
GHC on the OpenSPARC T2

Ben Lippmeier
Australian National University
Haskell Implementors Workshop
2009/08/05

The Project

•Funded by Sun Microsystems.

•Organised by:
 - Duncan Coutts, Roman Leshchinskiy, Darryl Gove.

•Make GHC work on SPARC (again)

•Why do we care?

Multicore !!!
(shared memory symmetric multi-processing)

The OpenSPARC T2

• Released Oct 2007

• 8 cores / processor

• 8 threads / core

• 64 threads / processor

• 4 MB L2 Cache
 16 way associative.

• 1165 MHz

One T2 Core

• Hardware per core:
 2 x ALU (Integer + Address)
 1 x FPU (Floating Point)
 1 x LSU (Load Store Unit)

• 8 stage integer pipeline

• 12 stage floating point pipeline

• No out-of-order execution

• No exploitation of instruction
level parallelism (ILP)

thread 7

thread 6

thread 5

thread 4

thread 0

thread 1

thread 2

thread 3

LSU

ALU

ALU

FPU

L1 Cache
16 KB Instr
 8 KB Data

One T2 Core

thread 7

thread 6

thread 5

thread 4

thread 0

thread 1

thread 2

thread 3

LSU

ALU

ALU

FPU

L1 Cache
16 KB Instr
 8 KB Data

• Each thread has its own
register set.

• Two instructions can be
dispatched per cycle,
each from different threads.

• Threads are intended to stall
frequently.

• All threads on a core share the
same L1 Cache.

Peak instruction issue rates

OpenSPARC T2

1165 MHz * 2 instrs/core * 8 cores
 = 18.64 Gig instrs / s

1600 MHz * 4 instrs/core * 2 cores
 = 12.80 Gig instrs / s

Intel Core2 Duo

(in order)

(out of order)

Out-of-order execution doesn’t help us much...

 ld [%i0+4], %g1
 st %g1, [%i3-12]
 st %l2, [%i3-8]
 ld [%i0+12], %g1
 st %g1, [%i3-4]
 st %l1, [%i3]
 add %i3, -24, %g1
 st %g1, [%i0+12]
 ld [%i0+8], %l1
 sethi %hi(s1rX_info), %g1
 or %g1, %lo(s1rX_info), %g1
 st %g1, [%i0+8]
 add %i0, 8, %i0
 and %l1, 3, %g1
 cmp %g1, 0
 bne .Lc1Un

• Lots of memory traffic
 => Lots of cache miss

• Not much ILP
 (Instr Level Parallelism)

Fixing the Native Code Generator

• GHC has had native code generation for
 - x86
 - x86_64
 - Power PC
 - SPARC
 - Alpha

• All mashed into one module “MachCodeGen.hs”

• Support for various architectures has grown organically.

• Target architecture selected by a series of #ifdefs

#ifdef is not my friend

#if i386_TARGET_ARCH || x86_64_TARGET_ARCH

getRegister (CmmMachOp mop [x])
 = case mop of
#if i386_TARGET_ARCH
 MO_F_Neg W32 -> trivialUFCode FF32 (GNEG FF32) x
 MO_F_Neg W64 -> trivialUFCode FF64 (GNEG FF64) x
#endif

...
#if sparc_TARGET_ARCH
getRegister (CmmLit (CmmFloat f W32))
 = do ...

...
#if powerpc_TARGET_ARCH
getRegister (CmmLoad mem pk)
 | not (isWord64 pk)
 =

#ifdef is not my friend

• Hard to work on code for one platform without breaking others.

• All code for all platforms should be compiled all the time.

• Code for SPARC and PPC is now split into its own modules.

• Still need to untangle x86 from x86_64.

• Move towards being a cross-compiler, and eliminate
dependency on GCC for bootstrapping.

The Instruction class

class Instruction instr where
 regUsageOfInstr :: instr -> RegUsage
 patchRegsOfInstr :: instr -> (Reg -> Reg) -> instr

 isJumpishInstr :: instr -> Bool
 jumpDestsOfInstr :: instr -> [BlockId]
 patchJumpInstr :: instr -> (BlockId -> BlockId)-> instr
 mkJumpInstr :: BlockId -> [instr]

 mkSpillInstr :: Reg -> Int -> Int -> instr
 mkLoadInstr :: Reg -> Int -> Int -> instr

 takeDeltaInstr :: instr -> Maybe Int
 isMetaInstr :: instr -> Bool

 mkRegRegMoveInstr :: Reg -> Reg -> instr
 takeRegRegMoveInstr :: instr -> Maybe (Reg, Reg)

Benchmarking

sumeuler: runtime(s) vs number of threads

• Embarrassingly parallel
benchmark.

• Use Intel processors as
the baseline.

sumeuler: runtime(s) vs number of threads

• Embarrassingly parallel
benchmark.

• Use Intel processors as
the baseline.

• Almost linear speedup
until we run out of
hardware threads.

• No point using more
Haskell threads than
hardware threads.

sumeuler: runtime(s) vs number of threads

• Embarrassingly parallel
benchmark.

• Use Intel processors as
the baseline.

• Almost linear speedup
until we run out of
hardware threads.

• No point using more
Haskell threads than
hardware threads.

4.36 x speedup

with 4 x the cores

sumeuler: runtime(s) vs number of threads

• Embarrassingly parallel
benchmark.

• Use Intel processors as
the baseline.

• Almost linear speedup
until we run out of
hardware threads.

• No point using more
Haskell threads than
hardware threads.

4.36 x speedup

with 4 x the cores

WIN!

partree: runtime(s) vs number of threads

• Not very parallel.

• Tiny speedups on Intel.

partree: runtime(s) vs number of threads

• Not very parallel.

• Tiny speedups on Intel.

• No real speedup with
more than 3 threads.

• Can’t make full use of a
whole T2 core.

partree: runtime(s) vs number of threads

• Not very parallel.

• Tiny speedups on Intel.

• No real speedup with
more than 3 threads.

• Can’t make full use of a
whole T2 core.

4.91 x slowdown

more cores
won’t help

Benchmarking Summary

If you have less
than 8 threads of work

then stay home.

Benchmarking Summary

If you have less
than 8 threads of work

then stay home.

It’s a “throughput” machine.

sumeuler: issue rate, data miss rate (Gig/s) vs time(s)

-N16 -N32 -N64

is
su

e
ra

te
 (G

ig
/s

)
da

ta
 m

is
s

ra
te

time (s)

thread 0

thread 63

matmult: issue rate, data miss rate (Gig/s) vs time(s)

• Periods of high and
low parallelism.

• Large variation
run-to-run.

• Threads spend time
blocked at join
points?

• Can ThreadScope
help debug this?

What next?

• We need more satisfying benchmarks.

• We haven’t had 64 hardware threads before.

• Use ThreadScope to determine why matmult is behaving badly.

• Some simple compile-time instruction reordering could help.
 - No out-of-order execution => pipeline stalls.

• Keep the build working!!

More info at:

http://ghcsparc.blogspot.com

http://ghcsparc.blogspot.com
http://ghcsparc.blogspot.com

