
Smart Contracts as Authorized Production Rules
Ben Lippmeier

UNSW (Australia)

benl@ouroborus.net

Amos Robinson

UNSW (Australia)

amos.robinson@unsw.edu.au

Andrae Muys

Digital Asset

andrae.muys@digitalasset.com

ABSTRACT
Rainfall is a smart contract programming model that allows mu-

tually distrusting parties to manage assets on a distributed ledger.

The model consists of a tuple space of authorized facts, and a set of

production rules. Rules match on authorized facts, gaining their au-

thority, and produce new facts with a subset of the gained authority.

Rainfall allows assets such as crypto currencies to be defined in user

code, rather than being baked directly into the ledger framework.

Our authorization model also provides a natural privacy model,

where not all rules or facts need to be revealed to all parties.

ACM Reference Format:
Ben Lippmeier, Amos Robinson, and Andrae Muys. 2019. Smart Contracts

as Authorized Production Rules. In Proceedings of Draft. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Distributed ledgers allow information about financial assets to be

recorded and modified by mutually distrusting parties. A prime ap-

plication is to manage cryptocurrencies such as Bitcoin, Dogecoin,

Ethereum and so on. In such systems, some of the rules that specify

how assets can be transferred between parties are baked into the

ledger framework, while others can be defined in a programming

language whose runtime is part of the ledger system. Early ledgers

such as Bitcoin used a sequence of simple, non-looping bytecodes

to specify the requirements for coin transfer [11]. Latter systems

use more general purpose languages such as the Ethereum Virtual

Machine (EVM) [53], EOS [30], Scilla [49], Pact [47], FCL [3], Plu-

tus [34] and DAML [2], which can include looping, structured data

and polymorphism. We refer to these as smart contract languages,
as the intended application is to express the rules, workflows, rights

and obligations involved in managing assets [31].

Most smart contract languages are expressive enough that they

are used to define tokens, which are new currencies separate from

the native currency of the system (such as Bitcoin, Dogecoin and

so on). The rules and data to define a token is typically installed in

“user space” on the ledger, rather using builtin support for the native

currency. Awkwardly, although tokens can have similar features to

the native currency, when they are defined separately they need

special handling by user facing tool chains — to provide wallet

interfaces, transaction listings and so on [52].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Draft, 2019, Draft
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Besides user experience, there is often an expressivity gap be-

tween the support a distributed ledger system provides for its native

currencies, and what can be implemented for tokens. For example,

in account based [55] Ethereum, the user code that defines a token

typically stores the balances for all token accounts in an array struc-

ture that is owned by a single native Ethereum account. As the token

balances are stored in a user level structure, it is easy for a contract

to perform queries over this data, such as to find the account with

the highest balance. On the other hand, Ethereum does not provide

a way for contract code to perform the same queries over account

balances of its own native currency, as this is not supported by

the virtual machine the contract runs on. The Unspent Transaction

Output (UTxO) based [54] DAML is more homogeneous in that

assets are defined uniformly as user code. However, the current

version of DAML, somewhat inversely, does not support general

queries over user data, which we discuss further in §5.4.

FCL provides an alternate programming model based on Colored

Petri Nets [35]. Petri nets are related to production rule frameworks

such as OPS5 [23] and CLIPS [48]. A production rule watches a

store of facts, waits for a particular set of matching facts to become

available, and then produces new facts, possibly triggering other

rules, and so on. This matching process is fundamentally a query

process, like a relational join. Comparing with the Colored Petri

Net model we can view a place in the Petri net as an unordered table
in a database model. Petri nets and production rules are expressive

enough to implement real business workflows, with prior work

demonstrating how to use Petri nets as a compilation target for the

standard Business Process Execution Language (BPEL) [38]. How-

ever, although FCL is based on Petri nets, its native asset system is

baked into the language framework, rather than being user defined.

Our contribution is to unify these concerns:

• We present Rainfall, a programming model based on au-

thorized production rules that allows mutually distrusting

parties to manage assets on a distributed ledger. (§2)

• Rules defining how assets can be transferred are specified

directly in user code, instead of requiring the programming

model to provide primitive support for asset transfers. (§2.4)

• Our production rule framework makes it straightforward to

define workflows that perform queries over all facts visible

to some party. (§3.6)

• Our authorization system naturally extends to provide pri-
vacy, so facts and rules do not need to be revealed to all

parties using the system. (§3)

Our work focuses on the language semantics and authority mech-

anism, rather than details of the networking layer. However, we do

mention cross cutting concerns such as the intended representation

of transactions. In our case, “contracts” are executable programs,

rather than constraints on the values produced by a function [22],

messages exchanged in a protocol [1, 19], or a way to compute

prices of financial products [46], as in similarly named work.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Draft, 2019, Draft Ben Lippmeier, Amos Robinson, and Andrae Muys

fact Coin [issuer: Party, holder: Party]
fact Offer [id: Symbol, terms: Text,

giver: Party, receiver: Party]
fact Accept [id: Symbol, accepter: Party]

rule transfer
await Offer [id = ?i, giver = ?g, receiver = ?r] gain {g}

and Accept [id = i, accepter = r] gain {r}
and Coin [issuer = !Isabelle, holder = g]

gain {!Isabelle,g}
to

say Coin [issuer = !Isabelle, holder = r]
by {!Isabelle,r} use {'transfer}

Figure 1: Coin Transfer Workflow

2 FACTS, RULES, AND AUTHORITY
The Rainfall programming model uses a ledger of facts and a set

of rules. Parties using the system add facts to the ledger, crypto-

graphically signing them to demonstrate that they authorize their

contents. Rules match on subsets of facts and create new facts,

possibly consuming matched facts in the process. Rules can gain

authority from matched facts, and the newly created facts can be

given a subset of the authority gained from the matched facts. The

set of facts visible to each party is controlled by the authority sys-

tem, so not all facts need to be visible to all parties. In this section

we describe facts, rules and the authority system, finishing with

the formal definition of the data model.

2.1 Facts
Figure 1 shows the fact and rule definitions for a simple coin transfer

workflow. A fact declaration gives the tag and payload types of

each sort of fact used in the workflow. In this example, a Coin fact

represents a virtual coin that has been created by an issuer party,

and is currently held by a holder. An Offer fact indicates an offer

by the coin holder, the giver, to transfer their coin to a receiver.
The offer includes an id value of the abstract Symbol type that

uniquely identifies the offer, and a text string describing the terms

of the offer. An Accept fact indicates that the receiver does indeed

wish to accept the coin offer with the given terms. For example, we

suppose we have the following facts:

Coin [issuer = !Isabelle, holder = !Alice]
Offer [id = '1234, terms = "To purchase a guitar",

giver = !Alice, receiver = !Bob]

Names prefixed by ! are literal party identifiers, and their values
have type Party. Names prefixed by ' are symbolic identifiers

(strings), and their values have type Symbol. The facts reveal that
Alicewishes to transfer her coin to Bob for the purchase of a guitar.
If Bob wishes to accept the offer he can add the following fact:

Accept [id = '1234, accepter = !Bob]

Given the Offer, Accept and Coin facts, the transfer rule from
Figure 1 can fire, which consumes the three input facts and produces
a new one:

Coin [issuer = !Isabelle, holder = !Bob]

This new coin belongs to Bob, alternatively, we could say that the

coin Alice once had has been transferred to Bob. We will properly

introduce Isabelle in §2.4.

2.2 Weights
Suppose Bob already had a coin, and then receives another one. We

manage this by giving each fact a weight, which specifies a positive

integral number of “copies” of the fact. We indicate the weight of a

fact using the num keyword, typically eliding it if the weight is one.

For example, suppose the ledger already contained:

Coin [issuer = !Isabelle, holder = !Bob] num 5

If Alice transfers an additional coin to Bob then the entry on the

ledger would become:

Coin [issuer = !Isabelle, holder = !Bob] num 6

Rules can also consume an arbitrary weight of a fact, including

zero, which non-destructively reads it, which we discuss in §3.6.

2.3 Rules
The transfer rule of Figure 1 specifies how existing facts can be

combined to create new facts. The rule is written with syntax based

on production rule languages such as OPS5 [23] and CLIPS [48]. A

rule definition has the form (rule name await patterns to body)
where patterns specifies which facts must be available for the rule

to fire, and body is a pure term expression that constructs a new set

of facts to add to the ledger. Each pattern can include a gain clause
that first checks the matched fact is authorized by a set of parties,

and then causes the rule to gain that same authorization. New facts

created can be authorized by a subset of the gained authorization.

Names prefixed by ? are binding occurrences of variables, so

the transfer rule requires an Offer fact with its id field set to

some value, binds it to i, and must wait for an Accept fact whose
id field is set to the same value. The runtime intuition is that

matching of facts proceeds in sequence, so the rule will wait for an

Offer fact, then a Accept fact, then a Coin fact. Variables bound
in earlier patterns are in scope in latter ones, and also in the body.

Implementations of traditional production rule engines based on

the RETE [24] algorithm do not require facts to be matched in order,

but we fix the sequence here to simplify our operational semantics.

By default, once a rule matches on all its required facts those

facts are consumed. Any new facts produced by the same rule are

added to the ledger in an atomic transaction. We also refer to the

process of consuming a fact as spending that fact, after the original

UTxO [54] model of the Bitcoin system.

2.4 Authority
A given currency can only retain value when it is scarce. Fiat curren-
cies like Icelandic Króna (ISK) are scarce because a central authority

issues a limited number per year. Bitcoins are scarce because they

represent the solution of a particular cryptographic problem, which

at a particular time, required significant energy to solve. In our coin

transfer example we prevent Alice from just creating an arbitrary

number of her own coins by requiring that they are also authorized

by an issuing party Isabelle. We assume that all parties using the

system trust Isabelle to not add new, signed Coin facts to the ledger
in an inappropriate way.

1
For a private financial system Isabelle

might represent a bank. For a public ledger system, an initial fixed

supply of coins might be generated using a secure multiparty pro-

tocol to sign the facts, similarly to how the ZCash system [14, 33]

was initialized.

1
meaning Isabelle will not print money, or at least, not too much.

Smart Contracts as Authorized Production Rules Draft, 2019, Draft

In our transfer example, when coin facts are created we assume

they are authorized by both the issuer and the initial holder of the

coins. The set of parties which a fact is authorized by is called the

by-authority set. Any party can add any fact to the ledger at any

time, provided the fact is only given that party’s authority. Likewise,

any party can consume (spend) a fact from the ledger at any time,

provided the fact is authorized by that party alone. Ensuring that

coin facts are always authorized by two parties means that neither

can unilaterally create, transfer or consume them. Jointly authorized

facts can only be modified by pre-agreed rules that first collect the

authority of all relevant parties. Our by-authority sets are similar

to the sets of contract signatories of DAML [2].

The by-authority set is part of the fact data, so a rule can read

the set of parties that have authorized a fact just as they would read

the payload data. In a concrete implementation, when a new fact

is created directly by a single party it would be cryptographically

signed by that party, which demonstrates that the by-authority set

containing just their own name is as intended. When a new fact is

created by rule execution then the transaction log of the system,

which lists the rule name along with the facts spent and created

by that rule, records that the authorization of the new fact is as

intended. We discuss transactions further in §3.1.

2.5 Observation
When a fact has been authorized by a particular party, then nat-

urally that party should see the details of that fact. Facts that are

authorized by a party are visible to that party. For example, the

original Coin fact from §2.1 is authorized by both Isabelle and Alice,

so those parties will be informed of the creation and subsequent

consumption of that fact. However, the Offer fact that Alice creates
is authorized by Alice alone, so we need an additional mechanism to

also reveal it to Bob. We include an additional set, the obs-authority
set, in each fact, which lists the extra parties that are permitted to

observe a fact but have not authorized its creation. The same party

name may be present in both the by-authority set, as well as the

obs-authority set, though this provides no additional benefit.

2.6 Usable Rules
Rainfall is an open system, in the sense that new parties can join at

any time, adding new facts and rules as they see fit. As mentioned

in §2.4, any party can unilaterally create and consume any fact in

the system, provided the fact is authorized by that party alone. If

we also allow parties to add any rule they like, then we must ensure

that rules do not consume or gain authority from other parties in

a way that those other parties did not intend. We achieve this by

including a final set, the use-set, in each fact, which lists the rules

that can consume or gain authority from that fact.

A concrete implementation would record the cryptographic hash

of the rule code, instead of just the literal rule name, but we use

the name in our examples for readability. For practical workflows

the set of rule names attached to each fact could be quite large. We

assume that the underlying implementation represents facts with

the same use-set efficiently. This could be done by recording the

hash of each set of rule hashes, instead of listing the individual

per-rule hashes directly.

The use-set of a fact determines the business-level meaning of

the fact. In our coin transfer example, the consumed and created

Coin facts all have a use-set that specifies the single transfer rule.
Coins are things that can be transferred and nothing else. As we

will see in §3.7 including the use-set directly in facts makes it easy

to upgrade both the format of facts and the rule code, which is

usually necessary in practical information systems.

2.7 Data Model
We can now restate the example facts from §2.1 in full, assuming

that Alice starts out owning 100 coins.

Coin [issuer = !Isabelle, holder = !Alice]
by {!Isabelle, !Alice} obs {}
use {'transfer} num 100

Offer [id = '1234, terms = "To purchase a Guitar",
giver = !Alice, receiver = !Bob]

by {!Alice} obs {!Bob}
use {'transfer} num 1

Accept [id = '1234, accepter = !Bob]
by {!Bob} obs {!Alice}
use {'transfer} num 1

In summary, the word Coin in the first fact is its tag, and the fol-

lowing record value the payload. The by keyword marks the by-
authority set, which is the set of parties the fact has been authorized

by. The obs keyword marks the obs-authority set, which lists extra

parties that can observe the fact but do not necessarily authorize it.

The use keyword marks the use-set, which lists the names of rules

that can consume a fact or gain authority from it. Finally, the num
keyword marks the weight of the fact, which can be interpreted as

the number of active copies of the fact on the ledger.

The full data model is specified below. The current ledger state

is a map from Fact to itsWeiдht , where the Fact includes the by-
authority, obs-authority and use-set along with the tag and payload.

Facts with differing authority or use sets are different facts.

State = Map Fact Weiдht
Fact = (Name, Payload,By,Obs,Use)
Payload = List (Name,Value)
By = Set Party
Obs = Set Party
Use = Set Name
Weiдht = Nat

When the ledger state includes a fact with weight zero we treat

this as identical to a state without that fact included at all. We

could equivalently specify the state as being a multiset of facts,
but in most cases we find using a map from facts to weights to be

more intuitive. Note the State here is the current active state of
the ledger. In related work, the ledger itself is usually defined as a

sequence of transactions that describe the full history of changes.

Given the sequence of transactions starting from the empty state,

it is always possible to rebuild the active state after any prefix of

those transactions has been applied [55].

Draft, 2019, Draft Ben Lippmeier, Amos Robinson, and Andrae Muys

Mona

Alice Bob

Coin
Offer

Accept

Isabelle

Figure 2: Fact Visibility for Monitored Coin Transfer

3 PRIVACY
In practical multi-party workflows it is often not desirable, or even

legal, for all data used in the workflow to be provided to all parties.

In the coin transfer example from §2, we could assume that Alice did

not want to reveal the total number of coins she holds to Bob, nor

the item she wishes to purchase (the Guitar) to Isabelle. Conversely,

sometimes the details of a workflow must be revealed to third

parties that do not otherwise participate in that workflow. Details

of transactions may need to be sent to financial regulators that

monitor the operation of markets, or to credit agencies that offer

loans based on the spending patterns of their clients. For the sake

of example, we extend the coin transfer workflow described in the

previous section with an extra party, Mona, who monitors all coin

transactions. Figure 2 describes this fact visibility as a Venn diagram.

The extended transfer rule is as per Figure 1, but with Mona listed

as an observer of the produced coin fact.

3.1 Transaction and Validation
Assume that Alice, Bob, Mona and Isabelle all have their own com-

puters in their own offices, each containing a fragment of the ledger
state as per Figure 2. Each party also has a copy of the extended

transfer rule. Alice decides that it is time to perform the transfer,

and builds the following transaction structure:

Transaction
seq = ... sequence number ...
rule = ... hash of the transfer rule ...
input = [Offer [id = '1234, terms = "To purchase a Guitar",

giver = !Alice, receiver = !Bob]
by {!Alice} obs {!Mona, !Bob}
use {'transfer} num 1

, Accept [id = '1234, accepter = !Bob]
by {!Bob} obs {!Mona, !Alice}
use {'transfer} num 1

, Coin [issuer = !Isabelle, holder = !Alice]
by {!Isabelle, !Alice} obs {!Mona}
use {'transfer} num 1]

output = [Coin [issuer = !Isabelle, holder = !Bob]
by {!Isabelle, !Bob} obs {!Mona}
use {'transfer} num 1]

The transaction includes a fresh sequence number, the hash of

the transfer rule definition, the list of facts being consumed (input)

by the transaction, and the list of new fact created (output). Alice

would like the other parties to agree that this is a valid execution

of the transfer rule, and update their own local fragments of the

ledger state. However, as per Figure 2 not all parties are entitled to

see all facts listed in the transaction.

Recall from §2.5 that a party P can see a fact F when it is listed

in either its by-authority set or its obs-authority set. We express this

as a predicate, where the functions auth-by and auth-obs retrieve

the corresponding sets from the fact value.

sees P F = (P ∈ auth-by F) ∨ (P ∈ auth-obs F)

Applying this predicate to the facts in the transaction, Alice com-

putes that 1) the Offer and Accept should be visible to Alice, Bob

and Mona; 2) the input Coin fact should be visible to Isabelle, Alice

and Mona, and 3) the output Coin fact should be visible to Isabelle,

Bob and Mona. Importantly, the details of the transaction do not

reveal howmany coins Alice might happen to have when she builds

it. Both Isabelle and Mona will already know how many coins Alice

has, as they have seen previous coin transfers, but there is no reason

for this information to appear in the transaction structure itself.

Alice cannot send the complete transaction to all parties as they

are not all entitled to see all the facts. Instead, Alice computes

a restricted view of the transaction for each of the other parties,

blinding the facts that a particular party is not entitled to see from

their view before sending it.

3.2 Transaction Views
We abbreviate the four weighted facts in the transaction structure

as d1,d2,d3,d4. The letter d is a mnemonic for factoid — being an

“unreliable” fact, because the weight might be zero. We express the

complete transaction as the following tuple, using h(X) to mean

the hash of value X , and tx to denote the name of the transfer rule:

(seq, h(tx), [d1,d2,d3], [d4])

This tuple contains the transaction sequence number, the hash of

the rule definition, the list of input factoids, and the list of output

factoids. The views for each party are computed by replacing some

of the factoids by their blinded hashes. A blinded hash is a crypto-

graphic hash which has been combined with a random salt value,

so that the plaintext data cannot feasibly be recovered by brute

force guessing. We write s1..s4 as the salts for each factoid.

Before computing the view for each party, Alice first computes

an overall transaction identifier by replacing all factoids in the

transaction with their blinded hashes, then hashing the result:

h((seq, h(tx), [h(d1, s1),h(d2, s2),h(d3, s3)], [h(d4, s4)]))

This is a unique(ish) identifier for the transaction, provided the hash

values are long enough that we will not see a collision in practice.

Now, as Isabelle is entitled to see the Coin facts but not the Offer
or Accept facts, she receives a view containing the data and salt

values for the Coin facts, but only the blinded hashes of the Offer
and Accept facts:

for Isabelle: (seq, h(tx), [h(d1, s1),h(d2, s2), (d3, s3)], [(d4, s4)])

Smart Contracts as Authorized Production Rules Draft, 2019, Draft

Similarly, Bob is entitled to see the Offer, Accept and produced

Coin fact, but not the consumed Coin fact, so receives a correspond-
ing view.

for Bob: (seq, h(tx), [(d1, s1), (d2, s2),h(d3, s3)], [(d4, s4)])

Finally, Mona is entitled to see all the facts, so she gets the full

unblinded transaction.

for Mona: (seq, h(tx), [(d1, s1), (d2, s2), (d3, s3)], [(d4, s4)])

All four parties, including Alice, can now use their own view to com-

pute the same transaction identifier. Isabelle was not given the data

for the Offer or Accept facts, but as she knows their blinded hashes
she can still compute the hash of the overall transaction. Isabelle can
infer that the giver and receiver fields of the Offer must have con-

tained values !Alice and !Bob respectively. Isabelle knows which

rule the transaction has been generated from, and that rule says

the giver and receiver of an Offer must match the corresponding

fields of the Coin facts that she does see. However, Isabelle cannot

see that the coin is being transferred "To purchase a Guitar",
because that information is was only present in the Offer.

3.3 Consensus
Once each party has received their transaction view, they can com-

pare it against their own fragment of the ledger state and confirm

with each other whether their views are valid. The fragment of

ledger state visible to Isabelle includes the total weight of Coin
facts currently held by Alice. When Bob confirms with Isabelle

that her view of the transaction is valid, this tells Bob whether

Alice actually has a coin to transfer to him. Similarly, when Isabelle

confirms with Bob that his view is valid, this tells Isabelle that Bob

really did agree to the transfer. In a practical workflow Isabelle

might represent a commercial Bank, and in this case Bob would

likely trust Isabelle to answer truthfully when asked if enough coins

are available for a transfer, even though he does not want her to

know that he is adding to his collection of guitars.

In a concrete implementation there are many ways to manage

the distributed, network level confirmation process. For a small

number of parties, such as to manage commercial workflows be-

tween banks, it could be sufficient for each party to confirm the

transaction directly with all others. This would requireO(n2) confir-
mations in practice, but in the happy case the only information that

needs to be exchanged is that the confirming party agrees with the

transaction view identified by its hash code. For a greater number

of parties, cryptographically signed confirmation messages could

be propagated with a peer-to-peer protocol [21], or Byzantine Fault

Tolerant (BFT) consensus protocol [29, 37, 43].

Alternatively, Mona could represent a monitoring company that

simply receives transaction views and archives them. In applications

where the parties know each other and are expected to be honest,

they may not need to synchronously confirm every transaction. If

there are any disputes between Alice, Bob or Isabelle, then they

could retrieve the complete views given to Mona, and validate that

the transaction hashes of those views match their own.

3.4 Nested Transactions
For the transaction in §3.1, Isabelle’s view is constructed by blinding

the Offer and Accept facts, as Isabelle is not entitled to see them.

Blinding these facts means that Isabelle cannot use the input list

to directly execute the rule and check its output. In a concrete im-

plementation with a trusted monitor, such as Mona, this would not

matter as the other parties would expect Mona to answer truthfully

when asked if the transaction is valid. If we instead wish Isabelle

to be able to validate the output directly, then we can split the

transfer rule into two parts: one that combines Alice’s offer with

Bob’s agreement, and another to perform the actual transfer.

rule agreeOffer
await Offer [id = ?i, giver = ?g, receiver = ?r] gain {g}

and Accept [id = i, accepter = r] gain {r}
to

say Agreed [giver = g, receiver = r]
by {g,r} obs {!Mona,!Isabelle} use {'performTransfer}

rule performTransfer
await Agreed [giver = ?g, receiver = ?r] gain {g,r}
and Coin [issuer = !Isabelle, holder = g]

gain {!Isabelle,g}
to

say Coin [issuer = !Isabelle, holder = r]
by {!Isabelle,r} obs {!Mona} use ...

Using these two rule definitions, Alice can build a nested trans-

action [42], which for our purposes is a list containing the sub-

transaction for each of the rule firings. For the above rules, the

first subtransaction will consume the Offer and Accept facts to

produce an intermediate Agreed fact that is authorized by both

Alice and Bob. The second subtransaction will then immediately

consume this Agreed fact along with the input Coin fact, to pro-

duce the output Coin fact. Both the Agreed fact, as well as the input
Coin fact are guaranteed to be visible to Isabelle, so she will be able
to re-execute the second subtransaction and validate the output

herself. Isabelle will not be able to see the terms of the offer, but

she will be able to confirm with Bob that he agreed to it.

In related work, the DAML [2] ledger model combines facts and

rules into a contract instance, similar to an object in an OO model

— where our facts would be the object’s fields, and our rules its

methods. Parties using the system authorize whole objects, instead

of using separate systems for the authorization of facts (our by-

authority set) and rules (our use-set). DAML is based on UTxO [54],

so invoking a method on an object typically causes it to allocate

some new objects and consume the called object.

A design decision of the DAML model is to ensure each party

that authorizes an object is able to re-execute the subtransaction

that consumes that object. Supporting this can require the system

to sometimes divulge additional objects to an authorizing party

that were not visible until the object they authorized was con-

sumed. However, the object oriented code structure of DAML causes

the transactions produced by method invocation to have a nested

form similar to the above. In DAML, the details of the equivalent

doTheTransfer subtransaction can be sent to Isabelle, leaving
the details of agreeOnOffer private between Alice and Bob.

Draft, 2019, Draft Ben Lippmeier, Amos Robinson, and Andrae Muys

Mark Alice

Brendan

Bid

Item

OrderOffer

ReserveBudget

Accept
Invoice

Figure 3: Fact Visibility for Market Example

3.5 Incidental Observers
For the transaction from §3.1, although Alice was the one that

formed this transaction, she herself is not listed as an observer of

the output Coin fact. When Alice computes the restricted views for

Bob, Isabelle and Mona she knows that those parties will add this

output fact to their own stores, but she should not add it to her own.

As Alice is not an observer of the output coin, any other party that

builds a transaction that consumes this fact will not inform her that

this has happened. In this case we say that Alice is an incidental
observer of the output Coin fact.

3.6 Fact Selection and Checking
In the coin transfer rules discussed so far, each pattern matching

clause has only gathered a single fact at a time. Consider instead

a market workflow where rules need to perform more complex

queries, such as selecting the cheapest item that matches some

criteria. Figure 3 shows the fact visibility for an example workflow.

Mark runs the market, Brendan is a broker, and Alice is a client who

wishes to buy some items. Alice must interact with Mark through

Brendan, instead of communicating directly, like so:

(1) Mark maintains Item facts that describe items available for

sale, along with their asking price. Brendan can pay the

asking price to buy an item immediately, or bid below the

asking price, which Mark may or may not accept.

(2) Alice creates Order facts describing the sort of items she

wishes to buy, her price limit per item, and her total budget

for items of this sort. Brendan can see Alice’s Order facts, but
Mark naturally cannot, as Alice does not want the market to

know the maximum price she is willing to pay.

(3) Brendan attempts to fulfill Alice’s orders by bidding on mul-

tiple items concurrently. Brendan maintains a local Budget
fact recording how much of Alice’s total budget has not yet

been committed to bids. This ensures he does not acciden-

tally bid on items that Alice is not prepared to pay for.

(4) When Brendan wishes enter a new bid he creates a local

Reserve fact, which indicates that some of Alice’s budget

needs to be reserved for this bid. This causes one of Brendan’s

business rules to fire, which first checks that enough Budget
is available, and if so, subtracts from the current Budget,
then sends an active Bid to Mark.

(5) On Mark’s side, one of Mark’s business rules finds the cheap-

est available Item that matches the description in Brendan’s

Bid, and if the bid price is lower than the ask price, converts

the bid to an outstanding Offer.

(6) Later, if Mark decides to accept Brendan’s lower offer, then

Mark creates a local Accept fact. One of Mark’s business

rules matches the Acceptwith the corresponding Offer and
Item, consumes all three, and creates an Invoice which is

visible to all three parties.

An interesting aspect of this workflow is that different parties

in the system will naturally want to maintain their own local busi-

ness rules, and corresponding fact declarations. The way Brendan

accounts for bids he has placed on Alice’s behalf is of no concern

to Mark, but expressing all rules in the same framework means

they can communicate directly. Here is the rule Brendan uses to

check the Budget and produce a Bid. The others are available in the
online appendices at http://github.com/rainfall-lang/rainfall-paper.

fact Item [lot: Nat, desc: Text, ask: Nat]
fact Bid [lot: Nat, offer: Nat]
fact Order [desc: Text, limit: Nat, budget: Nat]
fact Budget [desc: Text, total: Nat, remain: Nat]
fact Reserve [lot: Nat, bid: Nat]

rule reserve
await Order [desc = ?d, limit = ?l]

consume none gain {!Alice}
and Item [lot = ?o, desc = d, ask = ?a]

select first a consume none check {!Mark}
and Budget [total = ?t, remain = ?m] gain {!Brendan}
and Reserve [lot = o, bid = ?b]

where b <= l && b <= a && b <= m gain {!Brendan}
to union
(say Budget [desc = d, total = t, remain = m - a]

by {!Brendan} use ...)
(say Bid [lot = o, price = a]

by {!Brendan, !Alice} obs {!Mark} use ... })

The Order pattern has a consume none clause to indicate that

we only want to read the fact data, rather then consume any weight

of it, as the complete order might not be fulfilled yet. The Order
pattern does not mention the budget field as this particular rule

does not use it. The Item pattern has a select first a clause

to indicate that all items that match the description in the order

should be sorted by the asking price a, and the first one selected.

Brendan should only bid on the cheapest matching item available.

The Reserve pattern has a where clause to check the bid being

placed is no more than Alice’s price limit, no more than the market

asking price, and no more than the remaining budget for Alice.

As the rule matches on facts it will gain the authority of the

client and broker. The output Budget only needs to be authorized

by Brendan as this is part of his internal accounting. The output Bid
is authorized jointly by Brendan and Alice, as Brendan is entering

the bid on behalf of Alice. Finally, in the pattern for Item, the rule
checks that this fact has been authorized by Mark rather than

trying to gain his authority. The check clause allows patterns to
match on observable facts without the rule name being mentioned

in the use-set of that fact. Mark should not need to concern himself

with Brendan’s accounting, so the Item facts that Mark creates do

not need to mention Brendan’s rules. Brendan’s reserve rule can
still execute because it is not consuming any facts authorized by

Mark, or producing any that are authorized in his name.

http://github.com/rainfall-lang/rainfall-paper

Smart Contracts as Authorized Production Rules Draft, 2019, Draft

3.7 Upgrade
As a final example, in practical workflows it is usually necessary to

upgrade data formats and business rules as requirements change.

In Rainfall, upgrading workflows is easy as the use-sets attached to

each fact can be manipulated directly:

rule upgrade
await Coin [issuer = ?s, holder = ?h] gain {s,h}

and LetsUpgrade [party = s, rules = ?rs] gain {s}
and LetsUpgrade [party = h, rules = rs] gain {h}

to say Coin [issuer = s, holder = h]
by {s,h} use rs

This rule allows the issuer and holder of a Coin to jointly agree

to change its rule use-set, and the new use-set can mention new

versions of existing rules. There is no need for a privileged operator

party to orchestrate the upgrade. The meaning of facts is controlled

by the parties that authorize them, and not the people that operate

the ledger system.

4 SEMANTICS
The Rainfall semantics is defined in terms of a core language where

pattern matching is expressed as set comprehension style gener-

ators. For expositional purposes we express rule bodies using a

version of Simply Typed Lambda Calculus (STLC) with records and

sets, but a production implementation could also use a more expres-

sive language like System-F, or a well defined bytecode. The key

ideas of our system are embodied in the rule structure and authority

mechanism, while the language of rule bodies is arbitrary.

4.1 Grammar
The grammar for the core language is in Figure 4. A matching

desugared version of the coin transfer rule from Figure 1, using

!Mona as an observer, is in Figure 5. A Rule has a name, pattern

matching clauses, and a term for the body to produce a set of

new factoids. We use EBNF, soMatch+ in the production for Rule
requires at least one match clause. EachMatch clause has form:

X from N whereM select C consumeU gain I

This says we should scan through all facts in the store with name

N , binding each in turn to the variable X which is in scope for the

sub-terms in the clause. We then gather all such facts that satisfy

predicateM into a set, select the single fact specified byC , consume
the weight specified byU , and gain the authority specified by I . In
the select clause C , the any keyword indicates that any gathered

fact that satisfies the where predicate can be selected. For firstM
and lastM we sort facts by the keyM and take the first or last one.

Our gather/select/consume/gain process is a regularized database

query, reminiscent of the FLWOR blocks of XQuery [13]. Join style

queries are expressed using multiple fact matching patterns. We

default previously elided select, consume and gain clauses to

select any, consume 1 and gain {} respectively.
In the term language we require a few primitive operators to

split out the components of a fact value — fact'payload and so on.
In Figure 5, however, we have left applications of fact'payload
implicit for readability, and retained some standard infix operators.

The check clauses used in §3.6 can be desugared into applications

of fact'by that check the authority of a fact in a where clause.

N , Name ::= ...

L, Label ::= ...

X , Var ::= ...

R, Rule ::= rule Name awaitMatch + to Term

H , Match ::= Var from Name where Term
select Select consume Consume gain Gain

C, Select ::= any | first Term | last Term
U , Consume ::= none | Term
I , Gain ::= none | Term

T , Type ::= Unit | Bool | Nat | Text | Symbol | Party
| Set Type | Sets Type | Fact Type | FACT
| [(Label : Type)∗] | Type → Type

M, Term ::= Literal | Var | Term Term | λVar : Type . Term
| [(Label = Term)∗] | Term . Label | {| Term ∗ |}

| say Name Term
by Term obs Term use Term num Term

V , Value ::= Literal | λVar : Type . Term
| [(Label = Value)∗] | {Value∗}
| Fact | {Fact 7→Weiдht}

L, Literal ::= unit | Bool | Nat | Text | Symbol | Party

(primitive operators)

fact'payloadT :: Fact T → T
fact'byT :: Fact T → Set Party
fact'obsT :: Fact T → Set Party
fact'useT :: Fact T → Set Symbol
sets'unionT :: Sets T → Sets T → Sets T

(environments)

Γ, Env ::= · | Env, Var : Type
Σ, Decls ::= · | Decls, Name : [(Label : Type)∗]

Figure 4: Core Language Grammar

rule transfer
await offer from Offer

where true
select any consume 1 gain {offer.giver}

and accept from Accept
where accept.id == offer.id &&

accept.accepter == offer.receiver
select any consume 1 gain {offer.receiver}

and coin from Coin
where coin.issuer == !Isabelle &&

coin.holder == offer.receiver
select any consume 1 gain {!Isabelle, offer.giver}

to
say Coin [issuer = !Isabelle

, holder = offer.receiver]
by {!Isabelle,offer.receiver} obs {!Mona}
use {'transfer} num 1

Figure 5: Desugared Coin Transfer Rule

Draft, 2019, Draft Ben Lippmeier, Amos Robinson, and Andrae Muys

4.2 Static Semantics
Our type language is standard. In Figure 4 type ()Sets Type) clas-
sifies multisets. The type (Fact Type) classifies fact values whose
payload has type Type . The FACT type is used as the supertype of

all such fact types, omitting a parameter for the payload type so

that rule bodies can produce sets of factoids of differing sorts.

The typing rules are in Figure 6. Most judgment forms use two

environments: Decls (Σ) which maps fact names to their payload

types, and Env (Γ) which maps variable names to their types. The

grammar for the environment are back in Figure 4. In the source

language example in Figure 1 we specified the payload type of

each fact using the fact keyword. In the static semantics here we

assume all such types are added to the initial Decls environment.

The judgment (Σ ⊢ R ok) checks that rule R is well typed. In

the premises we check the sequence of pattern matches, producing

a type environment Γ, that lists the types of variables that are in
scope in the body of the rule. The body M produces a set of new

factoids. The judgment (Σ | Γ ⊢ X ;N ;M ⇒ Γ′) checks the gather
part of the pattern match, where X is bound to to each fact of name

N in turn, and we keep the facts that match the boolean predicate

M . The premise (N : T) ∈ Σ retrieves the payload type T of the

fact, which is used to construct the type of X which is in scope

in the rule bodyM . Checking of Select , Consume , Gain and Term
expressions straightforward.

4.3 Dynamic Semantics
The evaluation rules are in Figure 7. We use the abbreviation Auth
to mean a set of party values that authorize some fact, Facts to
mean a set of facts and Factoids a map of facts to their weights. We

use Store to also map facts to their weights, but name it differently

to hint that this is the current ledger state used for rule evaluation.

We use Env to map variable names to their values. In the notation

we indicate that a variable stands for a collection by including a

superscript that indicates the size of that collection, so Fn would

stand for a set of facts with size n.
This semantics can be used to both execute rules to produce a

transaction as per §3.1, and also to validate that a transaction is

well formed. The semantic rules are non-deterministic. Given a

particular store and production rule definition, it may be possible to

execute that production rule by matching several different subsets

of facts, and the semantic rules do not specify which particular

subset to use. When a particular party builds a transaction and

submits the views to others, it is up to the submitter to resolve any

non-determinism as they see fit. Rainfall is also a contract system
in the sense of specifying a range of valid behavior, rather than an

abstract machine that fixes a single order for rule evaluation.

In Figure 7, starting with the top-level EvFire rule, the judgment:

(Asub | S ⊢ R ⇒ F rr ead | D
s
spend | D

n
new | S

′ fire) says that a
submitting party with authorityAsub and initial store S can execute
rule R, which reads facts F rr ead , spends factoids D

s
spend , creates

new factoids Dn
new , producing a new store S ′. The result sets can

be used to produce (or check) a transaction structure, where the

input list in the transaction is formed from both F rr ead and Ds
spend ,

using zero valued weights for facts listed in F rr ead which are read

but not consumed.

Decls ⊢ Rule ok

Σ | · ⊢ Hn ⇒ Γ Σ | Γ ⊢ M :: Sets FACT

Σ ⊢ rule N await Hn toM ok

Decls | Env ⊢ Match ⇒ Env

Σ | Γ ⊢ · ⇒ Γ

Σ | Γ ⊢ H ⇒ Γ′ Σ | Γ′ ⊢ Hn ⇒ Γ′′

Σ | Γ ⊢ H Hn ⇒ Γ′′

Decls | Env ⊢ Match ⇒ Env

(N : T) ∈ Σ Γ′ = Γ, X : Fact T
· | Γ′ ⊢ M :: Bool Γ′ ⊢ C ok Γ′ ⊢ U ok Γ′ ⊢ I ok

Σ | Γ ⊢ X from N whereM select C consumeU gain I ⇒ Γ′

Env ⊢ Select ok

Γ ⊢ any ok
· | Γ ⊢ M :: Nat

Γ ⊢ firstM ok
· | Γ ⊢ M :: Nat

Γ ⊢ lastM ok

Env ⊢ Consume ok

Γ ⊢ none ok
· | Γ ⊢ M :: Nat

Γ ⊢ M ok

Env ⊢ Gain ok

Γ ⊢ none ok
· | Γ ⊢ M :: Set Party

Γ ⊢ M ok

Decls | Env ⊢ Term :: Type

(X : T) ∈ Γ

Σ | Γ ⊢ X :: T

Σ | Γ, X : T ⊢ M :: T ′

Σ | Γ ⊢ λX : T . M :: T → T ′

Σ | Γ ⊢ M :: T → T ′ Σ | Γ ⊢ M ′ :: T

Σ | Γ ⊢ M M ′ :: T ′

{Σ | Γ ⊢ Mi :: Ti }
i←1..n

Σ | Γ ⊢ [l1 : M1 . . . ln : Mn] :: [l1 : T1 . . . ln : Tn]

Σ | Γ ⊢ M :: [l1 : M1 . . . ln : Mn] l : T ∈ {l1 : T1 . . . ln : Tn }

Σ | Γ ⊢ M . l :: T

{Σ | Γ ⊢ Mi :: T }
i←1...n

Σ | Γ ⊢ {| M1 . . .Mn |}
i←1...n

:: Set T

(Ntaд : T) ∈ Σ
Σ | Γ ⊢ Mpayload :: T T = [l1 : T1 . . . ln : Tn]

Σ | Γ ⊢ Mby :: Set Party Σ | Γ ⊢ Mobs :: Set Party

Σ | Γ ⊢ Muse :: Set Symbol Σ | Γ ⊢ Mnum :: Nat

Γ | Σ ⊢ say Ntaд Mpayload
byMby obsMobs useMuse numMnum :: Sets FACT

Figure 6: Static Semantics (selected rules)

Smart Contracts as Authorized Production Rules Draft, 2019, Draft

The semantics is specified from a global point of view, where the

Store includes the complete set of factoids visible to all parties. The

particular subset of facts visible to a submitting party is controlled

by Asub , which is the authority of that party. In the premises of

EvFire, we apply the pattern matches to produce a set of read, and

spent fact, along with the gained authorityAдain , which must cover

the by-authority of all new factoids Dn
new produced by the body

of the rule. The premise S ↓ Ds
spend ⇒ S ′ checks that factoids

needing to be spent are available in the store S with sufficient

weight, and then removes them from the store, producing a new

store S ′. Similarly S ′ ↑ Dn
new ⇒ S ′′ adds the new facts produced

by the rule body. The corresponding rules are in Figure 8.

Rules EvMatchNil/Cons apply the pattern matches to the store,

gathering the set of facts read factoids spent, authority gained and

the environment containing the matched facts. We use ⊎ opera-

tor to mean multiset union, where the weights of identical facts

are summed. Rule EvMatchOne performs a single pattern match,

performing the gather/select/consume/gain stages to produce the

fact selected, a factoid also mentioning the weight consumed, and

the authority gained from that fact. If a fact is to be read but not

consumed then the weightWspend will be zero. The (F , 0) fac-
toid produced by EvMatch will be eliminated by the use of ⊎ in

EvMatchCons, but the fact F will be retained in the set of facts read.

Rule EvGather collects the facts that match the gather predicate.

The premise is written as a set comprehension, where the clause

“seesAsub F ” ensures we only include facts visible to the submitting

party. The “sees” predicate was defined back in §3.1.

Importantly, we bind the fact value instead of the whole factoid
to avoid confusion about what weight a pattern match should ob-

serve when a pattern before it consumes the same fact. Binding the

whole factoid would allow rules to check the weights of factoids

more directly than using consume clauses, but then interleaving

consumption with matching would mean patterns could not be

reordered freely. Similar issues arise in related active database sys-
tems [45]. A programmer would ultimately want to specify further

behavior, but we leave this to future work.

Rules EvAny/First specify how a single fact should be selected

from the set of gathered facts. With EvAny any fact can be selected.

In EvFirst we compute a set of pairs Dm
of sort keys and values,

and select the value with the smallest key. Handling last is similar.

Rule EvConsumeSome evaluates the term specifying the fact

weight to be consumed, and checks the current rule is in the use

set of the fact. The EvConsumeNone version does not need the

check, as the fact itself is not consumed. Rules EvGainNone/Some

are similar, with EvGainSome checking that the fact supply the

desired authority before returning it.

A direct implementation of the semantic pattern matching rules

would essentially compute a relational join using naive cartesian

product and filtering. A production implementation could instead

use the RETE algorithm [20, 24], a parallel extension of it [10], or

by conversion onto relational algebra for execution on a back-end

relational database that maintains indexing structures.

Rule EvSay evaluates its arguments and produces the corre-

sponding factoid. The remaining execution rules for the STLC term

language are standard and have been omitted to save space.

4.4 Properties
We have mechanized Rainfall using the Isabelle/HOL interactive

theorem prover, and proved several useful isolation and autho-

rization properties. Using this theory as a basis, we have also

mechanized the market example from §3.6 to demonstrate how

to prove safety properties of business logic encoded in our system.

The proof scripts and full statements of invariants are available at

http://github.com/rainfall-lang/rainfall-paper.

4.4.1 Properties of the Semantics.

Theorem 4.1. Frame Constriction: Given an arbitrary store, if a
rule can fire using facts from that store, producing a set of facts read,
factoids spent, and new factoids created, then the same rule can fire
in a store containing only information from those produced sets.

If A | S ⊢ R ⇒ F rr ead | D
n
spent | D

m
new | S

′ fire
then A | F rr ead ⋓ Dn

spent ⊢ R ⇒ F rr ead | D
n
spent | D

m
new | S

′′ fire
where S ′′ = Dm

new ⊎ (F
r
r ead − D

n
spent)

Frame Constriction guarantees that the (unblinded) transaction

structures described in §3.1 can always be validated in isolation,

without needing the entire state of the ledger that existed at the

time the transaction was formed.

In our formalization we use multisets for both the set of facts

read F rr ead and factoids spentDn
spent . When forming the store used

for the second rule firing we need to ensure that facts listed in both

F rr ead and Dn
spent are not counted twice. To achieve this we use

the ⋓ operator which performs a version of multiset union where

elements that exist in both of the argument sets are given their

maximum weight in the result set, rather than their sum.

Theorem 4.2. Focused Firing: Facts that are not visible to a sub-
mitting party do not influence rule firing:

If Asub | S ⊢ R ⇒ F rr ead | D
n
spent | D

m
new | S

′ fire
and ∀f ∈ Sothers . ¬(sees Asub f)
then Asub | S ⊎ Sothers ⊢ R ⇒ F rr ead | D

n
spent | D

m
new | S

′ fire

Theorem 4.3. Visible Spending: A rule firing cannot influence
facts that are not visible to the submitting party.

If Asub | S ⊢ R ⇒ F rr ead | D
n
spent | D

m
new | S

′ fire
then ∀f ∈ F rr ead ⋓ Dn

spent . sees Asub f

Focused Firing ensures that the validity of transaction views sent

by the submitter to a receiving party will not be influenced by extra

facts that are visible to the receiver but not the submitter. Dually,

Visible Spending ensures that any extra facts that are visible to the

receiver but not the submitter cannot be influenced by those views.

Theorem 4.4. Authority Flow: If a fact created by a rule firing is
authorized by some party, then the same party authorized a fact that
was read or spent by that rule firing.

If Asub | S ⊢ R ⇒ F rr ead | D
n
spent | D

m
new | S

′ fire
then ∀f ∈ Dm

new . ∀a ∈ auth-by f . ∃d ∈ F rr ead ⋓ Dn
spent .

a ∈ auth-by d

This key property of our authorization system implies that the

submitter of a transaction cannot attach their own authority to any

of the created facts. The authorization of facts is controlled by the

production rules expressed in the system, rather than the particular

parties that form transactions.

http://github.com/rainfall-lang/rainfall-paper

Draft, 2019, Draft Ben Lippmeier, Amos Robinson, and Andrae Muys

Auth | Store ⊢ Rule ⇒ Facts | Factoids | Factoids | Store fire

N | Asub | S | · ⊢ H
m ⇒ F rr ead | D

s
spend | Aдain | E matches S ↓ Ds

spend ⇒ S ′

E ⊢ M ⇓ Dn
new eval

∧
{Aдain ⊇ auth-by D | D ∈ Dn

new } S ′ ↑ Dn
new ⇒ S ′′

Asub | S ⊢ rule N await Hm toM ⇒ F rr ead | D
s
spend | D

n
new | S

′′ fire (EvFire)

Name | Auth | Store | Env ⊢ Matches ⇒ Facts | Factoids | Auth | Env matches

N | A | S | E ⊢ · ⇒ ∅ | ∅ | ∅ | E matches (EvMatchNil)

Nrule | Asub | S | E ⊢ H ⇒ F | D | Aдain | E
′ match

Nrule | Asub | S | E
′ ⊢ Hn ⇒ F e | Ds | A′дain | E

′′ matches

Nrule | Asub | S | E ⊢ H Hn ⇒ {F } ∪ F e | {D} ⊎ Ds | Aдain ∪A
′
дain | E

′′ matches (EvMatchCons)

Name | Auth | Store | Env ⊢ Match ⇒ Fact | Factoid | Auth | Env match

E ′ = E,X 7→ F
Fn | E ⊢ X ; C ⇒ F select Nrule | F | E

′ ⊢ U ⇒Wspend consume
Asub | S | E ⊢ X ; Nf act ; M ⇒ Fn gather Nrule | F | E

′ ⊢ I ⇒ Aдain gain

Nrule | Asub | S | E ⊢ X from Nf act whereM select C consumeU gain I

⇒ F | (F , Wspend) | Aдain | E
′ (EvMatchOne)

Auth | Store | Env ⊢ Var ; Name ; Term ⇒ Facts gather

Fn =

F | F ∈ dom S
, name F = Nf act , sees Asub F

, (E, X 7→ F ⊢ M ⇓ true eval)

Asub | S | E ⊢ X ; Nf act ; M ⇒ Fn gather (EvGather)

Facts | Env ⊢ Var ; Select ⇒ Fact select

F ∈ Fn

Fn | E ⊢ X ; any ⇒ F select

Dm = {(V , F) | F ∈ Fn , (E,X 7→ F ⊢ M ⇓ V eval)}
V ′ = minimum {V | (V , _) ∈ Dm } (F ′,V ′) ∈ Dm

Fn | E ⊢ X ; firstM ⇒ F ′ select (EvAny/First)

Name | Fact | Env ⊢ Consume ⇒Weiдht consume

Nrule | F | E ⊢ none⇒ 0 consume
Nrule ∈ rules F E ⊢ M ⇓W eval
Nrule | F | E ⊢ M ⇒W consume (EvConsumeNone/Some)

Name | Fact | Env ⊢ Gain ⇒ Auth gain

Nrule | F | E ⊢ none⇒ ∅ gain
Nrule ∈ rules F E ⊢ M ⇓ A eval A ⊆ auth-by F

Nrule | F | E ⊢ M ⇒ A gain (EvGainNone/Some)

Env ⊢ Term ⇓ Value eval

F = (Nf act ,Vpayload ,Aby ,Aobs ,Vuse) E ⊢ Mpayload ⇓ Vpayload eval . . .

E ⊢ say Nf act Mpayload Mby Mobs Muse Mnum ⇓ {F 7→ Vnum } eval (EvSay)

Figure 7: Dynamic Semantics

Smart Contracts as Authorized Production Rules Draft, 2019, Draft

Store ↓ Factoids ⇒ Store Store ↑ Factoids ⇒ Store

Dn ⊆ S S ′ = S − Dn

S ↓ Dn ⇒ S ′
S ′ = S ⊎ Dn

S ↑ Dn ⇒ S ′

Figure 8: Store Modification

4.4.2 Properties of the market example. We have also mechanized

the market example in §3.6 in Isabelle/HOL and proven the follow-

ing business level theorem:

Theorem 4.5. Budget Adherence: The total value of invoices a
broker receives for items bought on behalf of a client, never exceeds
the budget specified in the client’s original order.

We prove this by first specifying an invariant over all facts in

the store, and then proving that the possible firings of each rule in

the workflow all preserve the invariant. For example, the top-level

statement for the reserve production rule is:

If Asub | S ⊢ reserve⇒ F rr ead | D
n
spent | D

m
new | S

′ fire
and store-ok S then store-ok S ′

The statement of the invariant is available in the appendix. We

also prove that the invariant is established for newly created budgets

with no initial associated bids, invoices or offers.

Rainfall’s production rule based programming model makes it

easy to approach proofs of business level properties like this. Pro-

vided one can write down a suitable invariant, the task then decom-

poses automatically into a separate subgoal for each rule.

4.5 Extensions
The semantics described in this section has a few natural extensions

that we have elected to omit to avoid obscuring the presentation.

4.5.1 Extended Weight Types. There is no particular reason why

the weight of each fact must be restricted to being a natural number

as per §2.2. Our dynamic semantics only depends on the represen-

tation of weights in three places: to combine the weights of factoids

in EvMatchCons and EvStoreUp, and in the subset test and set

difference operators in EvStoreDown.

In general it would sufficient to use an Abelian group which also

has a partial order. An Abelian group provides a weight combining

operator that is associative, commutative and invertible. Requiring

weight combining operator to be associative and commutative al-

lows the facts needed by a rule to be matched in arbitrary order.

We need the partial order to determine if a weight of the required

value is present in the store, and the weight combining operator

needs to be invertable so we can reduce the weight of facts in the

store when they are spent.

An example extended weight type is a simple Present / Absent
indicator. When multiple facts are added with a weight of Present
then the resulting fact is still Present. If this Present fact is then

consumed it becomes Absent. Such a weight type helps to encode

facts like “someone needs to water the plants”. As the plants should

only be watered once, it does not make sense to allow a numeric

weight with value greater than one. Later, when a real-world party

actually gets around to watering the plants, then the whole fact

can be removed from the store.

4.5.2 Minimum Weight Thresholds. In EvFire from Figure 7, when

a production rule reads a fact but does not consume any weight of

it, or gain any authority from it, then the fact appears in the set of

facts read F rr ead , but not the map of factoids spent Ds
spend . This

means the rule can fire if the required fact is present in the store

with any non-zero weight. An extension is to allow a rule to wait

for a particular weight of a fact to be available before firing, without

also needing to consume it. To achieve this we would change the

representation of F rr ead to also be a map of factoids, and add a

(require M) form to Consume specifications, where M is a term

that evaluates to the weight the rule must have before firing.

5 RELATEDWORK
5.1 Linda-style Tuple Spaces
Linda [28] is a coordination model where processes communicate

by adding, removing and non-destructively reading tuples from a

globally shared tuple space. The basic Linda model is open, meaning

that any party using it is free to add and remove tuples at will. This

lack of access control or provenance information makes it unusable

for as a communication medium for mutually distrusting parties.

Several extensions to the basic Linda model add metadata to the

tuples that are similar to the ‘by’ and ‘obs’ authority sets of our

own Rainfall model. SecSpaces [16] signs tuples with the private

keys of parties that create them, and adds metadata that specifies

the identities of those that can see and consume them. Merrick [39]

describes a scoping/visibility system for tuple spaces where new

scopes can be created at will and combined using a set of scope

combinators. Oriol [44] describes a model of tagged sets where

the tuples are identified by a formula in propositional logic that

allows authority and visibility information to be encoded uniformly.

Udzir [51] describes amodel where collections of tuples have unique

identifiers, and the client programmust provide a matching runtime

capability when accessing them. These systems refine the Linda

data model, but do not provide a mechanism to allow parties using

the system to combine authorized tuples to produce new ones that

are authorized by any other party except themselves. The ability to

do this is the main contribution of our own system.

5.2 Law Governed Linda
LawGoverned Linda (LGL) [40, 41] takes the basic Linda data model

and inserts a controller between the tuple space and each commu-

nicating process. Each controller has a copy of a communication

law, written in a fragment of Prolog, that specifies the allowable

interactions with the tuple space. For example, the law could state

that a process may only create a tuple that includes a from field,

when the value in that field is its own process identifier.

The codified law specifies the allowable interaction a process

may have with the communication medium. The controllers are

assumed to run on a trusted computing base, either as part of the

physical server that provides the tuple space, or on a secure co-

processor [41]. In contrast, the production rules in our Rainfall

model do not limit the form of data added to the system. Instead,

they specify how authorized facts that are already in the store may

be combined to produce new authorized facts. The Authority Flow

theorem of §4.4.1 also ensures we do not need to rely on a trusted

computing base to enforce the rules of the system.

Draft, 2019, Draft Ben Lippmeier, Amos Robinson, and Andrae Muys

5.3 Extended Shared Prolog
Like LGL, Extended Shared Prolog (ESP) [17, 18] combines the

Linda coordination model with rules written in a restricted subset

of Prolog. In this case the rules are stored as special program tuples
in the main tuple space, and the rules describe how existing tuples

can be combined, rather than controlling the interaction between

the tuple space and its clients. The format of each rule is similar to

a Rainfall production rule, including a section to gather matching

tuples, a section to decide which should be consumed, and a section

to compute new tuples. Program tuples behave like triggers in an

active database [45], where a rule is activated when all tuples it

was waiting for become available. However, as with the basic Linda

coordination model, there is no mechanism to enforce transitive

authority, or track the provenance of created tuples.

5.4 Permissioned Distributed Ledgers
As mentioned in §3.4, DAML combines facts and rules into a con-
tract instance, which is similar to an object in an Object-Oriented

(OO) model. Objects are referred to by contract identifiers, which
are equivalent to typed references in the OO model. The DAML

coordination model is based on UTxO [54], so invoking a method

on an object typically causes it to create some new objects, then

consume/delete that object. Deleting an object causes any exist-

ing references to it to become dangling, and following a dangling

reference at runtime causes an exception. In contrast, our Rainfall

model identifies facts by their content, rather than using a physical

reference or pointer value. If a particular fact is not available with

sufficient weight then this inhibits rule firing, rather than being

treated as an execution failure.

A DAML method can invoke methods on other objects that it

already has a reference to, but cannot query the ledger state directly.

This restriction is standard in the OO coordination model, where

method code cannot directly query the runtime heap to discover

other objects based on their field data. Instead, objects typically

communicate using shared references to mutable data. However,

as the DAML programming model purposefully does not include

shared mutable data, the usual OO programming patterns are un-

available. In practice, ledger actions are performed by “nanobots”,

which are driver routines written in an external language. The

query performed by a nanobot yields a set of contract identifiers,

which are then passed back to the DAML code as arguments to

method invocations. The Rainfall model was specifically developed

to avoid the need for nanobots, while providing an authority system

similar the one in DAML.

Corda [32], and Hyperledger Fabric [9] are related permissioned

distributed ledgers. Instead of defining a specific contract language,

both systems allow custom procedures to be installed that accept

transactions directly and report whether they are valid. In Corda

the validation procedures are expressed in a version of JVM byte-

code that has been modified to ensure execution is deterministic.

In Hyperledger Fabric the validation procedures can be arbitrary

native code encapsulated in a Docker [4] container. These systems

both provide the networking layer for a distributed ledger system,

but purposefully do not specify a programming model in sufficient

detail to prove safety properties such as those in §4.4. Leaving this

as a separate implementation design choice.

5.5 Actors, Process Algebras, and Constraints
Production rule systems like Rainfall have a passing similarity to the

Actor [8] model, but the computation framework is quite different.

Production rules do not maintain their own private state, or have

instance identity in the sense that they are addressable bymailbox or

channel names. However, one could compile an actor program into
Rainfall, by building facts that represent the local state of each actor,

and defining production rules to handle the messages. A proposed

extension to Erlang provides the multi-headed pattern matching

needed by production rules [50], though matching is performed on

ordered streams of incoming messages, rather selecting from an

unordered soup of tuples. ActorSpaces [7] is a related model that

uses message passing communication while also allowing messages

to be broadcast to all actors in a group.

Existing process languages such as the Join Calculus [25] and

the Chemical Abstract Machine (CHAM) [12] allow processes to

wait for multiple related facts (messages) to become available be-

fore activating. Similar functionality is available from of Constraint

Handling Rules (CHR) [26]. However, as with Extended Shared

Prolog (§5.3) these systems do not have a builtin authority or prove-

nance mechanism that could be used to guide data privacy as de-

scribed in §3.

5.6 Authorization Logics
The Dependency Core Calculus (DCC) [6] extends Moggi’s compu-

tational lambda calculus with an extra judgment form that indicates

the value produced by a computation is protected at a given security

level. Abadi [5] studies DCC applied to access control and tracking

in a distributed system. This work uses a proposition (P says A),
where P is some principle/party that affirms statementA. The ’says’
former abstracts away from the details of what exactly is being

authenticated or authorized. The statement (P says A) can vari-

ously be interpreted as “P has causedA to be said”, “A has been said

on P ’s behalf” or “P supports A”. Garg [27] gives a sequent style

presentation with two judgement forms (A true) and (P affirms A).
The ‘affirms’ form is internalized as a proposition (P saysA). Garg’s
system comes with meta theory of Affirmation Flow, meaning that

unless a principle P affirms a particular statement, no affirmations

of the form (P affirms A) can be derived from it. Bowers [15] gives

a Gentzen style presentation that also has a (P signed A) form to

model a message being cryptograpically signed.

DCC and related systems are logics rather than programming

languages that have a direct operational interpretation. The Aura

language [36] then specifies a functional operational semantics, as

well as a proof term assignment for a version of DCC. Proofs of

authority can be passed to functions as pure proof terms. Rainfall is

directly inspired by the DCC family of logics and languages. Instead

of building functional proof terms to demonstrate authority, we

gather it in stages, incrementally writing authorized facts back to

the ledger. Our ledger then can be viewed as a distributed proof of

authority, where versions of DCC style logical properties still apply.

For example, our Authority Flow theorem (§4.4) is the operational

version of Garg’s [27] Affirmation Flow.

AcknowledgementsMany thanks to Fil Mackay, Lance Arlaus,

Raphael Speyer, Erwin Ramirez and Ben Sinclair for helpful discus-

sions and pointers to related work.

Smart Contracts as Authorized Production Rules Draft, 2019, Draft

REFERENCES
[1] CSL language guide documentation, release v0.30.0. https://deondigital.com/

docs/v0.30.0/cslguide.pdf.

[2] DAML SDK documentation. https://docs.daml.com/index.html. Accessed: 2019-

04-27.

[3] Financial Core Language (FCL). https://www.adjoint.io/docs/workflows.html.

Accessed: 2019-04-27.

[4] The Docker website. https://www.docker.com/. Accessed: 2019-05-03.

[5] Martín Abadi. Access control in a core calculus of dependency. Electronic Notes
in Theoretical Computer Science, 172, 2007.

[6] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G Riecke. A core

calculus of dependency. In Principles of Programming Languages (POPL), 1999.
[7] Gul Agha and Christian J Callsen. ActorSpace: an open distributed programming

paradigm. In Principles and Practice of Parallel Programming (PPoPP). ACM, 1993.

[8] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. Towards a

theory of actor computation. In International Conference on Concurrency Theory
(CONCUR), 1992.

[9] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos

Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-

man, Yacov Manevich, et al. Hyperledger fabric: a distributed operating system

for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference,
page 30. ACM, 2018.

[10] Mostafa M Aref and Mohammed A Tayyib. Lana–Match algorithm: a parallel

version of the Rete–Match algorithm. Parallel Computing, 24(5-6), 1998.
[11] Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino. A formal

model of bitcoin transactions. IACR Cryptology ePrint Archive, 2017.
[12] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical

Computer Science, 96(1), 1992.
[13] Scott Boag, Don Chamberlin, Mary F Fernández, Daniela Florescu, Jonathan Robie,

Jérôme Siméon, and Mugur Stefanescu. Xquery 1.0: An xml query language.

2002.

[14] Sean Bowe, Ariel Gabizon, and Matthew D Green. A multi-party protocol for

constructing the public parameters of the pinocchio zk-snark. In International
Conference on Financial Cryptography and Data Security, 2018.

[15] Kevin D Bowers, Lujo Bauer, Deepak Garg, Frank Pfenning, and Michael K Reiter.

Consumable credentials in logic-based access-control systems. InAnnual Network
and Distributed System Security Symposium, 2007.

[16] Nadia Busi, Roberto Gorrieri, Roberto Lucchi, and Gianluigi Zavattaro. SecSpaces:

a data-driven coordination model for environments open to untrusted agents.

Electronic Notes in Theoretical Computer Science, 68(3), 2003.
[17] Paolo Ciancarini. Coordinating rule-based software processes with esp. ACM

Transactions on Software Engineering and Methodology (TOSEM), 2(3), 1993.
[18] Paolo Ciancarini. Distributed programming with logic tuple spaces. New Gener-

ation Computing, 12(3), 1994.
[19] Ankush Das, Stephanie Balzer, Jan Hoffmann, and Frank Pfenning. Resource-

aware session types for digital contracts. arXiv preprint arXiv:1902.06056, 2019.
[20] Robert B Doorenbos. Production matching for large learning systems. Technical

report, Carnegie-Mellon University, 1995.

[21] Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif Haridi. Efficient broad-

cast in structured P2P networks. In International workshop on Peer-to-Peer systems,
2003.

[22] Robert Bruce Findler andMatthias Felleisen. Contracts for higher-order functions.

In ACM SIGPLAN Notices, volume 37. ACM, 2002.

[23] Charles L Forgy. OPS5 user’s manual. Technical report, Carnegie-Mellon Univer-

sity, 1981.

[24] Charles L Forgy. Rete: A fast algorithm for the many pattern/many object pattern

match problem. In Readings in Artificial Intelligence and Databases. Elsevier, 1989.
[25] Cedric Fournet and Georges Gonthier. The reflexive cham and the join-calculus.

In Principles of Programming Languages (POPL), 1996.
[26] Thom Frühwirth. Theory and practice of constraint handling rules. The Journal

of Logic Programming, 37(1-3), 1998.
[27] Deepak Garg and Frank Pfenning. Non-interference in constructive authorization

logic. In IEEE Computer Security Foundations Workshop, 2006.
[28] David Gelernter. Generative Communication in Linda. Transactions on Program-

ming Languages and Systems, 7(1), 1985.
[29] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

Algorand: Scaling byzantine agreements for cryptocurrencies. In Symposium on
Operating Systems Principles. ACM, 2017.

[30] Ian Grigg. EOS - An Introduction, 2017.

[31] Dominik Harz and William J. Knottenbelt. Towards safer smart contracts: A

survey of languages and verification methods. CoRR, abs/1809.09805, 2018.
[32] Mike Hearn. Corda: A distributed ledger. Corda Technical White Paper, 2016.
[33] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol

specification. Tech. rep. 2016–1.10. Zerocoin Electric Coin Company, 2016.
[34] IOHK. Formal Specification of the Plutus Core Language (version 2.0). https://

hydra.iohk.io/build/798158/download/1/plutus-core-specification.pdf. Accessed:

2019-04-27.

[35] Kurt Jensen. Coloured Petri nets and the invariant-method. Theoretical computer
science, 14(3), 1981.

[36] Limin Jia, Jeffrey A Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph

Schorr, and Steve Zdancewic. Aura: A programming language for authorization

and audit. In ACM SIGPLAN Notices, volume 43, 2008.

[37] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals

problem. ACM Transactions on Programming Languages and Systems (TOPLAS),
4(3), 1982.

[38] Niels Lohmann, Eric Verbeek, Chun Ouyang, Christian Stahl, andWil MP van der

Aalst. Comparing and evaluating petri net semantics for bpel. International
Journal of Business Process Integration and Management, 4(1), 2009.

[39] Iain Merrick and AlanWood. Coordination with scopes. In Symposium on Applied
Computing, 2000.

[40] Naftaly H Minsky and Jerrold Leichter. Law-governed Linda as a coordination

model. In European Conference on Object-Oriented Programming, 1994.
[41] Naftaly H Minsky, Yaron M Minsky, and Victoria Ungureanu. Safe tuplespace-

based coordination in multiagent systems. Applied Artificial Intelligence, 15(1),
2001.

[42] John Eliot Blakeslee Moss. Nested transactions: An approach to reliable dis-

tributed computing. Technical report, Massachusetts Institute of Technology,

1981.

[43] Diego Ongaro and John Ousterhout. In search of an understandable consensus

algorithm. In USENIX Annual Technical Conference, 2014.
[44] Manuel Oriol and Michael Hicks. Tagged sets: a secure and transparent coor-

dination medium. In International Conference on Coordination Languages and
Models, 2005.

[45] Norman W Paton and Oscar Díaz. Active database systems. ACM Computing
Surveys (CSUR), 31(1), 1999.

[46] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing contracts: an

adventure in financial engineering (functional pearl). In ACM SIGPLAN Notices,
volume 35. ACM, 2000.

[47] Stuart Popejoy. The Pact smart contract language, 2016.

[48] Gary Riley. CLIPS basic programming guide, version 6.40 beta, 2017.

[49] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Scilla: a smart contract

intermediate-level language. CoRR, abs/1801.00687, 2018.
[50] Martin Sulzmann, Edmund SL Lam, and Peter Van Weert. Actors with multi-

headed message receive patterns. In International Conference on Coordination
Languages and Models, pages 315–330, 2008.

[51] Nur Izura Udzir, Alan M Wood, and Jeremy L Jacob. Coordination with multica-

pabilities. Science of Computer Programming, 64(2), 2007.
[52] Fabian Vogelsteller and Vitalik Buterin. ERC-20: A standard

interface for tokens. https://github.com/ethereum/EIPs/blob/

e7dac5b8287106143d361b1de3704ce0bba31983/EIPS/eip-20.md.

[53] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger,

2014.

[54] Joachim Zahnentferner. An abstract model of UTxO-based cryptocurrencies with

scripts. IACR Cryptology ePrint Archive, 2018.
[55] Joachim Zahnentferner. Chimeric ledgers: Translating and unifying utxo-based

and account-based cryptocurrencies. IACR Cryptology ePrint Archive, 2018.

https://deondigital.com/docs/v0.30.0/cslguide.pdf
https://deondigital.com/docs/v0.30.0/cslguide.pdf
https://docs.daml.com/index.html
https://www.adjoint.io/docs/workflows.html
https://www.docker.com/
https://hydra.iohk.io/build/798158/download/1/plutus-core-specification.pdf
https://hydra.iohk.io/build/798158/download/1/plutus-core-specification.pdf
https://github.com/ethereum/EIPs/blob/e7dac5b8287106143d361b1de3704ce0bba31983/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/e7dac5b8287106143d361b1de3704ce0bba31983/EIPS/eip-20.md

Draft, 2019, Draft Ben Lippmeier, Amos Robinson, and Andrae Muys

A MARKET RULES
This section includes the full rule definitions of the market example

that appears in §3.6. An executable version is available online.

fact Order [desc: Text, limit: Nat, budget: Nat]
fact Item [lot: Nat, desc: Text, ask: Nat]
fact Accept [lot: Nat, price: Nat]
fact Offer [lot: Nat, price: Nat]
fact Bid [lot: Nat, offer: Nat]
fact Budget [desc: Text, total: Nat, remain: Nat]
fact Reserve [lot: Nat, bid: Nat]
fact Invoice [seller: Party, buyer: Party, desc: Text, amount: Nat]

-- Brendan reserves a portion of the budget allotted to
-- Alice, and forwards a bid to Mark.
rule reserve
await Order [desc = ?d, limit = ?l]

consume none gain {!Alice}
and Item [lot = ?o, desc = d, ask = ?a]

select first a consume none check {!Mark}
and Budget [desc = ?d, total = ?t, remain = ?m]

gain {!Brendan}
and Reserve [lot = o, bid = ?b]

where b <= l && b <= a && b <= m gain {!Brendan}
to union

(say Budget [desc = d, total = t, remain = m - a]
by {!Brendan} use {'reserve})
(say Bid [lot = o, offer = b]
by {!Brendan, !Alice} obs {!Mark} use {'bid})

-- Mark converts bids that Brendan has placed that are below
-- the asking price of the item into resting offers.
rule bid
await Bid [lot = ?o, offer = ?b] gain {!Brendan}

and Item [lot = o, ask = ?a]
where b < a consume none gain {!Mark}

to
say Offer [lot = o, price = b]
by {!Brendan, !Mark} use {'accept}

-- Mark accepts a resting offer, removes the item listing
-- and produces an invoice for the sale price.
rule accept
await Accept [lot = ?o, price = ?p] gain {!Mark}

and Offer [lot = o, price = p] gain {!Brendan, !Mark}
and Item [lot = o, desc = ?d]

consume 1 check {!Mark}
to

say Invoice [seller = !Mark, buyer = !Brendan
, desc = d, amount = p]

by {!Mark, !Brendan}

B MARKET INVARIANTS
Themarket example introduced in §3.6 used the “store-ok” invariant

to ensure that, if the budgets are adhered to in a particular store,

then after execution of any of the market rules, any updated budgets

in the new store are also adhered to. A budget is adhered to when

the total value of invoices issued to a broker for a particular client

do not exceed the client’s specified budget limit.

For all rules r ∈ {accept, bid, reserve},
if Asub | S ⊢ r ⇒ F rr ead | D

n
spent | D

m
new | S

′ fire
and store-ok S then store-ok S ′

The definition of the invariant for stores finds all orders in the

store, and ensures that for each order the order invariants are

satisfied:

store-ok S =
For all orders Order o ∈ S ,
require order-ok S o

The order invariant ensures that an order has at most one bud-

get, and that the budget invariants are satisfied. An order with no

associated budget is valid:

order-ok S o =
For all budgets Budget b ∈ budgets-for-order S o,
require unique S b
and require budget-ok S b

While our desired property is to show that the total value of

invoices does not exceed the budget limit, our invariant must show

a stronger property, which is that the total value of bids, invoices

and offers must not exceed the budget limit. This stronger property

is required as bids and offers can eventually result in invoices, as

bids are transformed to offers, and offers are accepted. The budget

invariant finds all associated bids, invoices and offers, and sums

their prices to compute the total amount reserved by the budget.

This total reserved amount plus the remaining budget must equal

the budget limit:

budget-ok S b =
Require budget-total b = total + budget-remain b
where total = bids + invoices + offers,
and bids =

∑
d ∈bids-for-budget S b bid-price d

and invoices =
∑
i ∈invoices-for-budget S b invoice-price i

and offers =
∑
o∈offers-for-budget S b offer-price o

This invariant ensures that the reserved amount is less than or

equal to the total budget, as all numbers are non-negative natural

numbers. The functions bids-for-budget, invoices-for-budget and

offers-for-budget compute the multiset of associated bids, invoices

or offers, for a particular budget. The functions budget-total, budget-

remain, bid-price, and so on, are accessor functions to retrieve

components of the fact values.

	Abstract
	1 Introduction
	2 Facts, Rules, and Authority
	2.1 Facts
	2.2 Weights
	2.3 Rules
	2.4 Authority
	2.5 Observation
	2.6 Usable Rules
	2.7 Data Model

	3 Privacy
	3.1 Transaction and Validation
	3.2 Transaction Views
	3.3 Consensus
	3.4 Nested Transactions
	3.5 Incidental Observers
	3.6 Fact Selection and Checking
	3.7 Upgrade

	4 Semantics
	4.1 Grammar
	4.2 Static Semantics
	4.3 Dynamic Semantics
	4.4 Properties
	4.5 Extensions

	5 Related Work
	5.1 Linda-style Tuple Spaces
	5.2 Law Governed Linda
	5.3 Extended Shared Prolog
	5.4 Permissioned Distributed Ledgers
	5.5 Actors, Process Algebras, and Constraints
	5.6 Authorization Logics

	References
	A Market Rules
	B Market Invariants

