λ t. ¬(isVisibleE sp′ t)) e′

Fig. 13. Visible Subsumption

This judgment is defined in terms of the standard subsumption judgment, which is given
in Fig. 12. The effect e1 visibly subsumes effect e2 relative to store properties sp′, when e1

subsumes e2 after masking out all atomic effects in e2 on regions that are not in sp′. In our
statement of Preservation, we will use visible subsumption to mean “subsumption without
worrying about regions that haven’t been allocated yet”.

As an example, the effect of the first state in Fig. 14 (Write (rgn 0)) visibly subsumes
the effect of the third state (Alloc (rgn 1)+Write (rgn 1)) relative to the store properties
(region 0). To write this statement formally, first note that the judgment form in Fig. 13
takes two separate lists of store properties. The properties on the left of the turnstile must
mention the region identifiers in both effects being related, whereas the properties on the
right mention just the identifiers of visible regions that we use to perform the masking.
Here is the example statement in full, using an empty kind environment:

· | region 0, region 1 ⊢vis Write (rgn 0) ⊒ Alloc (rgn 1)+Write (rgn 1)†region 0

In the definition in Fig. 13, the meta-function ‘maskNotVisible’ takes a list of store prop-
erties sp′, an effect e′, and replaces atomic effect terms in e′ that act on regions that are not
mentioned in sp′ with ⊥. For example:

maskNotVisible [region 0, region 2] (Read (rgn 0) + Write (rgn 1) + Alloc (rgn 2))
= Read (rgn 0) + ⊥ + Alloc (rgn 2)

The meta-function ‘maskNotVisible’ itself is defined in terms of ‘maskOnT’, which is a
higher order function that masks out atomic effect terms that do match the given predicate.
In this case the required predicate is defined in terms of ‘isVisibleE’. The expression
‘isVisibleE sp′ t’ returns false when t is an atomic effect on some region that is not listed in
sp′, and true otherwise. In the Coq script we reuse the meta-function ‘maskOnT’ to define
‘maskOnVarT’, which appears in Fig. 4, as well as administrative lemmas about it.

4.5.1 Properties of Visible Subsumption

Lemma 4.11. If effect e1 visibly subsumes an effect e2 that has terms involving region
variable 0 masked out, then e1 also visibly subsumes effect e2 after substituting region
handle rgn p for the masked variable, provided p is not a visible region identifier.

If ¬(region p ∈ spVis)
and · | sp ⊢vis e1 ⊒maskOnVarT 0 e2 † spVis
then · | sp ⊢vis e1 ⊒ e2[(rgn p)/0]† spVis

In the proof of Preservation, this lemma manages the region phase change which occurs to
the overall effect of the program state when when apply rule (SfPrivatePush) from Fig. 6.

ZU064-05-FPR Main 8 November 2013 20:58

30 Ben Lippmeier

Here it is again:

ss | sp | fs | private {r} in x2

−→ ss | region p, sp | fs, priv d p | x2[rgn p/0{r}]t
where p = allocRegion sp

(SfPrivatePush)

Suppose x2 has effect e2 and the overall expression (private r in x2) is closed. Using
rule (TcExp) from Fig. 10 and rule (TxPrivate) from Fig. 4 with empty environments and
frame stack, we assign the overall expression the effect (maskOnVarT 0{r} e2) ↓. As the
environments are empty we know that the masked effect is closed, so the overall effect of
the expression is just (maskOnVarT 0{r} e2), without the lowering operator. Applying
rule (SfPrivatePush) above yields the new expression (x2[rgn p/0{r}]t), with a fresh
region handle substituted for variable 0{r}. Using the System-F style type substitution
lemma, the effect of the new expression becomes (e2[rgn p/0{r}]t). The lemma above is
then used in the proof of Preservation to show that whatever effect visibly subsumes the
effect of a private expression before reduction also subsumes it afterwards. The premise
¬(region p ∈ spVis) is satisfied automatically because the region identifier p is freshly
allocated by (SfPrivatePush).

Lemma 4.12. Strengthening the related store properties preserves visible subsumption.

If spVis′ extends spVis
and ke | sp ⊢vis e1 ⊒ e2 † spVis′

then ke | sp ⊢vis e1 ⊒ e2 † spVis

where (spVis′ extends spVis) def
= (exists sp. spVis′ = sp++ spVis)

Theorem 4.1 (Preservation).

If se | sp ⊢ ss ; fs wf and ss ⊢s fs live and fs ⊢e e live
and · | · | se | sp ⊢c fs/x :: t ; e
and ss | sp | fs | x−→ ss′ | sp′ | fs′ | x′
then exists se′ e′.

se′ | sp′ ⊢ ss′ ; fs′ wf and ss′ ⊢s fs′ live and fs′ ⊢e e′ live
and · | sp′ ⊢vis e⊒ e′ † sp
and · | · | se′ | sp′ ⊢c fs′/x′ :: t ; e′

When a well typed configuration transitions to a new state, then the new configuration has
the same type as before, and its effect is visibly subsumed by the effect of the previous
configuration.

Proof by rule induction over the derivation of (ss | sp | fs | x −→ ss′ | sp′ | fs′ | x′). The
interesting cases are for rules (SfPrivatePush) and (SfPrivatePop) of Fig. 6, which allocate
and deallocate regions respectively. The proof of the (SfPrivatePush) case uses Lemma 4.11
to manage the region phase change that occurs when the new region handle is substituted
for the corresponding region variable in the expression under evaluation. This process is
described in §4.5.1. The proof of the (SfPrivatePop) case uses Lemma 4.9 from to show
that well formedness of the store and frame stack is preserved when leaving the body of a
private expression and deleting the corresponding region.

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 31

0 with tt

| region 0
| priv d 0
| let = write (rgn 0) (loc 0) ff in Write (rgn 0)

private r in
let x : Ref r Nat = alloc r 5 in

write r x 42
∗−→ 0 with ff

| region 0
| priv d 0
| private r in ⊥

let x : Ref r Nat = alloc r 5 in

write r x 42

−→ 0 with ff

| region 0, region 1
| priv d 0, priv d 1
| let x : Ref (rgn 1) Nat = alloc (rgn 1) 5 in Alloc (rgn 1)+Write (rgn 1)

write (rgn 1) x 42

−→ 0 with ff

| region 0, region 1
| priv d 0, priv d 1, (let x : ...= ◦ in write ...)
| alloc (rgn 1) 5 Alloc (rgn 1)+Write (rgn 1)

−→ 0 with ff, 1 with 5

| region 0, region 1
| priv d 0, priv d 1, (let x : ...= ◦ in write ...)
| loc 1 Write (rgn 1)

−→ 0 with ff, 1 with 5

| region 0, region 1
| priv d 0, priv d 1
| write (rgn 1) (loc 1) 42 Write (rgn 1)

−→ 0 with ff, 1 with 42

| region 0, region 1
| priv d 0, priv d 1
| unit ⊥

−→ 0 with ff, 1 with •
| region 0, region 1
| priv d 0
| unit ⊥

Fig. 14. Example Trace

ZU064-05-FPR Main 8 November 2013 20:58

32 Ben Lippmeier

Theorem 4.2 (Progress).

If se | sp ⊢ ss ; fs wf and ss ⊢s fs live and fs ⊢e e live
and · | · | se | sp ⊢c fs/x :: t ; e
then done fs x
or exists ss′ sp′ fs′ x′. ss | sp | fs | x−→ ss′ | sp′ | fs′ | x′

where done fs x def
= (fs = ·)∧ (exists v. x = v)

A well typed configuration is either done (has finished evaluating) or can transition to a
new state. In the above statement the clause (exists v. x = v) means “x is a value”, where
the forms of values are defined in Fig. 2.

Proof by induction over the form of x. The interesting cases are when x performs a read
or write to the store, as we must show that the corresponding binding has been allocated
but not yet deallocated. The proofs of these cases make critical use of liveness information
via Lemma. 4.6. We sketch the case for read below, with the case for write being very
similar. For full details see the Coq script.

Case x = read t1 v2

(5) · | sp ⊢t t1 :: Region (6) · | · | se | sp ⊢v v2 :: Ref t1 t2
(4) · | · | se | sp ⊢c fs/read t1 v2 :: t3 ; e1 (Assume)

(1..3) (se | sp ⊢ ss ; fs wf) (ss ⊢s fs live) (fs ⊢e e1 live) (Assume)
(5, 6) ... (Invert 4)
(7) t1 = rgn p1 (Lemma 3.1, 5)
(8) v2 = loc l (Forms of Values 6)
(9) · | · | se | sp ⊢v loc l :: Ref t1 t2 (Substitute 6 8)
(10) Ref t1 t2 = get l se (Invert/TyLoc 9)
(11) b = get l ss (StoreM 10 1)

(12) Case b = (p3 with v3)

(13) · | · | se | sp ⊢b p3 with v3 :: Ref (rgn p1) t2 (StoreT 12 10 1)
(14) p3 = p1 (Invert/TbValue 13)
(15) ss | sp | fs | read (rgn p1) (loc l)−→ ss | sp | fs | v3 (SfStoreRead 11 12 14)

(16) Case b = (p3 with •)
(17) · | · | se | sp ⊢b p3 with • :: Ref (rgn p1) t2 (StoreT 16 10 1)
(18) p3 = p1 (Invert/TbDead 13)
(19) · | · | se | sp ⊢ f fs :: t2(t3 ; e2 (Invert/TcExp 4)
(20) · | · | se | sp ⊢x read (rgn p1) l :: t2 ; e3 ...
(21) · | sp ⊢ e2 + e3 ≡ e1 :: Effect ...
(22) e3 = Read (rgn p1) (Invert/TxRead 20)
(23) · | sp ⊢ e1 ⊒ Read (rgn p1) :: Effect (Prop of ≡ 21 22)
(24) fs ⊢e Read (rgn p1) live (Prop of LiveE 3 23)
(25) exists v, b = (p1 with v) (Lemma 4.6, 2 24 11)
(26) Contradiction (16 25)

In (7) type t1 is a region handle because it is closed (via 5), and the only closed types of
region kind are region handles (Lemma 3.1). Similarly, in (8) value v2 is a location because
it is closed (6), and the only closed values of type Ref t1 t2 are locations.

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 33

In (11) the length of the store ss is the same as the length of the store environment se
due to the well formedness condition on stores (1). This means we can get the binding b
associated with location l, but we do not yet know whether it is dead (deallocated) or still
live (a value binding).

In the case where store binding b is live (12), we know it is in region p1 as indicated by
its type (Ref (rgn p1) t1), because the store is well typed relative to the store typing (1).
Region p1 matches the region handle (rgn p1) in the expression, so the whole configuration
can reduce via (SfStoreRead) from Fig. 6.

In the case where the store binding b is dead (16) we invert the typing judgment (4) to
reveal the effect of the overall configuration e1. This effect includes the effect of just the
read expression currently being reduced (Read (rgn p1)) (22), as well as the effect of the
rest of the computation e2. Based on the read effect, the liveness statement (3) indicates
there must be a corresponding (priv m p1) frame on the frame stack fs, for some mode
m. Using Lemma 4.6 and (2) this implies that all bindings in region p1 must be live. This
contradicts the original statement that b was dead (16), so this case cannot happen.

5 Related Work

Banerjee, Heintze and Riecke (1999) prove soundness for a fragment of the region calculus
(Tofte & Talpin, 1993) by translation to a target language. The target language is given a
denotational semantics, and completeness of the translation shows that the source language
is sound. The fragment covered is monomorphic, and does not include mutable references.

Calcagno, Helsen and Thiemann (2000; 2002) give hand written syntactic soundness
proofs for several versions of the region calculus (Tofte & Talpin, 1993). The version in
(Helsen & Thiemann, 2000) models region deallocation by substituting a special dead
region identifier for the associated variable when leaving the scope of a private construct.
Their dynamic semantics does not include an explicit store, and does not make a phase
distinction between compile-time region variables and run-time region handles. This store-
less semantics supports a straightforward proof of the region deallocation mechanism, but
does not support mutable references. Calcagno et al. (2002) extend the previous work
with mutable references and a store, but remove polymorphism. As discussed in §1.6, the
dynamic semantics of this latter language makes polymorphism difficult to add due to the
use of an auxiliary expression to hold allocated region names. The version presented in
(Calcagno, 2001) is similar.

Walker, Crary and Morisett (2000) define the Capability Language (CL), which supports
region based memory management where the allocation and deallocation points for sepa-
rate regions can be interleaved. To achieve this, the CL requires programs to be written in
continuation passing style (CPS) so that the set of live regions can be tracked at each point
in the program. In contrast, languages like System-Fre require region lifetimes to be nested,
following the lexical scoping of the private construct. Walker et al give a hand written
syntactic soundness proof for the CL, as well as a type directed translation from Tofte
and Talpin’s language into CL. Compared to lexically scoped languages, the CPS style CL
permits more efficient use of memory for objects whose lifetimes do not follow the lexical
structure of the code. However, the lexically scoped version directly supports well known
program transformations, which is a key motivation for our current work. For a concrete

ZU064-05-FPR Main 8 November 2013 20:58

34 Ben Lippmeier

compiler implementation it would seem reasonable to use both approaches, basing the
front-end language on the lexically scoped representation, but optimizing region lifetimes
by converting to the CPS representation during code generation.

Henglein, Makholm and Niss (2001; 2004) present a language related to CL that also
allows the allocation and deallocation points for separate regions to be interleaved. Their
system does not require the program to be CPS converted, but only supports first order
programs. A different language presented by Henglein et al. (2004) illustrates the core of a
type and effect system by simulating the usual mechanisms that access immutable regions
(allocate and read) with ones that simply tag and untag a value with a region identifier. As
with the system by Calcagno et al. (2002) they prove soundness of the region calculus and
translation correctness from the source language separately. They use nu-binding (Pitts &
Stark, 1993) as per rule (TyPrivate) from §1.6 to introduce new region identifiers, and their
evaluation semantics relies on implicit alpha conversion to avoid variable capture.

Fluet and Morisett (2004; 2006) define a monadic intermediate language, FRGN inspired
by the ST monad of Launchbury & Peyton Jones (1994). The monadic system provides
a stack of regions, as well as constraints that particular regions must outlive others. They
give a soundness argument for the region calculi in terms of translation onto FRGN , and
the companion technical report (Fluet, 2004) contains a hand written proof. Although the
intermediate language FRGN distills the essential mechanism of region deallocation, there
is a large semantic gap between it and the original region calculi, with the translation to
FRGN proceeding via two other intermediate languages. The later work by Fluet (2006)
gives a translation from FRGN to an even lower level language with linearly typed regions.
Kiselyov & Shan (2008) provide an embedding in Haskell.

Papakyriakou, Gerakios and Papaspyrou (2007) provide a syntactic soundness proof
for a version of System-F with mutable references, but without regions. The proof was
mechanized in Isabelle/HOL (Nipkow et al., 2002).

Boudol (2008) defines a monomorphic variant of the region calculus that allows regions
to be deallocated earlier than they would be using the stack discipline. The type system
includes negative deallocation effects, and ensures that the usual positive effects such as
reads and writes are not performed after negative effects to the same region. This work
includes a hand written soundness proof based on “subject reduction up-to-simulation”.

Montenegro, Pena, Segura and Dios (2008; 2010) present a first order functional lan-
guage with nested regions. The language includes a case expression that deallocates its
argument while it destructing it, and the type system tracks which arguments of functions
will be deallocated during evaluation. Later work by de Dios et al. (2010) describes a
soundness proof in Isabelle/HOL, as well as a method for generating certificates that prove
type checked programs do not contain dangling pointers.

Pottier (2013) presents a mechanized syntactic soundness proof for a type and capability
system with hidden state. Pottier’s system uses affine capabilities and includes region
adoption and focusing (Fahndrich & DeLine, 2002), and the anti-frame rule (Pottier, 2008)
for hiding local state. Pottier’s system assumes garbage collection, and does not include
region deallocation. Regions are used to reason about the aliasing and separation properties
of data, but not as memory management discipline. In contrast, the regions in our system
are intended primarily for memory management, and our type system does not encode the
more advanced separation properties.

ZU064-05-FPR Main 8 November 2013 20:58

Mechanized soundness for a type and effect system with region deallocation 35

6 Conclusion

Writing about a proof is like dancing about architecture.1 We intend this paper to be a
summary of the language System-Fre, presented in a way that can be mechanically proved
sound, while leaving most of the low level details in the proof script where they belong.

This work was carried out at a time of increasing community interest in producing
mechanically verified languages and compiler implementations. The influential CompCert
project (Leroy, 2009) has yielded a verified compiler for the C language, and we are
beginning to see results for higher level functional languages (Chlipala, 2007; Chlipala,
2010). As opposed to C, implementations for functional languages implicitly depend on a
runtime system to manage storage allocation, and verifying such a system requires a large
investment of effort on its own (Hawblitzel & Petrank, 2010). One advantage that System-
Fre has in this space is that the language semantics naturally includes storage management,
which (we hope) will reduce the overall cost of verifying its implementation.

Acknowledgements Thanks to Peter Gammie, Fritz Henglein and Amos Robinson for
helpful feedback on draft versions of this paper. This work was supported in part by the
Australian Research Council under grant number LP0989507.

References

Banerjee, Anindya, Heintze, Nevin, & Riecke, Jon G. (1999). Region analysis and the polymorphic
lambda calculus. Logic in computer science. IEEE.

Boudol, Gérard. (2008). Typing safe deallocation. ESOP: European Symposium on Programming.
Calcagno, Cristiano. (2001). Stratified operational semantics for safety and correctness of the region

calculus. POPL: Principles of Programming Languages. ACM Press.
Calcagno, Cristiano, Helsen, Simon, & Thiemann, Peter. (2002). Syntactic type soundness results

for the region calculus. Information and computation, 173(2).
Chlipala, Adam. (2007). A certified type-preserving compiler from lambda calculus to assembly

language. PLDI: Programming language design and implementation. ACM.
Chlipala, Adam. (2010). A verified compiler for an impure functional language. POPL: Principles

of Programming Languages. ACM.
de Dios, Javier, Montenegro, Manuel, & Peña, Ricardo. (2010). Certified absence of dangling

pointers in a language with explicit deallocation. IFM: Integrated Formal Methods.
Fahndrich, Manuel, & DeLine, Robert. (2002). Adoption and focus: practical linear types for

imperative programming. SIGPLAN Notices.
Fluet, Matthew. (2004). Monadic regions: Formal type soudness and correctness. Tech. rept. Cornell

University.
Fluet, Matthew, & Morrisett, Greg. (2004). Monadic regions. ICFP: International Conference on

Functional Programming.
Fluet, Matthew, Morrisett, Greg, & Ahmed, Amal J. (2006). Linear regions are all you need. ESOP:

European Symposium on Programming.
Garrigue, Jacques. (2002). Relaxing the value restriction. APLAS: Asian Workshop on Programming

Languages and Systems.

1 After a quote about music by Frank Zappa, reimagined by Peter Gammie.

ZU064-05-FPR Main 8 November 2013 20:58

36 Ben Lippmeier

Hawblitzel, Chris, & Petrank, Erez. (2010). Automated verification of practical garbage collectors.
Logical methods in computer science, 6(3).

Helsen, Simon, & Thiemann, Peter. (2000). Syntactic type soundness for the region calculus.
Electronic notes on theoretical computer science, 41(3).

Henglein, Fritz, Makholm, Henning, & Niss, Henning. (2001). A direct approach to control-flow
sensitive region-based memory management. PPDP: Principles and Practice of Declarative
Programming.

Henglein, Fritz, Makholm, Henning, & Niss, Henning. (2004). Advanced topics in types and
programming languages. The MIT Press. Chap. Effect Types and Region-Based Memory
Management.

Kiselyov, Oleg, & chieh Shan, Chung. (2008). Lightweight monadic regions. Haskell symposium.
Launchbury, John, & Peyton Jones, Simon L. (1994). Lazy functional state threads. PLDI:

Programing Language Design and Implementation.
Leroy, Xavier. (1993). Polymorphism by name for references and continuations. POPL: Principles

of Programming Languages.
Leroy, Xavier. (2009). Formal verification of a realistic compiler. Communications of the acm, 52(7),

107–115.
Lucassen, John M. (1987). Types and effects: Towards the integration of functional and

imperative programming. Tech. rept. Laboratory for Computer Science, Massachusetts Institute
of Technology.

Lucassen, John M., & Gifford, David K. (1988). Polymorphic effect systems. POPL: Principles of
Programming Languages.

Montenegro, Manuel, Pena, Ricardo, & Segura, Clara. (2008). A type system for safe memory
management and its proof of correctness. PPDP: Principles and Practice of Declarative
Programming.

Nipkow, Tobias, Wenzel, Markus, & Paulson, Lawrence C. (2002). Isabelle/HOL: a proof assistant
for higher-order logic.

Papakyriakou, Michalis A., Gerakios, Prodromos E., & Papaspyrou, Nikolaos S. (2007). A
mechanized proof of type safety for the polymorphic -calculus with references. Panhellenic logic
symposium.

Peyton Jones, Simon L., & Santos, Andr L.M. (1998). A transformation-based optimiser for haskell.
Science of computer programming. Elsevier North-Holland, Inc.

Pitts, Andrew M., & Stark, Ian D. B. (1993). Observable properties of higher order functions that
dynamically create local names, or what’s new? Mathematical foundations of computer science.
Springer-Verlag.

Pottier, François. (2008). Hiding local state in direct style: A higher-order anti-frame rule. LICS:
Logic in Computer Science.

Pottier, François. (2013). Syntactic soundness proof of a type-and-capability system with hidden
state. Journal of functional programming, 23(1).

Reynolds, John C. (2002). Separation logic: A logic for shared mutable data structures. LICS: Logic
in Computer Science.

Smith, Frederick, Walker, David, & Morrisett, Greg. (2000). Alias types. ESOP: European
Symposium on Programming.

Talpin, Jean-Pierre, & Jouvelot, Pierre. (1994). The type and effect discipline. Information and
computation, 111(2).

Tofte, Mads, & Talpin, Jean-Pierre. (1993). A theory of stack allocation in polymorphically typed
languages. Tech. rept. 93/15. Department of Computer Science, Copenhagen University.

Walker, David, Crary, Karl, & Morrisett, Greg. (2000). Typed memory management via static
capabilities. TOPLAS: Transactions on Programing Languages and Systems, 22(4).

