
Don’t Substitute Into Abstractions
(Functional Pearl)

Ben Lippmeier
Vertigo Technology and

University of New South Wales
benl@ouroborus.net

Abstract
We present a new view on an old solution to the problem of
name capture in the lambda calculus. During reduction, by not
substituting into abstractions we can retain the names present in
the initial expression, and avoid the need to generate new, fresh
names.

1. Introduction
Let’s reduce the following expression:

(λx. λy. add x y) (succ y) five

The free variables are add, succ, five, and the right-most occur-
rence of y. Although this is a simple expression, when we reduce
it we need to manage the fact that y is used as both the name of
a binder (on the left) as well as a free variable (on the right). We
cannot naively substitute our function’s first argument into its body,
as the binding occurrence of y will capture the previously free oc-
currence of y, like so:

β−→ (λy. add (succ y) y) five (wrong)

The standard solution is to rename binders so they do not clash
with the names of free variables, then perform the substitution as
before. The renaming process is called alpha conversion. Doing
this for the initial expression yields:

α−→ (λx. λpurple. add x purple) (succ y) five
β−→ (λpurple. add (succ y) purple) five
β−→ add (succ y) five

Alpha conversion allows us to arrive at the correct answer, but
we are left with the awkward question of where the new names
(like purple) come from. In standard presentations, the new names
are required to be fresh, meaning unused so far in the given re-
duction. However, the process of generating fresh names is usually
delegated to the meta-level, rather than being part of the system

[Copyright notice will appear here once ’preprint’ option is removed.]

defined. This approach is acceptable for pen-and-paper mathemat-
ics, but those of us building compilers and mechanized proofs of
language properties are left in a bind.1

Other approaches to variable binding include using de Bruijn
indices or levels [3], the locally named [4] and nameless [8] ap-
proaches, as well as Higher Order Abstract Syntax (HOAS) [10],
nominal techniques [11], using a pointer based graphical represen-
tation of the program [14], and simply axiomatizing alpha equiva-
lence [7].

However, no one approach seems to be suitable for all applica-
tions: the de Bruijn representations trade intuitive named binders
for unintuitive numbers; locally named and nameless approaches
still need to generate fresh names; HOAS again punts the prob-
lem to the meta-level; nominal techniques require substantial tool
support; pointer based approaches are well suited to concrete im-
plementations but not the abstract definition of language semantics,
and axiomatic techniques work for proof but not for implementa-
tion. In practice, implementations of interpreters and compilers of-
ten use de Bruijn indices, or techniques (or hacks) to generate fresh
names based on global counters [2].

The contribution of this paper is a new view on an old approach
to name capture, which is at once simple, easy to explain, and
limited (meaning targeted) in application. The tragedy of name
capture arises when we substitute an expression into an abstraction,
and the expression being substituted has a free variable with the
same name as the binder. Our solution is to just not do that.

In summary we make the following contributions:

• We present a solution to the name capture problem that allows
us to reduce lambda expressions without the need to generate
fresh names, or rename existing ones.

• The solution allows us to reduce open terms without needing to
separate variables into multiple classes, as in locally named and
nameless approaches.

• Our calculus and its semantics are fully mechanized in Coq, and
we provide a simple interpreter.

Our calculus is named λdsim (lambda don’t substitute into me).
It is related to prior work on explicit substitutions, in particular the
λσw theory of Curien, Hardin and Levy [5]. The main differences
are that we present a standard call-by-value reduction semantics
suitable for an interpreter implementation, and do not need to allow
the explicit substitution to appear everywhere in the term being
reduced.

1 or perhaps without one

1 2016/3/28

2. Don’t Substitute into Abstractions
Starting with the initial expression:

(λx.λy. add x ((λ z. z) y)) (succ y) five (1.1)

We want to apply the left-most function to its first argument,
substituting (succ y) for x in its body. We use the syntax [x = succ y]
(with square parenthesis) for the meta-level operation of perform-
ing this substitution.

β−→ ([x = succ y] (λy. add x ((λ z. z) y))) five (1.2)

At this point we have a problem, because carrying succ y under
the λy binder would result in the capture of y. Instead, we reify the
meta-level substitution into the syntax, writing {x = succ y} for a
concrete substitution (with curly parenthesis), which is attached to
the outside of the abstraction. Here, B is pronounced “attached to”.

β−→ ({x = succ y}B (λy. add x ((λ z. z) y))) five (1.3)

When we apply the function to its next argument, we add the
associated binding y = five to the one we already have, and carry
the result into the body, using meta-level substitution. Applying an
abstraction eliminates its binder, so it is no longer a problem.

β−→ [x = succ y, y = five] (add x ((λ z. z) y)) (1.3)

Again, when we reach an abstraction we reify the meta-level
substitution into the syntax, attach the resulting bindings to the out-
side of the abstraction, then wait until we can apply that abstraction
to its argument:

sub−→ add (succ y) (({x = succ y, y = five}B (λ z. z)) five) (1.4)

Applying the final abstraction to its argument completes the job:
β−→ add (succ y) ([x = succ y, y = five, z = five] z) (1.5)

sub−→ add (succ y) five (1.6)

Note that in step (1.3), when we add the new binding y = five to
the substitution, the binding goes on the right. A substitution is an
ordered list of bindings, where the ones on the right have priority.
Also note that the bindings x = succ y and y = five are in the same
order as the binders λx and λy in the initial expression (1.1).

2.1 Name Shadowing
Suppose we want to reduce a different expression where an inner
binder shadows an outer one:

(λy. λx. λx. add one x y) x two three

Now we have two binders named x, as well as a free occurrence
of x on the right. Performing the reduction yields:

(λy. λx. λx. add one x y) x two three (2.1)
β−→ ({y = x}B (λx. λx. add one x y)) two three (2.2)
β−→ ({y = x, x = two}B (λx. add one x y)) three (2.3)
β−→ ([y = x, x = two, x = three] (add one x y)) (2.4)

sub−→ add one three x (2.5)

In the result the variable x is free, as it was in the initial expres-
sion. Our substitution [y = x, x = two, x = three] is in fact a right
biased simultaneous priority substitution. It is a right-biased prior-
ity substitution because when we apply it to a particular variable,
say x, we replace that variable with the expression in the right-most
matching binding. It is a simultaneous substitution because we once
we replace a variable with an expression, we do not additionally
apply the substitution to that expression. Each binding in the sub-
stitution operates independently.

2.2 Nested Substitutions
The final piece of our system is the mechanism for applying a
meta-level substitution to an expression that already has an attached
concrete substitution. Consider the following:

({x = succ y}B (λy. add x y z)) five

Suppose we want to apply a further substitution to this expres-
sion, say to replace y by one and z by three. We represent this as
follows:

[y = one, z = three] (({x = succ y}B (λy. add x y z)) five)

To combine the outer substitution with the inner one, we first
apply the outer substitution to each binding of the inner one, then
append the outer substitution to the left of that result.

({y = one, z = three, x = succ one}B (λy. add x y z)) five

Completing the reduction yields:

[y = one, z = three, x = succ one, y = five] (add x y z)
sub−→ add (succ one) five three

In the last step, the binding y = five at the front (right) of the
list shadows the y = one binding at the back (left). We choose
to preserve shadowed bindings in the list to simplify the seman-
tics and meta-theory. In an interpreter implementation it would be
more helpful to remove shadowed bindings during evaluation, and
reclaim the associated space.

Finally, note that the interaction between meta-level substitu-
tion and beta-reduction makes this evaluation method work out
nicely. Reifying a meta-level substitution into the term allows us
to suspend its execution and avoid ever needing to handle the case
that can result in name capture. Once the meta-level operation is
suspended, performing the next beta-reduction both eliminates the
problematic binder and re-starts the substitution process.

3. Formal System
The grammar and meta-functions for a simply typed version of
λdsim are given in Figure 1. We use a for atomic type names, and
x for term variables. The abstraction form θ Bλx : τ.e includes a
concrete substitution θ . We write term application with an explicit
@ operator for clarity. Note that the only place where an explicit
substitution can appear in a term is attached to an abstraction. We
use explicit substitutions to deal with the complexities of variable
binding, and only the construct that binds a variable needs to be
modified relative to the standard lambda calculus.

The concrete substitutions θ are right biased lists of term bind-
ings, where • is an empty substitution. Similarly, type environments
are right biased lists of type signatures, where we overload • to
mean an empty environment. We write the result of appending two
substitutions as θ1 ◦θ2, and similarly for environments.

In the formal presentation we write subst θ e for the application
of an explicit substitution θ to a term e. In the previous section
we wrote {...} for concrete substitutions and [...] e for a meta-
level substitution applied to a term. We did this for expositional
purposes, but we see now that both the meta-level and concrete
substitutions are just lists of term bindings — in the abstract syntax
there are no parenthesis. In the definition of substitution mapExp
is a meta level operation that applies its functional argument to the
expressions in a list of bindings.

We define two right-biased lookup functions, lookupS for sub-
stitutions and lookupE for type environments. We use None and
Some as constructors of a meta-level option type, which we use to
express whether or not a particular binding appears in a substitution
or type environment.

2 2016/3/28

3.1 Type Checking
Figure 2 gives the rules for type checking. The judgment Γ ` e :: τ

reads “Under type environment Γ, expression e has type τ”. The
judgment Γ ` θ a ∆ reads: “Under type environment Γ, substitu-
tion θ has type ∆”, where ∆ is a list of type signatures, one for each
element of the substitution.

The typing rules themselves are similar to the ones for simply
typed lambda calculus. In rule TySub we lift the single-expression
typing judgment to an entire substitution, to yield a list of types of
the term bindings. In rule TyAbs we take the types of all the bind-
ings in the concrete substitution and add this to the environment.
The types from the substitution are added to the left of the x : τ1
signature for the formal parameter. The bound variable x shadows
any similarly named variables in the substitution.

3.2 Evaluation
Figure 2 also gives the call-by-value evaluation semantics. Rule
EsReduce performs the role of β -reduction. The difference for
λdsim being that when we substitute the argument into the body,
we also carry down the substitution attached to the outside of the
abstraction. This rule converts the concrete substitution into the
meta-level version. During reduction, the meta-level substitution is
converted back to an concrete one by the definition of subst back in
Figure 1.

In Figure 3 the judgment (e value) indicates that e is a value,
the only one of which is an abstraction. The judgment (e done)
indicates that e has finished reduction. Reduction ends when the
term is in weak head normal form.

4. Metatheory
Our Coq formalization contains the soundness theorems of Substi-
tution, Progress and Preservation, which we state as follows:

(Substitution)
If Γ ` θ a ∆ and Γ ◦ ∆ ` e :: τ

then Γ ` subst θ e :: τ

(Progress)
If Γ ` e :: τ

then e done or e −→ e′ for some e′

(Preservation)
If Γ ` e :: τ and e −→ e′
then Γ ` e′ :: τ

The Coq proof itself is quite pleasing. In particular, there are no
lemmas about adjusting de Bruijn indices, no need for tactics spe-
cialized to our particular approach to variable binding, and no need
to invoke any extra axioms. Our interpreter implementation also
implements the semantics as written. We did prove some extra lem-
mas about lists, though these are completely generic, and could be
added to the Coq base libraries.

5. Limitations
The technique of not substituting into abstractions avoids name
capture during reduction, but is not a “full spectrum” approach to
binding. Specifically, the typing rules of polymorphic calculi intro-
duce additional scoping problems that are unrelated to reduction.
Consider the following System-F example:

(Λa. λx : a. Λa. λy : a. pair x y) :: ∀a.(a→∀a. (a→ a×a))

Here we see that reusing the names of type binders in the
inferred type results in name capture. Although no reduction has
taken place, we still need to introduce new names for the type to be
well scoped, for example:

(Λa. λx : a. Λa. λy : a. pair x y) :: ∀a.(a→∀b. (b→ a×b))

Language Grammar
a ::= (type names)

x ::= (term variables)

τ ::= a | τ → τ (types)

e ::= x | θ Bλx : τ. e | e @ e (terms)

θ ::= • | θ , x = e (term substitutions)

Γ, ∆ ::= • | Γ, x : τ (type environments)

Substitution and Lookup

subst θ x
| Some e← lookupS θ x = e
| otherwise = x

subst θ (θ ′Bλx : τ. e)
= θ ◦ (mapExp (subst θ) θ ′) B λx : τ. e

subst θ (e1 @ e2)
= (subst θ e1) @ (subst θ e2)

lookupS x • = None
lookupS x (θ , x = e1) = Some e1
lookupS x (θ , y = e1) = lookupS x θ

lookupE a • = None
lookupE a (Γ, a : τ1) = Some τ1
lookupE a (Γ, b : τ1) = lookupE a Γ

Figure 1. λdsim Grammar and Metafunctions

Γ ` e :: τ

lookupE x Γ = Some τ

Γ ` x :: τ
(TyVar)

Γ ` θ a ∆ Γ ◦ ∆, x : τ1 ` e :: τ2

Γ ` θ Bλx : τ1. e :: τ1→ τ2
(TyAbs)

Γ ` e1 :: τ11→ τ12 Γ ` e2 :: τ11

Γ ` e1 @ e2 :: τ12
(TyApp)

Γ ` θ a ∆

{Γ ` ei :: τi}i

Γ ` {xi = ei}i a {xi : τi}i (TySub)

e −→ e′

e1 −→ e′1
e1 @ e2 −→ e′1 @ e2

(EsAppLeft)

e1 value e2 −→ e′2
e1 @ e2 −→ e1 @ e′2

(EsAppRight)

e2 done
(θ Bλx : τ. e1) @ e2 −→ subst (θ , x = e2) e1

(EsReduce)

Figure 2. Type Checking and Evaluation

3 2016/3/28

e value

θ Bλx : τ. e value (ValueAbs)

e done

x done (DoneVar)
e value
e done

(DoneValue)

e1 done ¬(e1 value)
e1 @ e2 done

(DoneApp)

Figure 3. Value and Done

In the standard presentations of System-F a side condition is
added to the typing rule for type abstraction (Λ) to ensure that the
bound name is not already used in the type environment [12]. How-
ever, in general this is property is not preserved during reduction,
at least without performing intermediate alpha conversions.

6. Related Work
Any λdsim expression can be converted to one in the standard
lambda calculus, provided we are willing to generate fresh names.
For example, returning to the example from §2.2 we have:

({x = succ y}B (λy. add x y z)) five

To eliminate the concrete substitution from the front of the
abstraction we can alpha-convert the abstraction and substitute the
bindings into the body:

(λpurple. add (succ y) purple z) five

Alpha conversion is a decidedly non-local and computation-
ally inefficient process. To alpha-convert an expression we must
descend into every part of it, performing a brute-force search for
all occurrences of the variable that is being renamed. Delaying
the meta-level substitution by reifying it into the term being re-
duced avoids continuously exploring the entire term during reduc-
tion. This process also helps retain sharing of results longer than in
the standard calculus. For example, with the following expression:

[y = one, z = three] (({x = succ y}B (λy. add x x y)) five)

Here we have two occurrences of x in the body, so it is better
to substitute into the right of the x = succ y binding first, and then
carry that result into the inner abstraction, rather than the other way
around.

6.1 Explicit Substitutions
Improving the computational efficiency of reduction is the main
purpose of work on explicit substitutions, beginning with the λσ

calculus [1], where σ refers to the explicit substitution. However
the named version of λσ still suffers from the usual problems of
name capture — the presentation in [1] uses de Bruijn indices. The
fact that λσ allows an explicit substitution to appear at any point
in the term, and is phrased as a rewrite system with no particular
evaluation order also leads to non-confluence [9].

The non-confluence of λσ arises due to an interaction between
the rewrite rule for beta-reduction, and the ones that carry the
explicit substitution σ under binders. The λσw calculus [5] is then
a restricted (weak) form of λσ that regains confluence by not
carrying substitutions under binders. As a happy side effect, this
restriction also ensures that the calculus does not suffer from name
capture.

The λc calculus of closed reductions [6] is a related rewrite sys-
tem that uses named variables but allows only closed terms to be

carried under binders, thus avoiding name capture. The λs calculus
of delayed substitutions [13] is another system with named vari-
ables which also includes a rule to convert a concrete substitution
into a meta substitution, as per our own λdsim. However, λs also
propagates substitutions under binders and thus relies on alpha con-
version to avoid name capture.

By themselves, rewrite systems such as λσw are not directly im-
plementable in interpreters as they have no implied order of evalua-
tion. In λσw the grammar of substitutions also includes an explicit
constructor that represents the result of appending two substitu-
tions, and a rewrite rule that invokes associativity of append, rather
than using standard data structures to represent substitutions.

The system in this paper, λdsim, closes the loop. We take λσw,
impose a specific evaluation order (call-by-value), and lift most
of the substitution machinery back to the meta-level. Represent-
ing substitutions by lists means that we can reuse existing list li-
braries, in both the implementation and proof, and variable lookup
is just list lookup. For an interpreter implementation we could also
use other standard container types to represent substitutions, like
finite maps of named variables to terms. With a finite map repre-
sentation the space leak due to name shadowing mentioned in §2.2
disappears, as inserting a binding with an existing name into a map
replaces the old one.

Exactly which calculus is best for a particular application de-
pends on the application. However, if your goal is to reduce some
open lambda expressions, and you want a cheap and cheerful im-
plementation that does not fuss around with alpha conversion, then
we claim the answer is λ–don’t–substitute–into–me.

References
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lvy. Explicit substitu-

tions. Technical report, digital Systems Research Center, 1990.
[2] Lennart Augustsson, Mikael Rittri, and Dan Synek. On generating

unique names. Journal of Functional Programming, 4(1), 1994.
[3] N. G. De Bruijn. Lambda calculus notation with nameless dummies,

a tool for automatic formula manipulation, with application to the
church-rosser theorem. Indagationes Mathematicae, 34, 1972.

[4] Arthur Charguéraud. The locally nameless representation. Journal of
Automated Reasoning, 49(3), 2012.

[5] Pierre-Louis Curien, Therese Hardin, and Jean-Jacques Levy. Con-
fluence properties of weak and strong calculi of explicit substitutions.
Journal of the ACM, 43, 1996.

[6] Maribel Fernández and Ian Mackie. Closed reductions in the lambda-
calculus. In Computer Science Logic, 1999.

[7] Andrew D. Gordon and Tom Melham. Five axioms of alpha-
conversion. In Theorem Proving in Higher Order Logics, 1996.

[8] James McKinna and Robert Pollack. Pure type systems formalized. In
Typed Lambda Calculi and Applications, 1993.

[9] Paul-André Melliès. Typed lambda-calculi with explicit substitutions
may not terminate. 1995.

[10] Frank Pfenning and Conal Elliott. Higher order abstract syntax. In
Programming Language Design and Implementation, 1988.

[11] Andrew M. Pitts. Nominal logic: A first order theory of names and
binding. In Theoretical Aspects of Computer Software, 2001.

[12] John C. Reynolds. Towards a theory of type structure. In Programming
Symposium, Proceedings Colloque Sur La Programmation. Springer-
Verlag, 1974.

[13] José Espı́rito Santo. Delayed substitutions. In Term Rewriting and
Applications, pages 169–183, 2007.

[14] Olin Shivers and Mitchell Wand. Bottom-up beta-substitution: Up-
links and lambda-DAGs, 2004. Basic Research in Computer Science,
University of Aarhus.

4 2016/3/28

