
GHC on the OpenSPARC T2

Ben Lippmeier
Australian National University
FP-SYD 2009/08/20

A Slow Program

result :: [Integer]
result = map (ack 2) [1..200]

ack :: Integer -> Integer -> Integer
ack 0 n = n + 1
ack n 0 = ack (n-1) 1
ack n m = ack (n-1) (ack n (m - 1))

Algorithm + Strategy = Parallelism

import Control.Parallel.Strategies

result :: [Integer]
result = map (ack 2) [1..200]
 `using` parList rwhnf

ack :: Integer -> Integer -> Integer
ack 0 n = n + 1
ack n 0 = ack (n-1) 1
ack n m = ack (n-1) (ack n (m - 1))

• Add parallel combinators => program runs faster.

• All locking / scheduling / work balancing done by RTS.

GHC parallel evaluation model

Capability 0cpu0 Spark Pool

main thread

• A capability is a thread of the GHC runtime system that can evaluate parts of
the program. There is one capability per CPU/hardware thread.

• Capability 0 holds the main thread, which evaluates the main routine.

Capability 1cpu1

let y = f x
in y `par` exp

GHC parallel evaluation model

• A spark represents an expression in the program that could be potentially
evaluated in parallel.

• Sparks are created with the primitive Haskell operator par

let y = f x
in y `par` exp

Capability 0cpu0 Spark Pool

main thread

Capability 1cpu1

y = f x

GHC parallel evaluation model

• When a Capability is idle, a spark is taken from the spark pool and made into
a running thread.

• All we need to do is to create sparks, and specify the number of capabilities
to use. Great for irregular parallelism!

let y = f x
in y `par` exp

Capability 0cpu0 Spark Pool

main thread

Capability 1cpu1

y = f x

y = f x

The OpenSPARC T2: Released October 2007

• 8 cores / processor.
8 threads / core.
 = 64 threads / processor

• Hardware per core:
 + 2 ALUs
 + 1 Load/Store Unit
 + 1 FP Unit

• In each cycle a core can
dispatch 2 instructions.

• Threads on the same core
share the same L1 cache.

OpenSPARC T2 peak issue rate (in order)

• Peak instruction issue rate:
 1165 Meg cycles / sec
 * 2 instructions / core
 * 8 cores / processor
 = 18.64 Gig Instr/s

Intel Core2 Duo peak issue rate (out of order)

• Peak instruction issue rate:
 1600 Meg cycles / sec
 * 4 instructions / core
 * 2 cores / processor
 = 12.80 Gig Instr/s

Out-of-order execution doesn’t help us much...

 sethi %hi(s1p9_info), %g1
 or %g1, %lo(s1p9_info), %g1
 st %g1, [%i3-24]
 ld [%i0+8], %g1
 st %g1, [%i3-16]
 ld [%i0+4], %g1
 st %g1, [%i3-12]
 st %l2, [%i3-8]
 ld [%i0+12], %g1
 st %g1, [%i3-4]
 st %l1, [%i3]
 add %i3, -24, %g1
 st %g1, [%i0+12]
 ld [%i0+8], %l1
 sethi %hi(s1rX_info), %g1
 or %g1, %lo(s1rX_info), %g1
 st %g1, [%i0+8]
 add %i0, 8, %i0
 and %l1, 3, %g1
 cmp %g1, 0
 bne .Lc1Un

• Lots of memory traffic
 => Lots of cache miss

• Not much Instruction Level
Parallelism (ILP)

Project: Make GHC work on the OpenSPARC T2

• Project funded by Sun Microsystems.
 - Organised by Duncan Coutts, Roman Leshchinskiy, Darryl Gove.

• As of 1st Jan 2009, GHC did not build at all on SPARC.

• Step1: Fix the via-C build.
 - No buildbots for SPARC.
 - Existing SPARC build was entirely community supported.

• Step2: Fix the Native Code Generator
 - SPARC NCG hadn’t worked for years.
 - Badly in need of cleaning up and refactoring.

• Step 3: Benchmarking and Tuning

Benchmarking on the T2

8 T2 Threads ∼ 2 Merom Cores

(one thread per core on the T2)

3

8

(lots of parallelism)

Benchmarking on the T2

8 T2 Threads ∼ 1/4 Merom Core

(for this benchmark)

8

33

(not much parallelism)

Benchmarking on the T2

(large variation in run-time)

(periods of high and low parallelism)

Benchmarking Summary

If you have less than 8 threads of work,
then stay home.

Instruction counts on Pentium M vs SPARC T2

sethi %hi(__stginit_base_Prelude_),%g1
or %g1,%lo(__stginit_base_Prelude_),%g1
st %g1,[%i0]
add %i0,-4,%i0
sethi %hi(__stginit_base_SystemziEnvironment_),%g1
or %g1,%lo(__stginit_base_SystemziEnvironment_),%g1
st %g1,[%i0]

Load 32bit Imm

run time instr issue rate

total instrs executed data cache misses (scaled)

8 threads on 1 core vs 1 thread per core

Thread activity for sumeuler benchmark

-N16 -N32 -N64

Thread activity for matmult benchmark

Distinct phases of high
and low activity

Large variation run-to-run

Why??

Perhaps
ThreadScope

can help...

-N32

Future work

• Try to rewrite benchmarks to expose more parallelism.
Until now we haven’t been dealing with 64 hardware threads.

• Use ThreadScope to determine why we have periods of low activity in
benchmarks like matmult.

• Some simple compile-time instruction reordering could help.
The T2 core does no runtime reordering => pipeline stalls.

• Keep the build working!!

