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Abstract
We present Icicle, a pure streaming query language which stati-
cally guarantees that multiple queries over the same input stream
are fused. We use a modal type system to ensure that fused queries
can be computed incrementalally, and a fold-based intermediate
language to compile down to efficient C code. We present produc-
tion benchmarks demonstrating significant speedup over existing
queries written in R, and on par with the Unix tools grep and wc.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; Optimization

Keywords Query, fusion, stream

1. Introduction
At Ambiata we perform feature generation for machine learning
applications by executing many thousands of simple queries over
terabytes worth of compressed data.1 For such applications we
must automatically fuse these separate queries and be sure that the
result can be executed in a single pass over the input. We also ingest
tens of gigabytes of new data per day, and must incrementally
update existing features without recomputing them all from scratch.
Our feature generation process is executed in parallel on hundreds
of nodes on a cloud based system, and if we performed neither
fusion or incremental update then the cost of the computation
would begin to exceed the salaries of the developers.

For example queries, suppose we have a table, stocks, con-
taining daily open and close prices for a set of companies. We want
to compute the number of days where the open price exceeded the
close price, and vice versa. We also want the mean of the open price
for days in which the open price exceeded the close price. In Icicle
we write the three queries as follows:

table stocks { open : Int, close : Int }
query

more = filter open > close of count;
less = filter open < close of count;
mean = filter open > close of sum open / count;

1 In 2016 this was a lot of data.

In the above code, open > close and close < open are filter
predicates, and count counts how many times the predicate is true.

Such a joint query can be converted to a back-end language like
SQL, but doing so by hand is tedious and error prone. As the three
queries use different filter predicates we cannot use a single SELECT
statement and a WHERE expression to implement the filter. We must
instead lift each predicate to an expression-level conditional and
compute the count by summing the conditional:

SELECT SUM(IF(open > close, 1, 0))
, SUM(IF(open < close, 1, 0))
, SUM(IF(open > close, open, 0))
/ SUM(IF(open > close, 1, 0))

FROM stocks;

As we see, the result of query fusion tends to have many com-
mon sub expressions, and we wish to guarantee that the duplicates
in the fused result are eliminated.

Joint queries such as the stocks example can be evaluated in
a streaming, incremental fashion, which allows the result to be
updated as we receive new data. As a counter example, suppose
we have a table with two fields key and value, and we wish to find
the mean of values whose key matches the last one in the table. We
might try something like:

table kvs { key : Date; value : Real }
query avg = let k = last key

in filter (key == k) of mean value;

Unfortunately, although the result we desire is computable, the
algorithm implied by the above query cannot be evaluated incre-
mentally. While streaming through the table we always have access
to the last key in the stream, but finding the rows that match this key
requires streaming the table again from the start. We need a better
solution. The contributions of this paper are:

• We present a domain specific language that guarantees any set
of queries on a shared input table can be fused, and allows the
query results to be updated as new data is received (§3);

• We present a fold-based intermediate language, which allows
the query fusion transformation to be a simple matter of ap-
pending two intermediate programs (§4);

• We present production benchmarks of Icicle compiled code
which outperforms an existing R feature generation system by
several orders of magnitude (§5).

Icicle is related to stream processing languages such as Lucy [12]
and Streamit [18], except we forgo the need for clock and deadlock
analysis. Icicle is also related to work on continuous queries [3],
where query results are updated as rows are inserted into the source
table, except we can also compute arbitrary reductions and do not
need to handle deleted source rows. Our implementation is avail-
able at https://github.com/ambiata/icicle.
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2. Elements and Aggregates
To allow incremental computation all Icicle queries must execute
in a single pass over the input stream. Sadly, not all queries can
be executed in a single pass: the key examples are queries that
require random access indexing, or otherwise need to access data
in an order different to what the stream provides. However, as we
saw in the introduction, although a particular algorithm may be
impossible to evaluate in a streaming fashion, the desired value may
well be computable, if only we had a different algorithm. Here is
the unstreamable example from the introduction again:

table kvs { key : Date; value : Real }
query avg = let k = last key

in filter (key == k) of mean value;

The problem is that the value of last key is only available
once we have reached the end of the stream, but filter needs
this value to process the very first element in the same stream.
We distinguish between these two access patterns by giving them
different names: we say that last key is an aggregate, because
to compute it we must have consumed the entire stream, whereas
the filter predicate is an element-wise computation because it only
needs access to the current element in the stream.

The trick to compute our average in a streaming fashion is to
recognize that filter is selecting a particular subset of values
from the input, but the value computed from this subset depends
only on the values in that subset, and no other information. Instead
of computing the mean of a single subset whose identity is only
known at the end of the stream, we can instead compute the mean
of all possible subsets, and return the required one once we know
what that is:

table kvs { key : Date; value : Real }
query avg = let k = last key in

let avgs = group key of mean value
in lookup k avgs

Here we use the group construct to assign key-value pairs to
groups as we obtain them, and compute the running mean of the
values of each group. The avgs value becomes a map of group
keys to their running means. Once we reach the end of the stream
we will have access to the last key and can lookup the final result.
Evaluation and typing rules are defined in §3, while the user func-
tions last and mean are defined in §4.

2.1 The Stage Restriction
To ensure that Icicle queries can be evaluated in a single pass,
we use a modal type system inspired by staged computation [5].
We use two modalities, Element and Aggregate. Values of
type Element τ are taken from input stream on a per-element
basis, whereas values of type Aggregate τ are available only
once the entire stream has been consumed. In the expression
(filter (key == k) of mean value), the variable key has
type Element Date while k has type Aggregate Date. Attempt-
ing to compile the unstreamable query in Icicle will produce a type
error complaining that elements cannot be compared with aggre-
gates.

Note that the types of pure values such as constants are auto-
matically promoted to the required modality. For example, if we
have open == 1 and open : Element Int then the constant 1
is automatically promoted to have type Element Int as well.

2.2 Finite Streams and Synchronous Data Flow
In contrast to synchronous data flow languages such as LUS-
TRE [8], the streams processed by Icicle are conceptually finite
in length. Icicle is fundamentally a query language, which queries
finite tables of data held in a non-volatile store, but does so in a

streaming manner. Lustre operates on conceptually infinite streams,
such as those found in real-time control systems (like to fly air-
planes). In Icicle, the “last” element in a stream is the last one
that appears in the table on disk. In Lustre, the “last” element in a
stream is the one that was most recently received. If the unstream-
able query from §2 was converted to Lustre syntax then it would
execute, but the filter predicate would compare the last key with
the most recent key from the stream, which is the key itself. The
filter predicate would always be true, and the query would return
the mean of the entire stream. Applying the Icicle type system to
our queries imposes the natural stage restriction associated with
finite streams, so there are distinct “during” (element) and “after”
(aggregate) stages.

2.3 Incremental Update
Suppose we query a large table and record the result. Tomorrow
morning we receive more data and add it to the table. We would
like to update the result without needing to process all data from
the start of the table. We can do this by remembering the values of
all intermediate aggregates that were computed in the query, and
updating them as new data arrives. In the avg example from §2
these aggregates are k and avgs.

We also provide impure contextual information to the query
such as the current date, by assigning it an aggregate type. As
element-wise computations cannot depend on aggregate computa-
tions we ensure that reused parts of an incremental computation are
the same regardless of which day they are executed.

2.4 Bounded Buffer Restriction
Icicle queries process tables of arbitrary size that may not fit in
memory. Due to this, each query must execute without requiring
buffer space proportional to the size of the input. As a counter
example, here is a simple function which cannot be applied without
reserving a buffer of the same size as the input:

unbounded (xs : Stream Int)
= zip (filter (> 0) xs) (filter (< 0) xs)

This function takes an input stream xs, and pairs the elements
that are greater than zero with those that are less than zero. This
computation requires an unbounded buffer because if the stream
contains n positive values followed by n negative values, then all
positive values must be buffered until we reach the negative ones,
which allow output to be produced.

In Icicle, queries that would require unbounded buffering are
statically outlawed by the typesystem, with one major caveat that
we will discuss in a moment. In Icicle, the stream being processed
(such as xs above) is implicit in each query. Constructs such as
filter and fold do not take the name of the stream as an ar-
gument, but instead operate on the stream defined in the context.
Icicle language constructs describe how elements from the stream
should be aggregated, but the order in which those elements are ag-
gregated is implicit, rather than being definable by the body of the
query. In the expression (filter p of mean value), the term
mean value is applied to stream values which satisfy the predi-
cate p, but the values to consider are supplied by the context.

Finally, our major caveat is that the group construct we used
in §2 uses space proportional to the number of distinct keys in the
input stream. For our applications the keys are commonly company
names, customer names, and days of the year. Our production
system knows that these types are bounded in size and that maps
from keys to values will fit easily in memory. Attempting to group
by values of a type with an unbounded number of members, such
as a Real or String results in a compile-time warning.
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T ::= Int | Bool | Map T T | (T × T )
M ::= T | Element T | Aggregate T
F ::= (M) → M

Table ::= table x { (x : T ;) }

Exp, e ::= x | V | Prim Exp | x Exp
| let x = Exp in Exp
| fold x = Exp then Exp
| filter Exp of Exp
| group Exp of Exp

Prim, p ::= (+) | (-) | (*) | (/) | (==) | (/=) | (<) | (>)
| lookup | fst | snd

V , v ::= N | B | {V ⇒V} | (V × V )

Def ::= function f (x : M) = Exp
| query x = Exp

Top ::= Table; Def ;

Figure 1. Icicle Grammar

3. Source Language
The grammar for Icicle is given in Figure 1. Value types T include
numbers, booleans and maps. Modal types M include the pure value
types, and modalities associated with a value type. Function types
F include functions with any number of modal type arguments to a
modal return type. As Icicle is a first-order language, function types
are not value types.

Table definitions Table define a table name and the names and
types of columns. Expressions Exp include variable names, con-
stants, applications of primitives and functions. The fold construct
defines the name of an accumulator, the expression for the initial
value, and the expression used to update the accumulator for each
element of the stream. The filter construct defines a predicate
and an expression to accumulate values for which the predicate is
true. The group construct defines an expression used to determine
the key for each element of the stream, and an expression to accu-
mulate the values that share a common key.

Prim defines the primitive operators. V defines values. Def
contains both function and query definitions. Top is the top-level
program, which specifies a table, the set of function bindings, and
the set of queries. All queries in a top-level program process the
same table.

3.1 Type System
The typing rules for Icicle are given in Figure 2. The judgment form
Γ ` e : M associates an expression e with its type M under con-
text Γ. The judgment form p :P F associates a primitive with its
function type. The judgment form F • M : M is used to lift func-
tion application to modal types: a function type applied to a list of
modal argument types produces a result type and matching mode.
The judgment form Γ ` Def a Γ takes an input environment
and function or query, and produces an environment containing the
function or query name and its type. Finally, ` Top a Γ takes
a top-level definition with a table, functions and queries, and pro-
duces a context containing the types of all the definitions.

Rules TcNat, TcBool, TcMap and TcPair assign types to literal
values. Rule TcVar performs variable lookup in the context. Rule
TcBox assigns an expression either Element or Aggregate type.

Rules TcPrimApp and TcFunApp produce the type of a primi-
tive or function applied to its arguments. Rule TcLet is standard.

In rule TcFold the initial value has value type T . The type of the
current element from the stream is added to the context of ek as an
Element, and the result of the overall fold is an Aggregate. Rules
TcFilter and TcGroup are similar.

Rules PrimArith, PrimRel, PrimLookup, PrimFst and PrimSnd
assign types to primitives. Rule AppArgs produces the type of a
function or primitive applied to its arguments. Rule AppRebox is
used when the arguments have modal type m — applying a function
to arguments of mode m produces a result of the same mode.

Rule CheckFun builds the type of a user defined function, re-
turning it as an element of the output context. Rule CheckQuery
is similar, noting that all queries return values of Aggregate type.
Finally, rule CheckTop checks a whole top-level program.

3.2 Evaluation
Evaluation rules for Icicle are given in Figure 3. Grammar N defines
the modes of evaluation, including pure computation. Grammar Σ

defines a heap containing stream values. Grammar V ′ defines the
results that can be produced by evaluation, depending on the mode:

• Pure computation results are a single value;
• Element computation results are stream transformers, which

are represented by meta functions that take a value and produces
a new value; and

• Aggregate computation results consist of an initial (zero) state,
an update (konstrukt) meta function to be applied to each stream
element and current state, and an eject meta function to be
applied to the final state.

In the grammar V ′ we write •→ to highlight that the objects in
those positions are meta-functions, rather than abstract syntax. To
actually process data from the input table we will need to apply the
produced meta-functions to this data.

The judgment form N | Σ ` e ⇓ V ′ defines a big-step eval-
uation relation: under evaluation mode N with heap Σ, expression
e evaluates to result V ′. The evaluation mode N controls whether
pure values should be promoted to element (stream) or aggregate
(fold) results. We assume that all functions have been inlined into
the expression before evaluation.

Rule EVal applies when the expression is already a completed
result. Rule EVar performs variable lookup in the heap. Rule ELet
evaluates the bound expression under the given mode.

Rules EBoxStream and EBoxFold lift constant values to stream
results and aggregate results respectively. To lift a constant to a
stream result we produce a meta-function that always returns the
value. To lift a constant to an aggregate result we set the update
meta-function to return a dummy value, and have the eject meta-
function return the value of interest.

Rules EPrimValue, EPrimStream and EPrimFold apply primi-
tive operators to constant values, streams and aggregations respec-
tively. In EPrimStream the result is a new stream transformer that
applies the primitive to each of the elements gained from the in-
put streams. In EPrimFold the result consists of new update and
eject functions that get their input values by applying the update
and eject functions gained by evaluating the arguments.

Rule EFilter first evaluates the predicate e to a stream trans-
former f , and the body e′ to an aggregation. The result is a new
aggregation where the update function applies the predicate stream
transformer f to the input element s to yield a boolean flag which
specifies whether the current aggregation state should be updated.

Rule EGroup is similar to EFilter, except that the stream trans-
former f produces group keys rather than boolean flags, and we
maintain a finite map of aggregation states for each key. In the result
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Γ ` e : M

Γ ` N : Int
(TcNat)

Γ ` B : Bool
(TcBool)

{Γ ` vi : T} {Γ ` v′i : T ′}
Γ ` {vi⇒ v′i} : Map T T ′

(TcMap)
Γ ` v : T Γ ` v′ : T ′

Γ ` v × v′ : T × T ′
(TcPair)

(x : T ) ∈ Γ

Γ ` x : T
(TcVar)

Γ ` e : T m ∈ {Element, Aggregate}
Γ ` e : m T

(TcBox)

p :P F {Γ ` ei : Mi} F • {Mi} : M′

Γ ` p {ei} : M′
(TcPrimApp)

(x : F) ∈ Γ {Γ ` ei : Mi} F • {Mi} : M′

Γ ` x {ei} : M′
(TcFunApp)

Γ ` e : M Γ, x : M ` e′ : M′

Γ ` let x = e in e′ : M′
(TcLet)

Γ ` ez : T Γ, x : Element T ` ek : Element T
Γ ` fold x = ez then ek : Aggregate T

(TcFold)

Γ ` e : Element Bool Γ ` e′ : Aggregate T
Γ ` filter e of e′ : Aggregate T

(TcFilter)
Γ ` e : Element T Γ ` e′ : Aggregate T ′

Γ ` group e of e′ : Aggregate (Map T T ′)
(TcGroup)

p :P F

p ∈ {+, -, *, /}
p :P (Int, Int) → Int

(PrimArith)
p ∈ {==, /=, <, >}

p :P (Int, Int) → Bool
(PrimRel)

lookup :P (Map T T ′, T ) → T ′
(PrimLookup)

fst :P (T × T ′) → T
(PrimFst)

snd :P (T × T ′) → T ′
(PrimSnd)

F • M : M

({Mi} → M′) • {Mi} : M′
(AppArgs)

({Ti} → T ′) • {m Ti} : m T ′
(AppRebox)

Γ ` Def a Γ

Γ ∪ {xi : Mi} ` e : M′ F = {Mi} → M′

Γ ` function x {xi : Mi} = e a Γ, x : F
(CheckFun)

Γ ` e : Aggregate T
Γ ` query x = e a Γ, x : Aggregate T

(CheckQuery)

` Top a Γ

Γ0 = {xi : Element Ti} { Γ j−1 ` d j a Γ j }
` table x {xi : Ti}; { d j } a Γ j

(CheckTop)

Figure 2. Types of expressions

aggregation the update function updates the appropriate element in
the map, and the eject function is applied to every accumulator.

Rule EFold introduces a new accumulator which is visible in
the context of the body k. Evaluating the body k produces a body
stream transformer k′ whose job is to update this new accumulator
each time it is applied. In the conclusion of EFold we pass this
stream transformer a tuple (v,s) where v is the new accumulator
and s is the current element of the stream we get from the context
of the overall fold expression. The heap used when evaluating k
is updated so that references to either the stream elements or new
accumulator access the appropriate side of the tuple.

The judgment form t | e ⇓ V evaluates an expression over a
table input: on input table t, aggregate expression e evaluates to
value V . The input table t is a map from column name to a list
of all the values for that column. Rule ETable creates an initial
heap where each column name xi is bound to an expression which
projects out the appropriate element from a single row in the input
table. Evaluating the expression e produces an aggregation result
where the update function k accepts each row from the table and
updates all the accumulators defined by e. The actual computation
is driven by the fold meta-function.

4. Intermediate Language
The Icicle intermediate language is similar to a physical query
plan for a database system. We convert each source level query
to a query plan, then fuse together the plans for queries on the
same table. Once we have the fused query plan we then perform
standard optimisations such as common subexpression elimination
and partial evaluation.

The grammar for the Icicle intermediate language is given in
Figure 4. Expressions PlanX include variables, values, applications
of primitives and anonymous functions. The Plan itself is split
into a five stage loop anatomy [15]. First we have the name of
the table and the names and element types of each column. The
before stage then defines pure values which do not depend on
any table data. The folds stage defines element computations
and how they are converted to aggregate results. The after stage
defines aggregate computations that combine multiple aggregations
after the entire table has been processed. Finally, the return stage
specifies the output values of the query; a single query will have
only one output value, but the result of fusion can have many
outputs.
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N | Σ ` e ⇓ V ′

n | Σ ` V ′ ⇓ V ′
(EVal)

x = V ′ ∈ Σ

n | Σ ` x ⇓ V ′
(EVar)

n′ | Σ ` e ⇓ v n | Σ, x = v ` e′ ⇓ v′

n | Σ ` let (x : n′ τ
′) = e in e′ ⇓ v′

(ELet)

Pure | Σ ` e ⇓ Value v
Element | Σ ` e ⇓ Stream (λ s. v)

(EBoxStream)
Pure | Σ ` e ⇓ Value v

Aggregate | Σ ` e ⇓ Fold () (λ s (). ()) (λ (). v)
(EBoxFold)

{Pure | Σ ` ei ⇓ Value vi}
Pure | Σ ` p {ei} ⇓ Value (p {vi})

(EPrimValue)
{Element | Σ ` ei ⇓ Stream vi}

Element | Σ ` p {ei} ⇓ Stream (λ s. p {vi s})
(EPrimStream)

{Aggregate | Σ ` ei ⇓ Fold zi ki ji}
Aggregate | Σ ` p {ei} ⇓ Fold (z0×·· ·× zi) (λ s (v0×·· ·× vi). k0 s v0×·· ·× ki s vi) (λ (v0×·· ·× vi). p { ji vi})

(EPrimFold)

Element | Σ ` e ⇓ Stream f Aggregate | Σ ` e′ ⇓ Fold z k j
Aggregate | Σ ` filter e of e′ ⇓ Fold z (λ s v. if f s then k s v else v) j

(EFilter)

Element | Σ ` e ⇓ Stream f Aggregate | Σ ` e′ ⇓ Fold z k j
Aggregate | Σ ` group e of e′ ⇓ Fold { ⇒ z} (λ s m. m[ f s ⇒ k s (m[ f s])]) (λm. {ki ⇒ j vi | ki ⇒ vi ∈ m})

(EGroup)

Pure | Σ ` z ⇓ Value z′ Element | {xi = Stream ( fi ·snd) | xi = Stream fi ∈ Σ}, x = Stream fst, Σ ` k ⇓ Stream k′

Aggregate | Σ ` fold x = z then k ⇓ Fold z′ (λ s v. k′ (v, s)) (λv. v)
(EFold)

{x ⇒ V} | e ⇓ V

Aggregate | {xi = Stream (fst · sndi) | xi ⇒ vi ∈ t} ` e ⇓ Fold z k j
t | e ⇓ j (fold k z {v0×·· ·× vi× () | xi ⇒ vi ∈ t})

(ETable)

V ′ ::= Value V | Stream (V •→V ) | Fold V (V •→V •→V ) (V •→V )

N ::= Pure | Element | Aggregate Σ ::= · | Σ, x = V ′

Figure 3. Evaluation rules

PlanX ::= x | V | PlanP PlanX | λx. PlanX
PlanP ::= Prim | mapUpdate | mapEmpty | mapMap | mapZip

Plan ::= plan x { x : T ; }
before { x : T = PlanX; }
folds { x : T = PlanX then PlanX; }
after { x : T = PlanX; }
return { x : T = x; }

Figure 4. Query Plan Grammar

Before we discuss an example query plan we first define the
count, sum, mean and last functions used in earlier sections. Both
count and sum are simple folds:

function count
= fold c = 0 then c + 1;

function sum (e : Element Real)
= fold s = 0 then s + e;

The mean function then divides the sum by the count.

function mean (e : Element Real)
= sum e / count;

The last function uses a fold that initializes the accumulator
to the empty date value NO_DATE2, then updates it with the date
gained from the current element in the stream.

function last (d : Element Date)
= fold l = NO_DATE then d;

Inlining the above functions into the query from §2 yields the
following:

query avg
= let lst = (fold l = NO_DATE then key)

in let map = group key of
( (fold s = 0 then s + value)
/ (fold c = 0 then c + 1) )

in let ret = lookup lst map
in ret

To convert this source query to a plan in the intermediate lan-
guage we convert each of the let-bindings separately then simply
concatenate the corresponding parts of the loop anatomy. The lst
binding becomes a single fold, initialized to NO_DATE and updated
with the current key.

plan kvs { key : Date; value : Real; }
folds { fL : Date = NO_DATE then key }
after { lst : Date = fL }

2 In our production compiler, last returns a Maybe.
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Figure 5. Throughput comparisons of Icicle (1 CPU and 32 CPU)
against existing R code and standard Unix utilities; higher is faster.

For the map binding, each fold accumulator inside the body of
the group construct is associated with its own finite map. The s
accumulator is associated with map gS, and the c accumulator with
gC. Each time we receive a row from the table the accumulator
associated with the key is updated, using the default value 0 if an
entry for that key is not yet present. After we have processed the
entire table we divide each sum with its corresponding count to
yield a map of means for each key.

folds { gS : Map Date Real = mapEmpty
then mapUpdate gS key 0 (λs. s + value)

; gC : Map Date Real = mapEmpty
then mapUpdate gC key 0 (λc. c + 1) }

after { map : Map Date Real
= mapMap (λs c. s / c) (mapZip gS gC) }

Finally, the ret binding from the original query is evaluated in
the after stage. In the return stage we specify that the result of
the overall query avg is the result of the ret binding.

after { ret : Real = lookup lst map }
return { avg : Real = ret }

To combine the plans from each binding we simply concatenate
the corresponding parts of the anatomy. To fuse multiple plans
we freshen the names of each binding and also concatenate the
corresponding parts of the anatomy. The single-pass restriction on
queries makes the fusion process so simple, because it ensures
that there are no fusion-preventing dependencies between any two
query plans.

Given a fused query plan we then convert it to an imperative
loop nest in a similar way to our prior work on flow fusion [10].

5. Benchmarks
At Ambiata we are currently using Icicle in production over
medium-sized data sets that fit on a single disk. We are also cur-
rently implementing a scheduler to distribute larger data sets across
multiple nodes. The data we are working with is tens of terabytes
compressed, which in 2016 does not fit on a single disk. However,
each row has a natural primary key and the features we need to
compute depend only on the data within single key groups, which
makes the workload very easy to distribute.

In our proof of concept testing we replaced an existing R script
that performed feature generation with new Icicle code. The R

0 100 200 300
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1,100

Number of queries

M
B

/s

Output to disk Output to /dev/null

Figure 6. Decrease in read throughput as queries are added, com-
paring writing the output to disk and writing to /dev/null.

script computed features from a 317GB data set. It computed 12
queries over each of 31 input tables, for 372 query evaluations in
total. The R script took 15 hours to run and consisted of 3,566 lines
of code. The replacement Icicle version is only 191 lines of code
and takes seven minutes to run.

The table in Figure 5 shows the throughput in megabytes per
second. We compared the throughput of several programs over the
same dataset:

• our original R implementation (R);
• Icicle running single-threaded (1 CPU);
• Icicle running on multiple processors (32 CPU);
• finding empty lines with grep "^$";
• counting characters, words and lines with wc;
• reading and throwing away the results with cat > /dev/null.

We ran all the Unix utilities with unicode decoding disabled
using LANG=C LC_COLLATE for maximum performance. The input
data does not contain unicode characters. We used an Amazon EC2
c3.8xlarge with 32 CPUs, 60GB of RAM, and striped, RAIDed
SSD storage. The fused Icicle version significantly outperformed
the R version of the queries, and the single-threaded version was
on par with wc, while only a little slower than grep. This is despite
the fact that the Icicle queries perform more computational work
than wc and grep. By using multiple processors, we were able to
scale up to perform as well as cat, approaching the disk speed.
The memory usage of Icicle starts at around 200MB of RAM for a
single thread, but as more threads are added approaches 15MB per
thread. The memory usage is constant in the input size and depends
on the number of queries. The R code is single threaded and would
require at least 150 processors to reach similar speeds, assuming
perfect scaling. These results give us confidence that our distributed
implementation will be fast as well as scalable [13].

Figure 6 shows how the total read througput scales as the num-
ber of fused queries is increased. For each number of queries, we
ran two versions of the fused result: one version that wrote the out-
put to disk, and the other that piped the result to /dev/null. The
graph shows the throughput of the disk version decreasing roughly
linearly in the number of queries, while the version ignoring the
output remains constant. This suggests that we are IO bound on
the write side. The time spent evaluating the queries themselves is
small relative to our current IO load, and we are curently scaling up
our system to use a larger query set.
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6. Related Work
In Icicle there is only one stream, sourced from the input table,
which is implicit in the bodies of queries. This approach is in-
tentionally simpler than existing synchronous data flow languages
such as Lucy [12], as well as our prior work on flow fusion [10].
Synchronous data flow languages implement Kahn networks [19]
that are restricted to use bounded buffering [9] by clock typing and
causal analysis [17]. In such languages, stream combinators with
multiple inputs, such as zip, are assigned types that require their
stream arguments to have the same clock — meaning that elements
always arrive in lockstep and the combinators themselves do not
need to perform their own buffering. In Icicle the fact that the input
stream is implicit and distributed to all combinators means that we
can forgo clock analysis. All queries in a program execute in lock-
step on the same element at the same moment, which ensures that
fusion is a simple matter of concatenating the components of the
loop anatomy of each query.

Short-cut fusion techniques such as foldr/build [6] and stream
fusion [4] rely on inlining to expose fusion opportunities. In
Haskell compilers such as GHC, the decision of when to inline
is made by internal compiler heuristics, which makes it difficult for
the programmer to predict when fusion will occur. In this environ-
ment, array fusion is considered a “bonus” optimization rather than
integral part of the compilation method. In contrast, for our feature
generation application we really must ensure that multiple queries
over the same table are fused, so we cannot rely on heuristics.

StreamIt [18] is an imperative streaming language which has
been extended with dynamic scheduling [16]. Dynamic scheduling
handles data flow graphs where the transfer rate between different
stream operators is not known at compile time. Dynamic schedul-
ing is trade-off: it is required for stream operators such as grouping
and filtering where the output data rate is not known statically, but
using dynamic techniques for graphs with static transfer rates tends
to have a performance cost. Icicle includes grouping and filtering
operators where the output rates are statically unknown, however
the associated language constructs require grouped and filtered data
to be aggregated rather than passed as the input to another stream
operator. This allows Icicle to retain fully static scheduling, so the
compiled queries consist of straight line code with no buffering.

Icicle is closely related to work in continuous and shared
queries. A continuous query is one that processes input data which
may have new records added or removed from it at any time. The
result of the continuous query must be updated as soon as the in-
put data changes. Shared queries are ones in which the same sub
expressions occur in several individual queries over the same data,
and we wish to share the results of these sub expressions among
all individuals that use them. For example, in Munagala et al [14],
input records are filtered by a conjunction of predicates, and the
predicates occur in multiple queries. Madden et al [11] uses a pred-
icate index to avoid recomputing them. Andrade et al describes a
compiler for queries over geospacial imagery [1] that shares the re-
sults of several pre-defined aggregation functions between queries.
Continuous Query Language (CQL) [2, 7] again allows aggregates
in its queries, but they must be builtin aggregate functions. Icicle
addresses a computationally similar problem, except that our in-
put data sets can only have new records added rather than deleted,
which allows us to support general aggregations rather than just
filter predicates. It is not obvious how arbitrary aggregate functions
could be supported while also allowing deletion of records from
the input data — other than by recomputing the entire aggregation
after each deletion.
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