
Fusing Filters with Integer Linear Programming

Amos Robinson† Ben Lippmeier† Gabriele Keller†

†Computer Science and Engineering
University of New South Wales, Australia

{amosr,benl,keller}@cse.unsw.edu.au

Abstract
The key to compiling functional, collection oriented array pro-
grams into efficient code is to minimise memory traffic. Simply
fusing subsequent array operations into a single computation is not
sufficient; we also need to cluster separate traversals of the same
array into a single traversal. Previous work demonstrated how Inte-
ger Linear Programming (ILP) can be used to cluster the operators
in a general data-flow graph into subgraphs, which can be individ-
ually fused. However, these approaches can only handle operations
which preserve the size of the array, thereby missing out on some
optimisation opportunities. This paper addresses this shortcoming
by extending the ILP approach with support for size-changing op-
erations, using an external ILP solver to find good clusterings.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; Optimization

General Terms Languages, Performance

Keywords Arrays, Fusion, Haskell

1. Introduction
A collection-oriented programming model is well suited for ex-
pressing data-parallel computations, as it exposes the communi-
cation patterns to the compiler without the need for complicated
loop analysis. It is essential, however, that the compiler combines
these operations and compiles them into a small number of ef-
ficient loops, as a naive translation leads to high memory traffic
and poor performance. This is a well known problem, and tech-
niques to fuse subsequent array operations together have been pre-
sented in [5, 9, 10], to name just a few. This type of fusion alone
is not generally sufficient to minimise memory traffic. As shown
in (Megiddo [13] and Darte [7]), Integer Linear Programming can
be used to find good clusterings. Unfortunately, they cannot handle
operations like filter, where the output size differs from the input
size. The technique we present in this paper can handle both multi-
loop fragments as well as size-altering operations.

To compile the clusters found by our clustering technique into
loops, we use data flow fusion [12]. It improved on existing array
fusion approaches [5, 10] as it guarantees complete fusion into a

[Copyright notice will appear here once ’preprint’ option is removed.]

single loop for programs that operate on the same size input data
and contain no fusion-preventing dependencies between operators.

To see the effect of clustering, consider the following program:

normalize2 :: Array Int -> Array Int
normalize2 xs
= let sum1 = fold (+) 0 xs

gts = filter (> 0) xs
sum2 = fold (+) 0 gts
ys1 = map (/ sum1) xs
ys2 = map (/ sum2) xs

in (ys1, ys2)

The function normalize2 computes two sums, one of all the
elements of xs, the other of only elements greater than zero. Since
we need to fully evalute the sums to proceed with the maps, it
is clear that we need at least two separate loops. These folds are
examples of fusion-preventing dependencies, as fold cannot be
fused with subsequent operations. Figure 1 shows the data-flow
graph of normalize2. In the leftmost diagram we can see the effect
of applying stream fusion to the program: we end up with four loops
(denoted by the dotted lines): only the filter operation is combined
with the subsequent fold. The best existing ILP approach results
in the rightmost graph: it combines the sum1 fold and sum2 filter
in one loop, but requires an extra loop for the fold operation which
consumes the filter output, since it cannot fuse filter operations. Our
approach, in the middle, produces the optimal solution in this case:
one loop for the sums, another for the maps.

Our contributions are as follows:

• We extend prior work by Megiddo [13] and Darte [7], with
support for size changing operators. Size changing operators
can be clustered with operations on both their source array and
output array, and compiled naturally with data-flow fusion (§4).

• We present a simplification to constraint generation that is also
applicable to some ILP formulations such as Megiddo’s: con-
straints between two nodes need not be generated if there is a
fusion-preventing path between the two (§4.5).

• Our constraint system encodes a total ordering on the cost
of clusterings, expressed using weights on the integer linear
program. For example, we encode that memory traffic is more
expensive than loop overheads, so given a choice between the
two, memory traffic will be reduced (§4.4).

• We present benchmarks of our algorithm applied to several
common programming patterns. Our algorithm is complete and
yields good results in practice, though an optimal solution is
uncomputable in general (§5).

An implementation of our clustering algorithm is available at
https://github.com/amosr/clustering.

1 2014/5/16

https://github.com/amosr/clustering

gts

sum2

fold

map map

filter

xs

ys2ys1

sum1

fold

xs

ys2ys1

gts

sum2

fold

map map

filter

sum1

fold

xs

ys2ys1

gts

sum2

fold

map map

filter

sum1

fold

gts

Figure 1. Clusterings for normalize2 example: with stream fusion; our system; best imperative system

2. Combinator Normal Form
Input programs are expressed in Combinator Normal Form (CNF),
which is a textual description of the data flow graph. The grammar
for CNF is given in Figure 2. The normalize2 example on the
previous page is in CNF, as is the matching data flow graph for
normalize2 in Figure 1. Our data flow graphs are similar to Loop
Communication Graphs (LCGs) from related work in imperative
array fusion [8]. We name edges after the corresponding variable
from the CNF form, and edges which are fusion preventing are
drawn with a dash through them (as per the edge labeled sum1 in
Figure 1). In data flow graphs, we tend to elide the worker functions
to combinators when they are not important to the discussion — so
we don’t show the (+) operator on each use of fold.

Clusters of operators that are fused into single imperative loops
are indicated by dotted lines, and we highlight materialized arrays
by drawing them in boxes. In Figure 1, the variables xs, ys1 and
ys2 are always in boxes, as these are the material input and output
arrays of the program. However, in the graph on the far right hand
side, gts has also been materialized because in this version, the
producing and consuming operators (filter and fold) have not
been fused. In Figure 2, note that the bindings have been split into
those that produce scalar values (sbind), and those that produce
array values (abind). These groupings are represented as open and
closed arrow-heads in Figure 1.

Most of our array combinators are standard, and suggestive
types are given at the bottom of Figure 2. The mapn combinator
takes a worker function, n arrays of the same length, and applies
the worker function to all elements at the same index. As such,
it is similar to Haskell’s zipWith, with an added length restric-
tion on the argument arrays. The generate combinator takes an
array length and a worker function, and creates a new array by ap-
plying the worker to each index. The gather combinator takes an
array of elements, an array of indices, and produces the array of el-
ements that are positioned at each index. In Haskell, this would be
gather arr ixs = map (index arr) ixs. The cross com-
binator returns the cartesian product of two arrays.

The exact form of the worker functions is left unspecified, as it
is not important for the discussion. We assume workers are pure,
can at least compute arithmetic functions of their scalar arguments,
and index into arrays in the environment. We also assume that each
CNF program considered for fusion is embedded in a larger host
program which handles file IO and the like. Workers are addition-
ally restricted so they can only directly reference the scalar vari-
ables bound by the local CNF program, though they may reference
array variables bound by the host program. All access to locally

scalar → (scalar variable)
array → (array variable)
f → (worker function)
fun → f scalar . . .

bind ::= scalar = sbind
| array = abind
| scalar . . . ,array . . . = external scalar . . . array . . .

sbind ::= fold fun array

abind ::= mapn fun arrayn | filter fun array
| generate scalar fun | gather array array
| cross array array

function ::= f scalar . . . array . . . =
let bind . . .
in (scalar . . . , array . . .)

fold : (a→ a→ a)→ Array a→ a
mapn : ({ai→} i←1...n b)→{Array ai→} i←1...n Array b
filter : (a→ Bool)→ Array a→ Array a
generate : Nat→ (Nat→ a)→ Array a
gather : Array a→ Array Nat→ Array a
cross : Array a→ Array b → Array (a,b)

Figure 2. Combinator normal form

bound array variables is via the formal parameters of array combi-
nators, which ensures that all data dependencies we need to con-
sider for fusion are explicit in the data flow graph.

The external binding invokes a host library function that can
produce and consume arrays, but not be fused with other combina-
tors. All arrays passed to, and returned from host functions are fully
materialised. External bindings are explicit fusion barriers, which
force arrays and scalars to be fully computed before continuing.

Finally, note that filter is only one representative size chang-
ing operator. We can handle more complex functions such as
unfold in our framework, but we stick with simple filtering to
aid the discussion.

3. Size Inference
Before performing fusion proper, we must infer the relative sizes of
each array in the program. We achieve this with a simple constraint
based inference algorithm, which we discuss in this section. Size

2 2014/5/16

Size Type τ ::= k (size variable)
| τ× τ (cross product)

Size Constraint C ::= true (trivially true)
| k = τ (equality constraint)
| C∧C (conjunction)

Size Scheme σ ::= ∀k. ∃k. (x : τ)→ (x : τ)

Figure 3. Sizes, Constraints and Schemes

inference has been previously described in the context of array
fusion by Chatterjee [4]. In constrast to our algorithm, [4] does not
support size changing functions such as filter. If size inference fails,
the programs may still be compiled, but fusion is not performed.

Although our constraint based formulation of size inference is
reminiscent of type inference for HM(X) [14], there are important
differences. Firstly, our type schemes include existential quanti-
fiers, which express the fact that the sizes of arrays produced by
filter operations are unknown in general. This is also the case for
generate, where the result size is data dependent. HM(X) style
type inferences use the ∃ quantifier to bind local type variables
in constraints, and existential quantifiers do not appear in type
schemes. Secondly, our types are first order only, as program graphs
cannot take other program graphs as arguments. Provided we gen-
erate the constraints in the correct form, solving them is straight-
forward.

3.1 Size Types, Constraints and Schemes
Figure 3 shows the grammar for size types, constraints and schemes.
A size scheme is like a type constraint from Hindley-Milner type
systems, except that it only mentions the size of each input array,
instead of the element types as well.

A size may either be a variable k or a cross product of two sizes.
We use the latter to represent the result size of the cross operator
discussed in the previous section. Constraints maybe either be
trivially true, an equality k = τ , or a conjunction of two constraints
C ∧C. We refer to the trivially true and equality constraints as
atomic constraints. Size schemes relate the sizes of each input and
output array. For example, the size scheme for the normalize2
example from Figure 1 is as follows:

normalize2 :s ∀k.(xs : k)→ (ys1 : k, ys2 : k)

We write :s to distinguish size schemes from type schemes.
The existential quantifier appears in size schemes when the

array produced by a filter or similar operator appears in the result.
For example:

filterLeft :s ∀k1.∃k2.(xs : k1) → (ys1 : k1, ys2 : k2)
filterLeft xs

= let ys1 = map (+ 1) xs
ys2 = filter even xs

in (ys1, ys2)

The size scheme of filterLeft shows that it works for input
arrays of all sizes. The first result array has the same size as the
input, and the second has some unrelated size.

Finally, note that size schemes form but one aspect of the type
information that would be expressible in a full dependently typed
language. For example, in Coq or Agda we could write something
like:

filterLeft : ∀k1 :Nat.∃k2 :Nat.
Array k1 Float → (Array k1 Float, Array k2 Float)

However, the type inference systems for fully higher order depen-
dently typed languages typically require quantified types to be pro-

vided by the user, and do not perform the type generalization pro-
cess. In our situation, we need automatic type generalization, but
for a first order language only.

3.2 Constraint Generation
The rules for constraint generation are shown in Figure 4. The top
level judgment function :s σ assigns a size scheme to a function.
It does this by extracting size constraints and then solving them.
This rule, along with the constraint solving process is discussed
in the next section. The judgment Γ1 | zs ` b Γ2 ` C
reads: “Under environment Γ1, array variable zs binds the result of
b, producing a result environment Γ2 and size constraints C”. The
remaining judgment that extracts constraints from a list of bindings
is similar. The environment Γ has the following grammar:

Γ ::= · | Γ, Γ | zs : k | k | ∃k

As usual, · represents the empty environment and Γ, Γ environ-
ment concatenation. The element zs : k records the size k of some
array variable zs. A plain k indicates that k can be unified with other
size types when solving constraints, whereas ∃k indicates a rigid
size variable that cannot be unified with other sizes. We use the ∃k
syntax because this variable will also be existentially quantified if
it appears in the size scheme of the overall function.

Note that the constraints are generated in a specific form, to
facilitate the constraint solving process. For each array variable in
the program, we generate a new size variable, like size kzs for array
variable zs. These new size variables always appear on the left of
atomic equality constraints. For each array binding we may also
introduce unification or rigid variables, and these appear on the
right of atomic equality constraints.

For example, the final environment and constraints generated
for the normalize2 example from Section 1 are as follows:

x : kxs, gts : kgts, ∃k1, k2, k3
` true ∧ kgts = k1 ∧ true

∧ kxs = k2 ∧ kys1 = k2 ∧ kxs = k3 ∧ kys2 = k3

Rule (SFun) also characterises the functions we accept: A function
is valid if and only if ∃σ . function :s σ .

3.3 Constraint Solving and Generalization
The top-level rule in Figure 4 assigns a size scheme to a function
by first extracting size constraints, before solving them and gener-
alizing the result. In the rule, the solving process is indicated by
SOLVE, and takes an environment and a constraint set, and pro-
duces a solved environment and constraint set. As the constraint
solving process is both standard and straightforward, we only de-
scribe it informally.

Recall from the previous section that in our generated con-
straints all the size variables named after program variables are on
the left of atomic equality constraints, while all the unification and
existential variables are on the right. To solve the constraints, we
keep finding pairs of atomic equality constraints where the same
variable appears on the left, unify the right of both of these con-
straints, and apply the resulting substitution to both the environ-
ment and original constraints. When there are no more pairs of
constraints with the same variable on the left, the constraints are
in solved form and we are finished.

During constraint solving, all unification variables occuring in
the environment can have other sizes substituted for them. In con-
trast, the rigid variables marked by the ∃ symbol cannot. For exam-
ple, consider the constraints for normalize2 mentioned before:

x : kxs, gts : kgts, ∃k1, k2, k3
` true ∧ kgts = k1 ∧ true

∧ kxs = k2 ∧ kys1 = k2 ∧ kxs = k3 ∧ kys2 = k3

3 2014/5/16

Note that kxs is mentioned twice on the right of an atomic
equality constraint, so we can substitute k2 for k3. Eliminating the
duplicates, as well as the trivially true terms then yields:

x : kxs, gts : kgts, ∃k1, k2
` kgts = k1 ∧ kxs = k2 ∧ kys1 = k2 ∧ kys2 = k2

To produce the final size scheme, we look up the sizes of
the input and output variables of the original function from the
solved constraints and generalize appropriately. This process is
determined by the top-level rule in Figure 4. In this case, no rigid
size variables appear in the result, so we can universally quantify
all size variables.

normalize2 :s ∀k.(xs : k)→ (ys1 : k, ys2 : k)

3.4 Rigid Sizes
When the environment of our size constraints contains rigid vari-
ables (indicated by ∃k), we introduce existential quantifiers in-
stead of universal quantifiers into the size scheme. Consider the
filterLeft function from Section 3.1

filterLeft xs
= let ys1 = map (+ 1) xs

ys2 = filter even xs
in (ys1, ys2)

The size constraints for this function, already in solved form, are as
follows.

xs : kxs, ys1 : kys1, ∃k1, ys2 : kys2, k2
` kys1 = k1 ∧ kys2 = k2 ∧ kxs = k2

As variable k2 is marked as rigid, we introduce an existential
quantifier for it, producing the size scheme stated earlier:

filterLeft :s ∀k1.∃k2.(xs : k1) → (ys1 : k1, ys2 : k2)

Note that, although Rule (SFun) from Figure 4 performs a
generalisation process, there is no corresponding instantiation rule.
The size inference process works on the entire graph at a time, and
there is no mechanism for one operator to invoke another. To say
this another way, all subgraphs are fully inlined. Recall from §2,
that we assume our operator graphs are embedded in a larger host
program. We use size information to guide the clustering process,
and although the host program can certainly call the operator graph,
static size information does not flow across this boundary.

When producing size schemes, we do not permit the arguments
of an operator graph to have existentially quantified sizes. This
restriction is necessary to reject programs that we cannot statically
guarantee will be well sized. For example:

bad1 xs = let flt = filter p xs
ys = map2 f flt xs

in ys

The above function filters its input array, and then applies map2
to the filtered version as well as the original array. As the map2
operators requires both of its arguments to have the same size, bad1
would only be valid when the predicate p is always true. The size
constraints are as follows:

xs : kxs, f lt : k f lt , ∃k1, ys : kys, k2
` k f lt = k1 ∧ k f lt = k2 ∧ kxs = k2 ∧ kys = k2

Solving this then yields:

xs : kxs, f lt : k f lt , ∃k1, ys : kys, k1
` k f lt = k1 ∧ kxs = k1 ∧ kys = k1

In this case, Rule (SFun) does not apply, because the parameter
variable xs has size k1, but k1 is marked as rigid in the environment
(with ∃k1).

As a final example, the following function is ill-sized, because
the two filter operators are not guaranteed to produce the same
number of elements.

bad2 xs = let as = filter p1 xs
bs = filter p2 xs
ys = map2 f as bs

in ys

The initial size constraints for this function are:
xs : kxs, as : kas, ∃k1, bs : kbs, ∃k2, ys : kys, k3

` kas = k1 ∧ kbs = k2 ∧ kas = k3 ∧ kbs = k3 ∧ kys = k3

To solve these, we note that kas is used twice on the left of an
atomic equality constraint, so we substitute k1 for k3:

xs : kxs, as : kas, ∃k1, bs : kbs, ∃k2, ys : kys, k1
` kas = k1 ∧ kbs = k2 ∧ kbs = k1 ∧ kys = k1

At this stage we are stuck, because the constraints are not yet in
solved form, and we cannot simplify them further. Both k1 and k2
are marked as rigid, so we cannot substitute one for the other and
produce a single atomic constraint for kbs.

3.5 Iteration Size
After inferring the size of each array variable, each operator is
assigned an iteration size, which is the number of iterations needed
in the loop which evaluates that operator. For filter and other
size changing operators, the iteration and result sizes are in general
different. For such an operator, we say that the result size is a
descendant of the iteration size. Conversely, the iteration size is
a parent of the result size.

This descendant–parent size relation is transitive, so if we filter
an array, then filter it again, the size of the result is a descendant
of the iteration size of the initial filter. This relation arises naturally
from Data Flow Fusion [12], as such an operation would be com-
piled into a single loop — with an iteration size identical to the
size of the input array, and containing two nested if-expressions to
perform the two layers of filtering.

Iteration sizes are used to decide which operators can be fused
with each other. As in prior work, operators with the same iteration
size can be fused. However, in our system we also allow operators
of different iteration sizes to be fused, provided those sizes are
descendants of the same parent size.

We use T to range over iteration sizes, and write ⊥ for the
case where the iteration size is unknown. The ⊥ size is needed to
handle the external operator, as we cannot statically infer its true
iteration size, and it cannot be fused with any other operator.

Iteration Size T ::= τ (known size)
| ⊥ (unknown size)

Once the size constraints have been solved, we can use the
following function to compute the iteration size of each binding.
In the definition, we use the syntax Γ(xs) to find the xs : k element
in the environment Γ and return the associated size k. Similarly, we
use the syntax C(k) to find the corresponding k = τ constraint in C
and return the associated size type τ .

iterΓ,C : bind→ T

iterΓ,C | (z = fold f xs) = C(Γ(xs))
| (ys = mapn f xs) = C(Γ(ys))
| (ys = filter f xs) = C(Γ(xs))
| (ys = generate s f) = C(Γ(ys))
| (ys = gather is xs) = C(Γ(is))
| (ys = cross as bs) = C(Γ(as))×C(Γ(bs))
| (ys = external xs) = ⊥

4 2014/5/16

function :s σ

{ki, xsi : ki}i←1..n ` let bs in {ys j} j←1..m Γ[ys j : k′j]
j←1..m ` C

(Γ′, C′) = SOLVE(Γ, C) {ki = si}i←1..n ∈C′ {k′j = t j} j←1..m ∈C′

ka = {k | k ∈ Γ′} ∩ (
⋃

i←1..n fv(si)) ke = {k | ∃k ∈ Γ′} ∩ (
⋃

j←1..m fv(t j)) {∃k /∈ Γ |
⋃

i←1..n fv(si)}
f {xs}i←1..n = let bs in {ys} j←1..m :s ∀ka. ∃ke. ({xsi : si}i←1..n)→ ({ys j : t j} j←1..m)

(SFun)

Γ ` lets Γ ` C

Γ ` let · in exp Γ ` true (SNil) Γ1 | zs ` b Γ2 ` C1 Γ2 ` let bs in exp Γ3 ` C2
Γ1 ` let zs = b ; bs in exp Γ3 ` C1∧C2

(SCons)

Γ | z ` bind Γ ` C

Γ[xsi : ki]
i←1..n | zs ` mapn f {xsi}i←1..n Γ, zs : kzs, k′ `

∧
i←1..n{ki = k′} ∧ kzs = k′

Γ | zs ` filter f xs Γ, zs : kzs, ∃k′ ` kzs = k′

Γ | x ` fold f xs Γ ` true

Γ | zs ` generate s f Γ, zs : kzs, ∃k′ ` kzs = k′

Γ[is : kis] | zs ` gather xs is Γ, zs : kzs, k′ ` kzs = k′, kis = k′

Γ[xs : kxs, ys : kys] | zs ` cross xs ys Γ, zs : kzs, k′, k′′ ` kzs = k′× k′′ ∧ kxs = k′ ∧ kys = k′′

Γ | zs ` external {xs}i←1..n Γ, zs : kzs, ∃k′ ` kzs = k′

Figure 4. Constraint Generation

3.6 Transducers
We define the concept of transducers as combinators having a dif-
ferent output size to their iteration size. As with any other combi-
nator, a transducer may fuse with other nodes of the same iteration
size, but transducers may also fuse with nodes having iteration size
the same as the transducer’s output size. For our set of combinators,
the only transducer is filter.

Looking back at the normalize2 example, the iteration sizes
of the combinators of gts and sum1 are both kxs. The iteration size
of sum2 is kgts, and the filter combinator which produces gts is a
transducer from kxs to kgts. Even though kgts is not equal to kxs, the
three nodes gts, sum1 and sum2 can all be fused together.

We now define a function trans, to find the parent transducer a
combinator application. Since each name is bound to at most one
combinator, we abuse terminology here slightly and write combi-
nator n when refering to the combinator occuring in the binding
of the name n. The parent transducer trans(bs,n) of a combinator
n has the same output size as n’s iteration size, but the two have
different iteration sizes.

trans : binds→ name→{name}
trans(bs,o)

| o = filter f n ∈ bs = trans′(bs,n)
| otherwise = trans′(bs,o)

trans′(bs,o)
| o = fold f n ∈ bs = /0
| o = mapn f ns ∈ bs =

⋃
x∈ns trans(bs,x)

| o = filter f n ∈ bs = {o}
| o = generate s f ∈ bs = /0
| o = gather i d ∈ bs = trans(bs, i)
| o = cross a b ∈ bs = /0
| o = external ins ∈ bs = /0

To determine whether two combinators of different iteration
sizes may be fused together, we first find parent or ancestor trans-
ducers of the same size, if they exist:

parents : binds→ name→ name→{name×name}
parents(bs,a,b)

| iterΓ,C(bs(a)) == iterΓ,C(bs(b))
= {(a,b)}

| otherwise
= {parents(bs,a′,b) | a′ ∈ trans(bs,a)}
∪ {parents(bs,a,b′) | b′ ∈ trans(bs,b)}

Two combinators a and b of different size may be fused together
only if they have parents (c,d) ∈ parents(a,b), and the combi-
nators and their parents are also fused together. That is, in order
for a and b to be fused together, c and d must be fused, a and c
must be fused, and d and b must be fused. In the previous exam-
ple, sum1 and sum2 have different iteration size, and their parents
are parents(sum1,sum2) = {(sum1,gts)}). In order for sum1 and
sum2 to be fused together, sum1 and gts must be fused, sum1 and
sum1 must be fused, and gts and sum2 must be fused. Now we
can express the restriction on programs we view as valid for our
transformation more formally:

Lemma: sole transducers. If a function f is valid, then its
bindings will have at most one transducer:

∀ f ,σ ,n. f :s σ =⇒ |trans(binds(f),n)| ≤ 1

Lemma: sole parents. For some bindings f with valid con-
straints, each pair of names a and b will have at most one pair of
parents parents(a,b).

∀ f ,σ ,a,b. f :s σ =⇒ |parents(binds(f),a,b)| ≤ 1

These two lemmas are used in the integer linear programming
formulation, when constructing the program. When fusing two
nodes of different iteration size, at most one pair of parents will
need to be checked.

5 2014/5/16

sum1

fold

xs

map

map

ys

incs

fold

xs

map

map

ys

sum1
incs

Figure 5. Possible clusterings for normalizeInc

4. Integer Linear Programming
It is usually possible to cluster a program graph in multiple ways.
For example, consider the following simple function:

normalizeInc :: Array Int -> Array Int
normalizeInc xs
= let incs = map (+1) us

sum1 = fold (+) 0 us
ys = map (/ sum) incs

in ys

Two possible clusterings are shown in Figure 5. One option is
to compute sum1 first and fuse the computation of incs and ys.
Another option is to fuse the computation of incs and sum1 into a
single loop, then compute ys separately. A third option (not shown)
is to compute all results separately, and not perform any fusion.

Which option is better? On current hardware we generally ex-
pect the cost of memory access to dominate runtime. The first clus-
tering in Figure 5 requires two reads from array xs and one write
to array ys. The second requires a single fused read from xs, one
write to incs, a read back from incs and a final write to ys. From
the size constraints of the program we know that all intermediate
arrays have the same size, so we expect the first clustering will pe-
form better as it only needs three array accesses instead of four.

For small programs such as normalizeInc it is possible to
naively enumerate all possible clusterings, select just those that
are valid with respect to fusion preventing edges, and chose the
one that maximises a cost metric such as the number of array ac-
cesses needed. However, as the program size increases the number
of possible clusterings becomes too large to naively enumerate. For
example, Pouchet et al [15] present a fusion system using the poly-
hedral model [16] and report that some simple numeric programs
have over 40,000 possible clusterings, with one particular example
having 1012.

To deal with the combinatorial explosion in the number of po-
tential clusterings, we instead use an Integer Linear Programming
(ILP) formulation. ILP problems are defined as a set of variables, an
objective linear function and a set of linear constraints. The integer
linear solver finds an assignment to the variables that minimises the
objective function, while satisfying all constraints. For the cluster-
ing problem we express our constraints regarding fusion preventing
edges as linear constraints on the ILP variables, then use the objec-
tive function to encode our cost metric. This general approach was
first fully described by Megiddo and Sarkar [13], and our main con-
tribution is to extend it to work with size changing operators such
as filter.

nodes : function→V
edges : function→ E
edge : {bind}×bind→ E
inedge : {bind}×name×name→ E

nodes(bs) = {(name(b), iterΓ,C(b))|b ∈ bs}

edges(bs) =
⋃

b∈bs edge(bs,b)

edge(bs,out = fold f in)
= {inedge(bs,out,s)|s ∈ f v(f)}∪{inedge(bs,out, in)}

edge(bs,out = map f in)
= {inedge(bs,out,s)|s ∈ f v(f)}∪{inedge(bs,out, in)}

edge(bs,out = filter f in)
= {inedge(bs,out,s)|s ∈ f v(f)}∪{inedge(bs,out, in)}

edge(bs,out = gather data indices)
= {(out,data, fusion-preventing)}∪{inedge(bs,out, indices)}

edge(bs,out = cross a b)
= {inedge(bs,out,a)}∪{(out,b, fusion-preventing)}

edge(bs,outs = external ins)
= {(outs, i, fusion-preventing)|i ∈ ins}

inedge(bs, to, from)
| (from = fold f s) ∈ bs
= (to, from, fusion-preventing)
| (outs = external . . .) ∈ bs∧ from ∈ outs
= (to,outs, fusion-preventing)
| otherwise
= (to, from, fusible)

Figure 6. Dependency Graphs from Programs

4.1 Dependency Graphs
A dependency graph represents the data dependencies of the pro-
gram to be fused, and we use it as an intermediate stage when
producing linear constraints for the ILP problem. The dependency
graph contains enough information to determine the possible clus-
terings of the input program, while abstracting away from the exact
operators used to compute each intermediate array. The rules for
producing a dependency graphs are in Figure 6.

Each binding in the source program becomes a node in the de-
pendency graph. For each intermediate variable, we add a directed
edge from the binding that produces a value to all bindings that
consume it. Each edge is also marked as either fusible or fusion
preventing. Fusion preventing edges are used when the producer
must finish its execution before the consumer node can start. For
example, a fold operation must complete execution before it can
produce the scalar value needed by its consumers. Conversely, the
map operation produces an output value for each value it consumes,
so is marked as fusible.

The gather operation is a hybrid: it takes an indices array
and an elements array, and for each element in the indices array
returns the corresponding data element. This means that gather can
be fused with the operation that produces its indices, but not the
operation that produces its elements — because those are accessed
in a random-access manner.

4.2 ILP Variables
After generating the dependency graph, the next step is to produce
a set of linear constraints from this graph. The variables involved
in these constraints are split into three groups:

x : node×node → B

6 2014/5/16

For each pair of nodes with indices i and j we use a boolean
variable xi, j which indicates whether those two nodes are fused.
We use xi, j = 0 when the nodes are fused and xi, j = 1 when they
are not. Using 0 for the fused case means that the objective function
can be a weighted function of the xi, j variables, and minimizing it
tends to increase the number of nodes that are fused. The values of
these variables are used to construct the final clustering, such that
∀i, j. xi, j = 0 ⇐⇒ cluster(i) = cluster(j).

π : node → R

The second group of variables is used to ensure that the clustering
is acyclic. This means that for each node in the graph, the depen-
dencies of that node can be executed before the node itself. For
each node i, we associate a real πi such that every node j that de-
pends on i we have π j > πi. Our linear constraints will ensure that
if two nodes are fused into the same cluster then their π values will
be identical — though nodes in different clusters can also have the
same π value. Here is an example of a cyclic clustering:

cycle xs = let ys = map (+1) xs (C1)
sum = fold ys (C2)
zs = map (+sum) ys (C1)

in zs

There is no fusion-preventing edge directly between the xs and zs
bindings, but there is a fusion-preventing edge between sum and
zs. If the xs and zs bindings were in the same cluster C1 and sum
was in cluster C2, there would be a dependency cycle between C1
and C2, and neither could be executed before the other.

c : node → B

The final group of variables is used to help define the cost model
encoded by the objective function. Each node is assigned a variable
ci that indicates whether the array the associated binding produces
is fully contracted. When an array is fully contracted it means that
all consumers of that array are fused into the same cluster, so we
have ci = 0 ⇐⇒ ∀(i′, j) ∈ E. i = i′ =⇒ xi, j = 0. In the final
program, each successive element of a fully contracted array can
be stored in a scalar register, rather than requiring an array register
or memory storage.

4.3 Linear Constraints
The constraints we place on the ILP variables are split into four
groups: constraints that ensure the clustering is acyclic; constraints
that encode fusion preventing edges; constraints on nodes with
different iteration sizes, and constraints involving array contraction.

Acyclic and precedence-preserving The first group of constraints
ensures that the clustering is acyclic:

xi, j≤ π j−πi≤ N · xi, j (with an edge from i to j)
−N · xi, j≤ π j−πi≤ N · xi, j (with no edge from i to j)

As per Megiddo [13] the form of these constraints is determined by
whether there is an dependency between nodes i and j. The N value
is set to the total number of nodes in the graph.

If there is an edge from node i to j we use the first constraint
form shown above. If the two nodes are fused into the same cluster
then we have xi, j = 0. In this case the constraint simplifies to 0 ≤
π j−πi ≤ 0, which forces πi = π j. If the two nodes are in different
clusters then the constraint instead simplifies to 1 ≤ π j − πi ≤ N.
This means that the difference between the two πs must be at
least 1, and less than N. Since there are N nodes, the maximum
difference between any two πs would be at most N, so the upper
bound of N is large enough to be safely ignored. This means the
constraint can roughly be translated to πi < π j, which enforces the
acyclicity constraint.

If instead there is no edge from node i to j then we use the
second constraint form above. As before, if the two nodes are fused
into the same cluster then we have xi, j = 0, which forces πi = π j.
If the nodes are in different clusters then the constraint simplifies
to −N ≤ π j−πi ≤ N, which effectively puts no constraint on the π

values.

Fusion-preventing edges As per Megiddo [13], if there is a fu-
sion preventing edge between two nodes we add a constraint to
ensure the nodes will be placed in different clusters.

xi, j = 1
(for fusion-preventing edges from i to j)

When combined with the precedence-preserving constraints earlier,
setting xi, j = 1 also forces πi < π j .

Fusion between different iteration sizes This group of con-
straints restricts which nodes can be placed in the same cluster
based on their iteration size. The group has three parts. Firstly, ei-
ther of the two nodes connected by an edge have an unknown (⊥)
iteration size then they cannot be fused and we set xi, j = 1:

xi, j = 1
(if iterΓ,C(i) =⊥ ∨ iterΓ,C(j) =⊥)

Secondly, if the two nodes have different iteration sizes and no
common parent then they also cannot be fused and we set xi, j = 1:

xi, j = 1
(if iterΓ,C(i) 6= iterΓ,C(j) ∧ parents(i, j) = /0)

Finally, if the two nodes had different iteration sizes but do have
parent transducers of the same size, then the two nodes can be
fused if they are fused with their respective parents, and the parents
themselves are fused:

xa,A ≤ xa,b
xb,B ≤ xa,b
xA,B ≤ xa,b
(if iterΓ,C(a) 6= iterΓ,C(b) ∧ parents(a,b) = {(A,B)})

This last part is the main difference to existing ILP solutions: we
allow nodes with different iteration sizes to be fused when their
parent transducers are fused. The actual constraints encode a “no
more fused than” relationship. For example xa,A ≤ xa,b means that
nodes a and b can be no more fused than nodes a and A.

As a simple example, consider fusing an operation on filtered
data with its generating filter:

sum1 = fold (+) 0 xs
gts = filter (>0) xs
sum2 = fold (+) 0 gts

Here sum1 and sum2 have different iteration sizes and we have that
parents(sum1,sum2) = {(sum1,gts)}. This means that sum1 and
sum2 may only be fused if sum1 is fused with sum1 (trivial), sum2
is fused with gts, and sum1 is fused with gts.

Array contraction The final group of constraints gives meaning
to the c variables that we use to represent whether an array is fully
contracted:

xi, j ≤ ci
(for all edges from i)

Recall that an array is fully contracted when all of the consumers
are fused with the nodes that produces it, which means that the
array does not need to be fully materialized in memory. As per
Darte’s work on array contraction [7], we define a variable ci for
each array, and the constraint above ensures that ci = 0 only if
∀(i′, j) ∈ E. i = i′ =⇒ xi, j = 0. By minimizing ci in the objective

7 2014/5/16

function, we favor solutions that reduce the number of intermediate
arrays.

4.4 Objective Function
The objective function defines the cost model of the program, and
the ILP solver will find the clustering that minimizes this function
while satisfying the constraints defined in the previous section. The
cost model we use in this paper has three components:

• the number of array reads and writes — an abstraction of the
amount of memory bandwidth needed by the program;

• the number of intermediate arrays — an abstraction of the
amount of intermediate memory needed;

• the number of distinct clusters — an abstraction of the cost of
loop management instructions, which maintain loop counters
and the like.

The three components of the cost model are a heuristic abstraction
of the true cost of executing the program on current hardware. They
are ranked in order of importance — so we prefer to minimize the
number of array reads and writes over the number of intermediate
arrays, and to minimize the number of intermediate arrays over the
number of clusters. However, minimizing one component does not
necessarily minimize any other. For example, as the fused program
executes multiple array operations at the same time, in some cases
the clustering that requires the least number of array reads and
writes uses more intermediate arrays than strictly necessary.

We encode the ordering of the components of the cost model
as different weights in the objective function. First, note that if the
program graph contains N combinators (nodes) then there are at
most N opportunities for fusion. We then encode the relative cost
of loop overhead as weight 1, the cost of an intermediate array as
weight N, and the cost of an array read or write as weight N2. This
ensures that no amount of loop overhead reduction can outweigh
the benefit of removing an intermediate array, and likewise no
number of removed intermediate arrays can outweigh a reduction
in the number of array reads or writes. The integer linear program
including the objective function is as follows:

Minimise Σ(i, j)∈EWi, j · xi, j
(memory traffic and loop overhead)

+ Σi∈V N · ci
(removing intermediate arrays)

Subject to . . . constraints from §4.3 . . .
Where

Wi, j = N2 | (i, j) ∈ E
(fusing i and j will reduce memory traffic)

Wi, j = N2 | ∃k.(k, i) ∈ E ∧ (k, j) ∈ E
(i and j share an input array)

Wi, j = 1 | otherwise
(the only benefit is loop overhead)

N = |V |

4.5 Fusion-preventing Path Optimisation
The integer linear program defined in the previous section includes
more constraints than strictly necessary to define the valid clus-
terings. If two nodes have a path between them which includes a
fusion preventing edge, then we know up front that they must be
placed in different clusters. The following function possible(a,b)
determines whether there is any possibility that the two nodes a
and b can be fused. Similarly the function possible′(a,b) checks
whether there is any possibility that the parents of a and b may be
fused.

possible : name×name→ B
possible(a,b)

= ∀p ∈ path(a,b)∪ path(b,a). fusion-preventing 6∈ p

possible′ : name×name→ B
possible′(a,b)

= ∃A,B. parents(a,b) = {A,B}∧ possible(a,b)
∧ possible(A,a)∧ possible(B,b)∧ possible(A,B)

With possible and possible′ defined, we refine our formulation to
only generate constraints between two nodes if there is a chance
they may be fused together. Doing this reduces the total number of
constraints, and makes the job of the ILP solver easier. The final
formulation of the integer linear program follows.

Minimise Σ(i, j)∈EWi, j · xi, j +Σi∈V N · ci
(if possible(i, j))

Subject to −N · xi, j ≤ π j−πi ≤ N · xi, j
(if possible(i, j)∧ (i, j) 6∈ E ∧ (j, i) 6∈ E)

xi, j ≤ π j−πi ≤ N · xi, j
(if possible(i, j)∧ (i, j, fusible) ∈ E)

πi < π j
(if (i, j, fusion-preventing) ∈ E)

xi, j ≤ ci
(if (i, j, fusible) ∈ E)
ci = 1
(if (i, j, fusion-preventing) ∈ E)

xi, j = 1
(if ⊥ ∈ {iterΓ,C(i), iterΓ,C(j)})
xi′,i ≤ xi, j
x j′, j ≤ xi, j
xi′, j′ ≤ xi, j
(if iterΓ,C(i) 6= iterΓ,C(j)∧ possible′(i, j)

∧ parents(i, j) = {(i′, j′)})
xi, j = 1
(if iterΓ,C(i) 6= iterΓ,C(j)∧¬possible′(i, j))

Where Wi j = N2 | (i, j) ∈ E
(fusing i and j will reduce memory traffic)

Wi j = N2 | ∃k.(k, i) ∈ E ∧ (k, j) ∈ E
(i and j share an input array)

Wi j = 1 | otherwise
(the only benefit is loop overhead)

N = |V |

5. Benchmarks
This section discusses three representative benchmarks, and gives
the full ILP program of the first. These benchmarks highlight the
main differences between our fusion mechanism and related work.
The runtimes of each benchmark are summarized in Figure 7. We
report times for: the unfused case where each operator is assigned
to its own cluster; the clustering implied by stream fusion [5]; the
clustering chosen by Megiddo [13], and the clustering chosen by
our system.

For each benchmark we report the runtimes of hand-fused C
code based on the clustering determined by each algorithm. Al-
though we also have an implementation of our Data Flow Fusion
system in terms of a GHC plugin [12], we report on hand-fused C
code to provide a fair comparison to related work. As mentioned
in [12], the current Haskell stream fusion mechanism introduces
overhead in terms of a large number of duplicate loop counters,
which increases register pressure unnecessarily. Hand fusing all
code and compiling it with the same compiler (GCC) isolates the

8 2014/5/16

Unfused Stream Megiddo Ours
Time Loops Time Loops Time Loops Time Loops

Normalize2 1.88s 5 1.64s 4 1.82s 3 1.59s 2
Closest points 3.83s 6 3.33s 5 2.92s 3 2.92s 3
QuadTree 5.22s 8 5.22s 8 4.72s 2 4.72s 2

Figure 7. Benchmark results

true cost of the various clusterings from low level differences in
code generation.

The benchmark programs are at https://github.com/amosr/
papers/tree/master/2014betterfusionforfilters/benches.

5.1 Normalize2
To demonstrate the ILP formulation we will use the normalize2
example from §1, repeated here:

normalize2 :: Array Int -> Array Int
normalize2 xs
= let sum1 = fold (+) 0 xs

gts = filter (> 0) xs
sum2 = fold (+) 0 gts
ys1 = map (/ sum1) xs
ys2 = map (/ sum2) xs

in (ys1, ys2)

We use the final ILP formulation from §4.5. First, we calculate
possible – that is, the nodes which have no fusion-preventing path
between them.

{{sum1,gts,sum2},{sum1,ys2},{gts,sum2,ys1},{ys1,ys2}}
The complete ILP program is shown below. Note that in the

objective function the weights for xsum1,sum2 and xsum2,ys1 are both
only 1, because they do not share any input arrays.

Minimise 25 · xsum1,gts +1 · xsum1,sum2 +25 · xsum1,ys2+
25 · xgts,sum2 +25 · xgts,ys1 +1 · xsum2,ys1+
25 · xys1,ys2 +5 · cgts +5 · cys1 +5 · cys2

Subject to −5 · xsum1,gts ≤ πgts−πsum1 ≤ 5 · xsum1,gts
−5 · xsum1,sum2 ≤ πsum2−πsum1 ≤ 5 · xsum1,sum2
−5 · xsum1,ys2 ≤ πys2−πsum1 ≤ 5 · xsum1,ys2
−5 · xgts,ys1 ≤ πys1−πgts ≤ 5 · xgts,ys1
−5 · xsum2,ys1 ≤ πys1−πsum2 ≤ 5 · xsum2,ys1
−5 · xys1,ys2 ≤ πys2−πys1 ≤ 5 · xys1,ys2

xgts,sum2 ≤ πsum2−πgts ≤ 5 · xgts,sum2

πsum1 < πys1
πsum2 < πys2

xgts,sum2 ≤ cgts

xgts,sum2 ≤ xsum1,sum2
xsum1,sum1 ≤ xsum1,sum2
xsum1,gts ≤ xsum1,sum2

One minimal solution to this is:

xsum1,gts, xsum1,sum1, xsum1,sum2, xgts,sum2, xys1,ys2 = 0
xsum1,ys2, xgts,ys1, xsum2,ys1 = 1

πsum1, πgts, πsum2 = 0
πys1, πys2 = 1

cgts, cys1, cys2 = 0

This minimal solution is not unique, though in this case the only
other minimal solutions use different π values, and denote the same
clustering. Looking at just the non-zero variables in the objective
function, the value is 25 ·xsum1,ys2 +25 ·xgts,ys1 +1 ·xsum2,ys1 = 51.

For illustrative purposes, note that objective function could be
reduced by setting xsum1,ys2 = 0 (fusing sum1 and ys1), but this
conflicts with other constraints. Since xsum1,sum2 = 0, we require
πsum1 = πsum2, but also πsum2 < πys2. These constraints cannot be
satisfied, so a clustering that fused sum1 and ys2 would not also
permit sum1 and sum2 to be fused.

We will now compare the clustering produced by our system,
with the one implied by stream fusion. As described in [12], stream
fusion cannot fuse a produced array into multiple consumers, or
fuse operators that are not in a producer-consumer relationship. The
corresponding values of the xi j variables are:

xgts,sum2 = 0
xsum1,gts,xsum1,sum2,xys1,ys2,xsum1,ys2,xgts,ys1,xsum2,ys1 = 1

We can force this clustering to be applied in our integer linear
program by adding the above equations as new constraints. Solving
the resulting program then yields:

πsum1,πgts,πsum2 = 0
πys1,πys2 = 1
cgts,cys1,cys2 = 0

Note that although nodes sum1 and sum2 have equal π values, they
are not fused. Conversely, if two nodes have different π values then
they are never fused.

5.2 Closest Points
The closest points benchmark is a divide-and-conquer algorithm
that finds the closest pair of 2-dimensional points in an array. We
first find the midpoint along the Y-axis, and filter the remaining
points to those above and below the midpoint. We then recursively
find the closest pair of points in the two halves, and merge the
results. As the filtered points are passed directly to the recursive
call, there is no further opportunity to fuse them, and our clustering
is the same as returned by Megiddo’s algorithm. However, our
clustering generates both filtered arrays in a single loop, unlike
stream fusion that requires a separate loop for each.

5.3 QuadTree
The QuadTree benchmark recursively builds a 2-dimensional space
partitioning tree from an array of points. At each step the array
of points is filtered into four 2-dimensional boxes. As with the
closest points algorith, there are no further opportunities for fusing
the filtered results, and our clustering is the same as Megiddo’s.
However, our clustering produces all four filtered results in a single
loop, whereas stream fusion requires four loops.

5.4 QuickHull
The core of the QuickHull algorithm is shown below: given a line
and an array of points, we filter the points to those above the line,
and also find the point farthest from that line.

hull :: (Point,Point) -> Array Point -> Array Point
hull line@(l,r) pts
= let pts’ = filter (above line) pts

ma = fold (maxFrom line) pts’
in (hull (l, ma) pts’) ++ (hull (ma, r) pts’)

9 2014/5/16

https://github.com/amosr/papers/tree/master/2014betterfusionforfilters/benches
https://github.com/amosr/papers/tree/master/2014betterfusionforfilters/benches

Stream fusion cannot fuse the pts’ and ma bindings because
pts’ is referred to multiple times and thus cannot be inlined.
Megiddo’s algorithm also cannot fuse the two bindings because
their iteration sizes are different. If the ma binding was rewritten to
operate over the pts array instead of pts’, Megiddo’s formulation
would be able to fuse the two, and the overall program would give
the same result. However, this performance behavior is counter
intuitive because pts’ is likely to be smaller than pts, so in an
unfused program the original version would be faster. Our system
fuses both versions.

6. Related Work
The idea of using integer linear programming to cluster an operator
graph for array fusion was first fully described by Megiddo and
Sarkar [13] (1999). A simpler formulation, supporting only loops
of the same iteration size, but optimizing for array contraction, was
then described by Darte and Huard [7] (2002). Both algorithms
were developed in the context of imperative languages (Fortran)
and are based around a Loop Dependence Graph (LDG). In a
LDG the nodes represent imperative loops, and the edges indicate
which loops may or may not be fused. Although this work was
developed in a context of imperative programming, the conceptual
framework and algorithms are language agnostic. In earlier work,
Chatterjee [3] (1991) mentioned that ILP can be used to schedule
a data flow graph, though did not give a complete formulation.
Our system extends the prior ILP approaches with support for size
changing operators such as filter.

In the loop fusion literature, the ILP approach is considered “op-
timal” because it can find the clustering that minimizes a global
cost metric. In our case the metric is defined by the objective func-
tion of §4.4. Besides optimal algorithms, there are also heuristic ap-
proaches. For example, Gao, Olsen and Sarkar [8] use the maxflow-
mincut algorithm to try to maximize the number of fused edges in
the LDG. Kennedy [11] describes another greedy approach which
tries to maximize the reuse of intermediate arrays, and Song [17]
tries to reduce memory references.

Darte [6] formalizes the algorithmic complexity of various loop
fusion problems and shows that globally minimizing most useful
cost metrics is NP-complete. Our ILP formulation itself is NP-hard,
though in practice we have not yet found this to be a problem.

Recent literature on array fusion for imperative languages
largely focuses on the polyhedral model. This is an algebraic rep-
resentation imperative loop nests and transformations on them,
including fusion transformations. Polyhedral systems [16] are able
to express all possible distinct loop transformations where the ar-
ray indices, conditionals and loop bounds are affine functions of
the surrounding loop indices. However, the polyhedral model is not
applicable to (or intended for) one dimensional filter-like opera-
tions where the size of the result array depends on the source data.
Recent work extends the polyhedral model to support arbitrary in-
dexing [18], as well as conditional control flow that is predicated
on arbitrary (ie, non-affine) functions of the loop indices [2]. How-
ever, the indices used to write into the destination array must still
be computed with affine functions.

Ultimately, the job of an array fusion system is to make the pro-
gram go as fast as possible on the available hardware. Although the
cost metrics of “optimal” fusion systems try to model the perfor-
mance behavior of this hardware, it is not practical to encode the
intricacies of all available hardware in a single compiler implemen-
tation. Iterative compilation approaches such as [1] instead enumer-
ate many possible clusterings, use a cost metric to rank them, and
perform benchmark runs to identify which clustering actually per-
forms the best. An ILP formulation like ours naturally supports this
model, as the integer constraints define the available clusterings,
and the objective function can be used to rank them.

Acknowledgements
Many thanks are due to Manuel Chakravarty, Robert Clifton-
Everest, Erik de Castro Lopo, Kai Engelhardt, Bill Kroon, Frederik
M. Madsen, Abdallah Saffidine, Carter Schonwald, and Jingling
Xue for enlightening discussions relating to this work.

References
[1] Thomas J. Ashby and Michael F. P. O’Boyle. Iterative collective loop

fusion. In CC: Compiler Construction, 2006.
[2] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Co-

hen, and Cédric Bastoul. The polyhedral model is more widely appli-
cable than you think. In CC: Compiler Construction, 2010.

[3] Siddhartha Chatterjee. Compiling nested data-parallel programs for
shared-memory multiprocessors. TOPLAS: Transactions on Program-
ming Languages and Systems, 15(3), 1993.

[4] Siddhartha Chatterjee, Guy E. Blelloch, and Allan L. Fisher. Size and
access inference for data-parallel programs. In PLDI: Programming
Language Design and Implementation, 1991.

[5] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fu-
sion: from lists to streams to nothing at all. In ICFP: International
Conference on Functional Programming, 2007.

[6] Alain Darte. On the complexity of loop fusion. In PACT: Parallel
Architectures and Compilation Techniques, 1999.

[7] Alain Darte and Guillaume Huard. New results on array contraction.
In ASAP, 2002.

[8] Guang R. Gao, R. Olsen, Vivek Sarkar, and Radhika Thekkath. Col-
lective loop fusion for array contraction. In LCPC: Languages and
Compilers for Parallel Computing, 1992.

[9] Andrew Gill, John Launchbury, and Simon L Peyton Jones. A short
cut to deforestation. In Proceedings of the conference on Functional
programming languages and computer architecture. ACM, 1993.

[10] Gabriele Keller, Manuel M. T. Chakravarty, Roman Leshchinskiy,
Simon L. Peyton Jones, and Ben Lippmeier. Regular, shape-
polymorphic, parallel arrays in Haskell. In ICFP: International Con-
ference on Functional Programming, 2010.

[11] Ken Kennedy. Fast greedy weighted fusion. International Journal of
Parallel Programming, 29(5), 2001.

[12] Ben Lippmeier, Manuel M. T. Chakravarty, Gabriele Keller, and Amos
Robinson. Data flow fusion with series expressions in Haskell. In
Haskell Symposium, 2013.

[13] Nimrod Megiddo and Vivek Sarkar. Optimal weighted loop fusion for
parallel programs. In SPAA: Symposium on Parallel Algorithms and
Architectures, 1997.

[14] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference
with constrained types. TAPOS, 5(1), 1999.

[15] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Co-
hen, J. Ramanujam, and P. Sadayappan. Combined iterative and
model-driven optimization in an automatic parallelization framework.
In SC: High Performance Computing, Networking, Storage and Anal-
ysis, 2010.

[16] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Co-
hen, J. Ramanujam, P. Sadayappan, and Nicolas Vasilache. Loop
transformations: convexity, pruning and optimization. In POPL: Prin-
ciples of Programming Languages, 2011.

[17] Yonghong Song, Rong Xu, Cheng Wang, and Zhiyuan Li. Improving
data locality by array contraction. IEEE Transactions on Computers,
53(9), 2004.

[18] Anand Venkat, Manu Shantharam, Mary W. Hall, and Michelle Mills
Strout. Non-affine extensions to polyhedral code generation. In CGO:
Code Generation and Optimization, 2014.

10 2014/5/16

	Introduction
	Combinator Normal Form
	Size Inference
	Size Types, Constraints and Schemes
	Constraint Generation
	Constraint Solving and Generalization
	Rigid Sizes
	Iteration Size
	Transducers

	Integer Linear Programming
	Dependency Graphs
	ILP Variables
	Linear Constraints
	Objective Function
	Fusion-preventing Path Optimisation

	Benchmarks
	Normalize2
	Closest Points
	QuadTree
	QuickHull

	Related Work

