
Polarized Data Parallel Data Flow

Ben Lippmeierα Fil Mackayβ Amos Robinsonγ

α,βVertigo Technology (Australia)

{benl,fil}@vergo.co

α,γUNSW (Australia)

{benl,amosr}@cse.unsw.edu.au

γAmbiata (Australia)

amos.robinson@ambiata.com

Abstract
We present an approach to writing fused data parallel data flow pro-
grams where the library API guarantees that the client programs
run in constant space. Our constant space guarantee is achieved by
observing that binary stream operators can be provided in several
polarity versions. Each polarity version uses a different combina-
tion of stream sources and sinks, and some versions allow constant
space execution while others do not. Our approach is embodied in
the Repa Flow Haskell library, which we are currently using for
production workloads at Vertigo.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; Optimization

Keywords Arrays; Fusion; Haskell

1. Introdution
The functional language ecosystem is blessed with a multitude of
libraries for writing streaming data flow programs. Stand out exam-
ples for Haskell include Iteratee [8], Enumerator [14], Conduit [17]
and Pipes [5]. For Scala we have Scalaz-Streams [3] and Akka [9].

Libraries like Iteratee and Enumerator guarantee that the client
programs run in constant space, and are commonly used to deal
with data sets that do not fit in main memory. However, the same
libraries do not provide a notion of parallelism to help deal with the
implied amount of data. They also lack support for branching data
flows where produced streams are consumed by several consumers
without the programmer needing to hand fuse the consumers. We
provide several techniques to increase the scope of such stream
processing libraries:

• Our parallel data flows consist of a bundle of streams, where
each stream can be processed in a separate thread. (§2)

• Our API uses polarized flow endpoints (Sources and Sinks)
to ensure that programs run in constant space, even when pro-
duced flows are consumed by several consumers. (§2.3)

• We show how to design the core API in a generic fashion so
that chunk-at-a-time operators can interoperate smoothly with
element-at-a-time operators. (§3)

• We use continuation passing style (CPS) to provoke the Glas-
gow Haskell Compiler into applying stream fusion across
chunks processed by independent flow operators. (§3.1)

Our target applications concern medium data, meaning data that
is large enough that it does not fit in the main memory of a normal
desktop machine, but not so large that we require a cluster of
multiple physical machines. For lesser data one could simply load it
into main memory and use an in-memory array library. For greater
data one needs to turn to a distributed system such as Hadoop [16]
or Spark [19] and deal with the unreliable network and lack of
shared memory. Repa Flow targets the sweet middle ground.

2. Streams and Flows
A stream is an array of elements where the indexing dimension is
time. As each element is read from the stream it is available only in
that moment, and if the consumer wants to re-use the element at a
later time it must save it itself. A flow is a bundle of related streams,
where each stream carries data from a single partition of a larger
data set — we might create a flow consisting of 8 streams where
each one carries data from a 1GB partition of a 8GB data set. We
manipulate flow endpoints rather than the flows themselves, using
the following data types:

data Sources i m e
= Sources
{ arity :: i
, pull :: i -> (e -> m ()) -> m () -> m () }

data Sinks i m e
= Sinks
{ arity :: i
, push :: i -> e -> m ()
, eject :: i -> m () }

Type Sources i m e classifies flow sources which produce
elements of type e, using some monad m, where the streams in
the bundle are indexed by values of type i. The index type i is
typically Int for a bundle of many streams, and () for a bundle of
a single stream. Likewise Sinks i m e classifies flow sinks which
consume elements of type e.

In the Sources type, field arity stores the number of individ-
ual streams in the bundle. To receive data from a flow producer we
apply the function in the pull field, passing the index of type i for
the desired stream, an eat function of type (e -> m ()) to con-
sume an element if one is available, and an eject computation of
type (m ()) which will be invoked when no more elements will
ever be available for that stream. The pull function will then per-
form its (m ()) computation, for example reading a file, before
calling our eat or eject, depending on whether data is available.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

FHPC’16, September 22, 2016, Nara, Japan
ACM. 978-1-4503-4433-3/16/09...
http://dx.doi.org/10.1145/2975991.2975999

52

In the Sinks type, field arity stores the number of individual
streams as before. To send data to a flow consumer we apply the
push function, passing the stream index of type i, and the element
of type e. The push function will perform its (m ()) computation
to consume the provided element. If no more data is available we
instead call the eject function, passing the stream index of type
i, and this function will perform an (m ()) computation to shut
down the sink — possibly closing files or disconnecting sockets.

Consuming data from a Sources and producing data to a Sinks
is synchronous, meaning that the computation will block until an
element is produced or no more elements are available (when con-
suming); or an element is consumed or the endpoint is shut down
(when producing). The eject functions used in both Sources and
Sinks are associated with a single stream only, so if our flow con-
sists of 8 streams attached to 8 separate files then ejecting a single
stream will close a single file.

2.1 Sourcing, Sinking and Draining
Figure 1 gives the definitions of sourceFs, sinkFs which create
flow sources and sinks based on a list of files (Fs = files), as well
as drainP which pulls data from a flow source and pushes it to a
sink in P-arallel. We elide type class constraints to save space.

Given the definition of the Sources and Sinks types, writing
sourceFs and sinkFs is straightforward. In sourceFs we first
open all the provided files, yielding file handles for each one,
and the pull function for each stream source reads data from the
corresponding file handle. When we reach the end of a file we eject
the corresponding stream. In sinkFs, the push function writes the
provided element to the corresponding file, and eject closes it.

The drainP function takes a bundle of stream Sources, a bun-
dle of stream Sinks, and drains all the data from each source
into the corresponding sink. Importantly, drainP forks a separate
thread to drain each stream, making the system data parallel. We
use Haskell MVars for communication between threads. After fork-
ing the workers, the main thread waits until they are all finished.
Now that we have the drainP function, we can write the “hello
world” of data parallel data flow programming: copy a partitioned
data set from one set of files to another:

copySetP :: [FilePath] -> [FilePath] -> IO ()
copySetP srcs dsts
= do ss <- sourceFs srcs

sk <- sinkFs dsts
drainP ss sk

2.2 Stateful Streams, Branching and Linearity
Suppose we wish to copy our files while counting the number of
characters copied. To count characters we can map each to the
constant integer one, then perform a fold to add up all the integers.
To avoid reading the input data from the file system twice we use a
counting process that does not force the evaluation of this input data
itself. For this reason we use versions of map and fold that produce
new Sinks rather than Sources. Their types are as follows:

map_o :: (a -> b) -> Sinks i m b -> Sinks i m a

fold_o :: Ord i => i -> (a -> a -> a) -> a
-> IO (Sinks i IO a, IORef a)

The map_o operator transforms a sink of b things into a sink of a
things. The fold_o operator produces a sink for a things, and an
IORef. The value in the IORef is initialised to the given starting
value of type a, which is combined with elements pushed to the
sink using the worker function of type (a -> a -> a). The first
argument of type i is the arity of the result sinks.

sourceFs :: [FilePath] -> IO (Sources Int IO Char)
sourceFs names
= do hs <- mapM (\n -> openFile n ReadMode) names

let pulls i ieat ieject
= do let h = hs !! i

eof <- hIsEOF h
if eof then hClose h >> ieject

else hGetChar h >>= ieat
return (Sources (length names) pulls)

sinkFs :: [FilePath] -> IO (Sinks Int IO Char)
sinkFs names
= do hs <- mapM (\n -> openFile n WriteMode) names

let pushs i e = hPutChar (hs !! i) e
let ejects i = hClose (hs !! i)
return (Sinks (length names) pushs ejects)

drainP :: Sources i IO a -> Sinks i IO a -> IO ()
drainP (Sources i1 ipull) (Sinks i2 opush oeject)
= do mvs <- mapM makeDrainer [0 .. min i1 i2]

mapM_ readMVar mvs
where
makeDrainer i = do

mv <- newEmptyMVar
forkFinally (newIORef True >>= drainStream i)

(_ -> putMVar mv ())
return mv

drainStream i loop =
let eats v = opush i v

ejects = oeject i >> writeIORef loop False
in while (readIORef loop) (ipull i eats ejects)

Figure 1. Sourcing, Sinking and Draining

Besides map_o and fold_o we also need an operator to branch
the flow so that the same data can be passed to our counting
operators as well as written back to the file system.

The branching operator we use is as follows:

dup_ooo :: (Ord i, Monad m)
=> Sinks i m a -> Sinks i m a -> Sinks i m a

dup_ooo (Sinks n1 push1 eject1)
(Sinks n2 push2 eject2)

= let pushs i x = push1 i x >> push2 i x
ejects i = eject1 i >> eject2 i

in Sinks (min n1 n2) pushs ejects

This operator takes two argument sinks and creates a new one.
When we push an element to the new sink it will push that element
to the two argument sinks. Likewise, when we eject a stream in
the new sink it will eject the corresponding stream in the two
argument sinks. We can use this new combinator to write a working
copyCountP function:

copyCountP :: [FilePath] -> [FilePath] -> IO Int
copyCountP srcs dsts
= do ss <- sourceFs srcs

sk1 <- sinkFs dsts
(sk2,r) <- fold_o (arity ss) (+) 0
drainP ss (dup_oo sk1 (map_o (const 1) sk2))
readIORef r

This function runs in constant space, using a single pass over
the input data, which is the behaviour we wanted. Note that in the
definition there is only a single occurrence of each of the variables
bound to sources and sinks: ss, sk1, sk2. Each source and sink is

53

used linearly. Our program expresses a data flow graph where the
functions sourceFs, sinkFs, fold_o, map_o and dup_ooo create
nodes, and the use-def relation of variables defines the edges.

Linearity is an important point. Suppose we instead tried to
compute our result in two separate stages, one to copy the files to
their new locations and one to compute the count:

badCopyCount :: [FilePath] -> [FilePath] -> IO Int
badCopyCount srcs dsts
= do ss <- sourceFs srcs

sk1 <- sinksFs dsts
drainP ss sk1
(sk2,r) <- fold_o (+) 0 (arity ss)
drainP ss (map_o (const 1) sk2)
readIORef r

This cannot work. The Sinks endpoint created by sourceFs
is a stateful object – it represents the current position in each of
the source files being read. After we have applied the first drainP,
we have already finished reading through all the source files, so
draining the associated flow again does not yield more data. In
general an object of type Sources is an abstract producer of data,
and it may not even be possible to rewind it to a previous state
— suppose it was connected to a stream of sensor readings. Alas
the Haskell type system does not check linearity so we rely on the
programmer to enforce it manually.

2.3 Polarity and Buffering
Our dup_ooo operator from the previous section branches a flow by
taking two existing sinks and producing a new one. The _ooo suffix
stands for “output, output, output”, referring to the three sinks. It
turns out that the converse dup_iii operator is not implementable
without requiring unbounded buffering. Such an operator would
have the following type:
dup_iii :: (Ord i, Monad m)

=> Sources i m a
-> (Sources i m a, Source i m a)

Consider how this would work. The dup_iii operator takes an
argument source and produces two result sources. Now suppose
we pull data from the left result source. The operator would need to
pull from its argument source to retrieve the data, then when we pull
from the right result source we want this same data. The problem
is that there is nothing stopping us from pulling the entire stream
via the left result source before pulling any elements from the right
result source, so dup_iii would need to introduce an unbounded
buffer to store all elements in the interim.

Interestingly, although dup_iii cannot work without an un-
bounded buffer, a hybrid operator dup_ioi can. This operator has
the following definition:

dup_ioi :: (Ord i, Monad m)
=> Sources i m a -> Sinks i m a
-> Sources i m a

dup_ioi (Sources n1 pull1) (Sinks n2 push2 eject2)
= let pull3 i eat3 eject3

= pull1 i eat1 eject1
where eat1 x = eat3 x >> push2 i x

eject1 = eject3 >> eject2 i
in Sources (min n1 n2) pull3

The dup_ioi operator takes an argument source, an argument
sink, and returns a result source. When we pull data from the result
the operator pulls from its argument source and then pushes the
same data to the argument sink. Similarly to dup_ooo, we can use
dup_ioi to introduce a branch into the data flow graph without
requiring unbounded buffering of the input flow. This fact was also
noticed in [2].

dup_oio

dup_iii

dup_iio

dup_ioi

dup_ooodup_ioodup_oii

dup_ooi

buffer

drainP

dup_iooi
B B

B

B

B

Figure 2. Possible polarities for the flow duplication operator

map_i map_o

a

b

a

b

folds_iii folds_ioo folds_oio

Int a

b

Int

b

a Int a

b

Figure 3. Polarities for map and folds

We can extend dup_iooi to work with any number of argument
sinks, for example:

dup_iooi
:: (Ord i, Monad m)
=> Sources i m a -> Sinks i m a -> Sinks i m a
-> Sources i m a

With dup_ioi when we pull from the result source the operator
pulls from its argument source and pushes the same data to its
argument sinks.

Figure 2 shows the possible polarity versions for the flow du-
plication operator. Sources are indicated with a • and sinks with
a ◦. We use the mnemonic that the filled • can always produce
data (being a source) while the empty ◦ can always accept data
(being a sink). In the figure the versions marked with a B (in red)
would require unbounded B-uffering, while the black ones require
no buffering.

In the right of Figure 2 we have also included the corresponding
diagrams for the drainP operator from Figure 1. The drainP
operator requires no buffering because all data pulled from the
source is immediately pushed to the sink. On the other hand, if we
invert the polarities of drainP we arrive at the natural assignment
for a primitive buffering operator. Any operator that accepts data
via a single argument sink and produces the same data via a result
source must introduce a buffer, as there is no guarantee that new
elements are pushed to the sink at the same rate they are pulled
from the source. Our Repa Flow library guarantees that programs
written with it run in constant space by only providing operators in
the polarity versions that do so.

2.4 Mapping
We mentioned the map_o operator back in §2.2. Here is its type
again, along with the matching map_i with inverse polarity:

map_o :: (a -> b) -> Sinks i m b -> Sinks i m a
map_i :: (a -> b) -> Sources i m a -> Sources i m b

The first form is a sink transformer, taking a sink of elements
of type b and returning a sink of elements of type a. The second
is a source transformer, taking a source of elements of type a and
returning a source of elements of type b. The polarity diagram for
both forms is given in Figure 3. In both cases the input elements

54

have type a and the output elements have type b. The definition of
map_i is as follows:

map_i :: (a -> b) -> Sources i m a -> Sources i m b
map_i f (Sources n pullsA)
= Sources n pullsB
where pullsB i eatB ejectB

= pullsA i eatA ejectA
where eatA v = eatB (f v)

ejectA = ejectB

Note that both map_i and map_o are simply flow transform-
ers, and are neither inherently parallel or sequential. Repa Flow
provides data parallelism, and this parallelism is introduced by the
singular drainP function. In this respect drainP is similar to the
computeP function over delayed arrays from our original Repa li-
brary [11], except that parallelism is introduced on a per-stream
level rather than a per-element level. We will return to the defini-
tion of map_i when we discuss chunking in §3.

2.5 Segmented Folding
Figure 3 includes polarity diagrams for three forms of segmented
fold. The first one, folds_iii has the following type:

folds_iii :: (Ord i, Monad m) => (b -> a -> b) -> b
-> Sources i m Int -> Sources i m a
-> Sources i m b

The folds_iii operator takes a flow of segment lengths, a
flow of elements, and uses the provided combining function and
neutral value to fold segments from each stream in the flow. For
example, suppose we have the following flows, writing the streams
of elements in each flow using nested list syntax:

folds_iii (+) 0
[[3 2 1] [2 2] [4]]
[[1 2 3 1 1 5] [3 3 4 4] [4 3 2 1]]

= [[6 2 5] [6 8] [10]]

For the first stream the segment lengths are [3 2 1] and the
elements are [1 2 3 1 1 5], we sum up the first three elements,
then the next two, then the next one, yielding [6 2 5] for that
stream. When drainP from Figure 1 is applied to the result source,
each of the individual streams in the flow is folded in parallel.

With folds_iii we assume that both the segment lengths and
elements are available as sources. When this is true, evaluation
of folds_iii requires no buffering. When we pull a fold result
from the result source, the operator pulls the segment length from
its argument source, then the corresponding elements from the
element source, folding them in the process.

As per Figure 3 we can assign polarities to folds in two other
ways that allow the operator to execute without buffering.

With folds_ioo we push elements to the element sink (on
the right). As needed, the operator pulls segment lengths from the
segment length source (on the left), which instruct it how many of
the consecutive elements to fold. As each segment is completed it
pushes the result to the result sink (on the bottom).

With folds_oio we push segment lengths to the segment
length sink (on the left). As needed, the combinator pulls the cor-
responding number of elements from the element source (on the
right) and folds them. As each segment is completed it pushes the
result to the result sink (on the bottom).

One might wonder if folds_iii, folds_ioo and folds_oio
are the only versions that can execute without buffering. There are
a total of 8 polarity versions for a 3-leg operator such as folds.

Case analysis reveals that the others require unbounded buffer-
ing, except for the following special version:

drainP

c

b

folds_iio

folds_iii
Int a

b

Int

c

a

≡

The folds_iio version does not require buffering because
all segment lengths and elements are available as sources, and
the result of folding each segment can be pushed directly to the
result sink. However, this version is not primitive as it can be
expressed as the composition of folds_iii and drainP as shown
above. We refer to a polarity version that can be expressed as a
composition with drainP as an active version, because its form
implies computation rather than being an inactive transformation
on sources on sinks. Note that dup_ioo from Figure 2 is also active.

In our Repa Flow library we provide only polarity versions
that execute without buffering, and the only active versions are
drainP and drainS (sequential drain). This restriction ensures that
it is easy for the programmer to reason about when computation
happens, as well as having the programs execute in constant space.

2.6 Stream Projection, Funneling, and Fattening
So far the operators we have discussed have all performed the
same computation on each stream in the flow. Here are four basic
operators to convert between flows consisting of several streams
and singleton flows, containing only one stream. The endpoints for
singleton flows have the index type set to () which indicates there
is only one stream in the flow.

project_i :: i -> Sources i m a -> Sources () m a
project_o :: i -> Sinks i m a -> Sinks () m a

funnel_i :: Sources i IO a -> IO (Sources () IO a)
funnel_o :: i -> Sinks () IO a -> IO (Sinks i IO a)

The project operators each take a stream index, an endpoint
for a flow of several streams, and return an endpoint for a singleton
flow containing only the specified stream. The project_i operator
takes a flow source of several streams, and returns a flow source that
selects only the specified stream. The project_o operator takes a
flow sink for several streams and returns a sink that discards data
in all streams except the specified one.

The funnel operators each take an endpoint for a flow of
several streams, and return a singleton flow containing all data in
the argument flow. The funnel_o opeartor also takes the desired
arity of the result Sinks. These operators expose a duality in the
inversion of control associated with a stream combinator library:

With funnel_i the order in which the argument streams are
processed is under the control of the operator and is determinis-
tic when viewed by the consumer of the result source. In our im-
plementation the default order is to send data from each argument
stream from lowest index to highest. Other orders are possible, such
as a round-robin process that produces a single element from each
non-empty stream in turn.

In contrast, with funnel_o the order in which argument streams
are processed is controlled by the context and is non-deterministic
when viewed by the consumer attached to the argument sink. Recall
that in the implementation of drainP from Figure 1 we forked a
thread to evaluate each source stream. As each of these threads
pushes to its corresponding sink concurrently, if these sinks are

55

then funneled then the order in which elements appear in the output
may vary from run to run. As the sink may be attached to a shared
resource such as a file, this is also the place in the library where
we must introduce locks to manage contention. Other operators
such as map and folds are lock free, as although they are applied
to flow endpoints that conceptually carry several streams at once,
at runtime there is no communication between the threads that
evaluate each of these streams.

The fact that funnel_o is more complex to implement than
funnel_i stems from the “central dogma” of data flow program-
ming: information flows from inputs to outputs. If it also flowed
the other way then funnel_i would also need locks. The central
dogma suggests a natural program transformation, which we name
drain fattening:

(funnel_i s >>= λs’. drainP s’ k)
=> (funnel_o (arity s) k >>= λk’. drainP s k’)

This is better expressed as a picture:

funnel_i

drainP funnel_o

drainP

s

k

s

k

s’ k’

Drain fattening is valid provided the consumer of the final result
source k performs a commutative reduction, or is otherwise insensi-
tive to the order in which elements arrive. By exchanging the order
of drainP and funnel we allow parallel evaluation of multiple
streams in the flow, at the expense of introducing non-determinism
in the order in which elements are pushed to the sink. Drain fatten-
ing expresses the change in computation structure that arises when
moving from a process that performs sequential reduction of a data
set, to one that performs parallel tree reduction. However, in our
case the change in computation structure is separated from the need
to actually perform a reduction.

Finally, although the syntactic transform requires funnel_i to
be close to drainP, the fact that our operators come in a variety of
polarity versions allows us to pull many through a drainP to bring
their arguments closer, for example:

drainP (map_i f s) k = drainP s (map_o f k)

3. Chunked Streams
The flows we have discussed so far have processed elements of a
generic type e. Although we can instantiate our operators at atomic
types such as Char and Float, in practice to gain reasonable run-
time performance we must amortize the cost of control flow by
processing a chunk containing several elements at a time. We in-
stantiate the generic Sources and Sinks types to produce chunked
versions CSources and CSinks:

type CSources i m e = Sources i m (Vector e)
type CSinks i m e = Sinks i m (Vector e)

In our Haskell implementation we use the unboxed Vector type
from the standard vector library to represent chunks. For opera-
tors that do not inspect the actual elements, such as drainP and
funnel_i, their chunked versions are simply aliases for the generic
versions, but with more specific types so that the API documenta-
tion is easier to read. Other operators such as the folds family need
separate implementations because their argument functions (of type
(a -> b -> a)) work on single elements rather than chunks.

3.1 Intra-chunk Fusion
Fusion of operators on chunked streams arises naturally from the
array fusion system already implemented in the vector library,
which processes the chunks. This happy situation is due to the fact
that our generic flow operators are written in continuation passing
style. For example, here is the definition of the map function for
sources of chunked flows. We use the existing map_i operator
on generic flows, and the umap operator on unboxed vectors. We
suppress type class constraints to save space.

cmap_i :: (a -> b)
-> CSource i m e -> CSource i m e

cmap_i f ss = map_i (umap f) ss

Now, suppose we map a per-element function g over a flow,
then map another per-element function f to this result. Both f and
g apply to all elements of all streams in each flow.

cmap_i f (cmap_i g ss)

We expand the Sources value ss, naming the arity component
n and the pull function pulls.

cmap_i f (cmap_i g (Sources n pulls))

Inlining the definition of cmap_i above gives:

=> map_i (umap f) (map_i (umap g) (Sources n pulls))

Inlining the definition of map_i and simplifying then yields:

=> Sources n (λi eat eject.
pulls i (λv. eat (umap f (umap g v))) eject)

The two instances of umap are now syntactically adjacent, which
allows the fusion system in the vector library to fire:

=> Sources n (λi eat eject.
pulls i (λv. eat (umap (f ◦ g) v)) eject)

Suppose we pull some data from this flow source. We apply the
contained function to the index i of the stream we are interested in,
and provide our own eat and eject functions to either to consume
a chunk or indicate that there is no more data available in stream
i. The flow source would then apply the pulls function from its
own parent source to the inner continuation. If a chunk from the
parent source is available, then the umap function will then apply
the fused f and g to each element, before passing the result to the
original eat function that we provided.

3.2 Leftovers
When flows carry chunks instead of single elements it becomes nat-
urally harder to write operators that consume only a few elements
at a time, rather than a whole chunk at a time. Consider the head_i
operator which splits the first element from a specified argument
stream, as well as producing a flow of the leftover elements:

head_i :: i -> Sources i m a -> (a, Sources i m a)

Libraries like conduit [17] manage leftovers by extending the
representation of stream sources with a special constructor that
carries an array of leftover elements from a previous chunk, as
well as the continuation to pull more chunks from the source. For
Repa Flow we avoid adding more constructors to our Source and
Sink data types, as moving away from the simple continuation
passing style of pull, eat and eject makes it harder to perform
the program simplifications that enable intra-chunk fusion. Instead,
operators such as head produce a new flow source where the
embedded pull function first produces a chunk containing leftover
elements before pulling more chunks from its own source. The
chunk of leftover elements is stored in the closure of the pull

56

function itself, rather than being reified into the representation of
the Source data type. We rely on the linearity convention to ensure
the argument source is not reused, as applying head_i to the same
source would yield the first element in the next chunk, rather than
the next element after the one that was previously returned.

4. Related Work
Our work is embodied in Repa Flow, which is available on Hack-
age. Repa Flow is a new layer on top of the existing Repa library
for delayed arrays [11], and performs fusion via the GHC simplifier
rather than using a custom program transformation based on series
expressions [12] as in our prior work.

Our system ensures that programs run in constant space, without
requiring buffering or backpressure as in Akka [9] and Heron [10].
Our stream programs are fused into nested loops that read the input
data from the source files, process it, and write the results imme-
diately without blocking. The only intermediate space required is
for aggregators — for example if we had a stream of text and were
counting the number of occurrences of each word we would need a
map of words to the number of occurrences.

We use stream processing to deal with large data sets that do
not fit in memory. Real time streaming applications, such as to pro-
cess click streams generated from websites, are the domain of syn-
chronous data flow languages such as Lucy-n [13], and reactive
stream processing systems such as Heron [10] and S4 [15]. Lucy
uses a clock analysis to determine where (finite) buffers must be
introduced into the data flow graph. Heron and S4 use fixed size
buffers with runtime back-pressure to match differing rates of pro-
duction and consumption.

The main difference between Repa Flow and Iteratee based
Haskell libraries [5, 8, 14, 17] is that Repa Flow uses the sepa-
rate Sources and Sinks types to express the endpoints of flows,
whereas an Iteratee is better thought of as a computation as it is
given a monadic interface. The advantage of the Iteratee ap-
proach is that pleasing algebraic identities arise between iteratee
computations. The disadvantage is that consuming data from two
separate sources is awkward because each source is represented
by its own monadic computation, and multiple computations must
be layered using monad transformers. Repa Flow lacks the conve-
nience of a uniform monadic interface, though writing programs
that deal with many sources and sinks is straightforward by design.

The idea that parallelism can be introduced into a data flow
graph via a single operator is well known in the databases commu-
nity. The Volcano [6] parallel database inserts an exchange opera-
tor into its query plans, which forks a child thread for the producer
of some data, leaving the master thread as the consumer. The im-
plementation of exchange also introduces buffering and uses back
pressure to handle mismatch between rates of production and con-
sumption. In Repa Flow we use drainP to introduce parallelism,
and drainP itself introduces no extra buffering. In Volcano and
other database systems, communication between operators is per-
formed with a uniform open, next, close interface, similar to a
streaming file API. In Repa Flow the API between operators con-
sists of the Sources and Sinks type, where the next element in a
given stream can be uniformly acquired via the pull function.

In itself the duality between source and sink, push and pull, is
folklore, and has previously been used for code generation in array
processing languages [4, 18] and XML processing pipelines [7].
More recently, Bernardy and Svenningsson describe a library [2]
that defines streams with sources and sinks, where each is defined
as if it were the logical negation of the other. They also define co-
sources and co-sinks, where a co-source is a sink that accepts el-
ement consumers and a co-sink is a source that produces element

consumers. In related work Bernardy et al describe a core calcu-
lus [1] based on Linear Logic which guarantees fusion does not
increase the cost of program execution. The system is based fun-
damentally around linear logic rather than lambda calculus, with
evaluation being driven by cut elimiation rather than function ap-
plication. They describe a compiler targeting C and encouraging
benchmark results.

References
[1] Jean-Philippe Bernardy, Vı́ctor López Juan, and Josef Svenningsson.

Composable efficient array computations using linear types. Unpub-
lished Draft, 2016.

[2] Jean-Philippe Bernardy and Josef Svenningsson. On the duality of
streams. how can linear types help to solve the lazy IO problem? In
IFL: Implementation and Application of Functional Languages, 2015.

[3] Paul Chiusano and Pavel Chlupacek et al. The scalaz-streams library.
http://github.com/functional-streams-for-scala/fs2.

[4] Koen Claessen, Mary Sheeran, and Joel Svensson. Expressive array
constructs in an embedded GPU kernel programming language. In
DAMP: Declarative Aspects of Multicore Programming, 2012.

[5] Gabriel Gonzalez. The pipes Haskell package.
http://hackage.haskell.org/package/pipes.

[6] Goetz Graefe. Volcano - an extensible and parallel query evaluation
system. IEEE Transactions on Knowledge Data Engineering, 6(1),
1994.

[7] Michael Kay. You Pull, I’ll Push: on the Polarity of Pipelines. In
Balisage: The Markup Conference, 2009.

[8] Oleg Kiselyov. Iteratees. In FLOPS: Functional and Logic Program-
ming, 2012.

[9] Viktor Klang and Patrik Nordwall et al. The Akka project.
http://github.com/akka/akka.

[10] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ra-
masamy, and Siddarth Taneja. Twitter Heron: Stream processing at
scale. In SIGMOD: International Conference on Management of Data,
2015.

[11] Ben Lippmeier, Manuel M. T. Chakravarty, Gabriele Keller, and Si-
mon L. Peyton Jones. Guiding parallel array fusion with indexed
types. In Haskell Symposium, 2012.

[12] Ben Lippmeier, Manuel M. T. Chakravarty, Gabriele Keller, and Amos
Robinson. Data flow fusion with series expressions in Haskell. In
Haskell Symposium, 2013.

[13] Louis Mandel, Florence Plateau, and Marc Pouzet. Lucy-n: a n-
synchronous extension of Lustre. In Mathematics of Program Con-
struction, 2010.

[14] John Millikin and Mikhail Vorozhtsov. The enumerator Haskell pack-
age. http://hackage.haskell.org/package/enumerator.

[15] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari.
S4: distributed stream computing platform. In ICDMW: International
Conference on Data Mining, 2010.

[16] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop Distributed File System. In MSST: Mass Stor-
age Systems and Technologies, 2010.

[17] Michael Snoyman. The conduit Haskell package.
http://hackage.haskell.org/package/conduit.

[18] Bo Joel Svensson and Josef Svenningsson. Defunctionalizing push
arrays. In FHPC: Functional High-Performance Computing, 2014.

[19] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In NSDI: Networked Systems De-
sign and Implementation, 2012.

57

