Falling Down the Naming Well

Ben Lippmeier University of New South Wales FP-Syd 2011/04/21

One slide summary of Disciple / DDC

- Disciple is an explicitly lazy dialect of Haskell. Many Haskell programs will work with only minor changes.
- The type system includes effect and closure typing, along with mutability polymorphism. Most of the extras can be inferred.
- The compiler (DDC) is still a work in progress.

```
add :: forall r1 r2 r3
. Int r1 -> Int r2 -(e1)> Int r3
:- e1 = Read r1 + Read r2 + Alloc r3
```


Basic Soundness Proof

Drowning, not waving.

Lemma 1.8 (Substitution of Values in Values)

If
$$\Gamma$$
, $x : \tau_2 | \Sigma \vdash t :: \tau_1; \sigma$
and $\Gamma | \Sigma \vdash v^\circ :: \tau_2; \bot$
then $\Gamma | \Sigma \vdash t [v^\circ/x] :: \tau_1; \sigma$

Case: $t = t_1 \varphi_2 / \text{TyAppT}$

 $\frac{(3) \Gamma, x: \tau_2 | \Sigma \vdash t_1 :: \forall (a: \kappa_{11}). \varphi_{12}; \sigma \quad (4) \Gamma, x: \tau_2 | \Sigma \vdash_{\mathsf{T}} \varphi_2 :: \kappa_{11}}{(\underline{1}) \Gamma, x: \tau_2 | \Sigma \vdash t_1 \varphi_2 :: \varphi_{12}[\varphi_2/a]; \sigma[\varphi_2/a]}$

(2)
$$\Gamma | \Sigma \vdash v^{\circ} :: \tau_{2}; \bot$$
 (assume)
(5) $\Gamma | \Sigma \vdash t_{1}[v^{\circ}/x] :: \forall (a: \kappa_{11}). \varphi_{12}; \sigma$ (IH 3 2)
(6) $\Gamma | \Sigma \vdash_{T} \varphi_{2} :: \kappa_{2}$ (Str. Type Env 4)
(7) $\Gamma | \Sigma \vdash t_{1}[v^{\circ}/x] \varphi_{2} :: \varphi_{12}[\varphi_{2}/a]; \sigma[\varphi_{2}/a]$ (TyAppT 5 6)
(8) $\Gamma | \Sigma \vdash (t_{1} \varphi_{2})[v^{\circ}/x] :: \varphi_{12}[\varphi_{2}/a]; \sigma[\varphi_{2}/a]$ (Def. Sub. 7)

Drowning, not waving.

Lemma 1.9 (Substitution of Types in Values)
If
$$\Gamma$$
, $a : \kappa_2 | \Sigma \vdash t :: \tau_1; \sigma$
and $\Gamma | \Sigma \vdash_{T} \varphi_2 :: \kappa_2$
then $\Gamma[\varphi_2/a] | \Sigma \vdash t[\varphi_2/a] :: \tau_1[\varphi_2/a]; \sigma[\varphi_2/a]$
Case: $t = t_{11} \varphi_{12} / \text{TyAppT}$

$$\frac{(3) \Gamma, a : \kappa_3 | \Sigma \vdash t_1 :: \forall (a_1 : \kappa_{11}) . \varphi_{12}; \sigma_1 \quad (4) \Gamma, a : \kappa_3 | \Sigma \vdash_{T} \varphi_2 :: \kappa_{11}}{(1) \Gamma, a : \kappa_3 | \Sigma \vdash t_1 \varphi_2 :: \varphi_{12}[\varphi_2/a_1]; \sigma_1[\varphi_2/a_1]}$$

(2)
$$\Gamma | \Sigma \vdash_{\mathrm{T}} \varphi_3 :: \kappa_3$$
 (assume)

(5)
$$\Gamma[\varphi_3/a] \mid \Sigma \vdash t_1[\varphi_3/a] :: (\forall (a_1 : \kappa_{11}). \varphi_{12})[\varphi_3/a]; \sigma_1[\varphi_3/a]$$
(IH 3 2)

(6)
$$\Gamma[\varphi_3/a] \mid \Sigma \vdash t_1[\varphi_3/a] :: \forall (a_1 : \kappa_{11}[\varphi_3/a]) \cdot \varphi_{12}[\varphi_3/a] ; \sigma_1[\varphi_3/a]$$
 (Def. Sub. 5)

(7)
$$\Gamma[\varphi_3/a] \mid \Sigma \vdash_{\mathrm{T}} \varphi_2[\varphi_3/a] :: \kappa_{11}[\varphi_3/a]$$
 (Sub. Type/Type 4.2)

(8)
$$\Gamma[\varphi_3/a] \mid \Sigma \vdash t_1[\varphi_3/a] \quad \varphi_2[\varphi_3/a]$$

:: $(\varphi_{12}[\varphi_3/a])[\varphi_2[\varphi_3/a]/a_1]; (\sigma_1[\varphi_3/a])[\varphi_2[\varphi_3/a]/a_1]$ (TyAppT 6 7)

(9)
$$\Gamma[\varphi_3/a] \mid \Sigma \vdash (t_1 \ \varphi_2)[\varphi_3/a]$$

:: $(\varphi_{12}[\varphi_2/a_1])[\varphi_3/a]; \ (\sigma_1[\varphi_2/a_1])[\varphi_3/a]$ (Def. Sub. 8)

...and typing this all up in Latex isn't fun either...

```
\statement{
                   &~ $\tyJudge{\Gamma, \ a : \kappa 2}{\Sigma}{t}{\tau 1}{\sigma}$
          If
\boldsymbol{\Lambda}
                   &~ $\kiJudge{\Gamma}{\Sigma}{\varphi 2}{\kappa 2}$
          \land and
\boldsymbol{\Lambda}
                   &~ $\tyJudge{\Gamma[\varphi 2/a]}{\Sigma}
          then
                                       {t[\varphi 2/a]}{\tau 1[\varphi 2/a]}{\sigma[\varphi 2/a]}$ \\
}
\tabbedstmts{
         (\un{2})
                   \> $\kiJudgeGS{\varphi 3}{\kappa 3}$
                   \geq (assume)
\left( \left| 1ex \right| \right)
                   \> ${\Gamma[\varphi 3/a]} ~|~ \Sigma ~\vdash~ t 1[\varphi 3/a]$
         (5)
\boldsymbol{\Lambda}
                   \geq \langle quad
                             $::~ (\tyForall{a 1}{\kappa {11}}{\varphi {12}})[\varphi 3/a]
                                  { \sigma 1[\varphi 3/a] }$
                              ~;~
                   > (IH 3 2)
\left( 1ex \right)
                   \> ${\Gamma[\varphi 3/a]} ~|~ \Sigma \vdash {t 1[\varphi 3/a]}$
         (6)
\boldsymbol{1}
                   \geq \langle quad
                                      \tyForall
                             $::~
                                                {a 1}
                                                {\kappa {11}[\varphi 3/a]}
                                                {\varphi {12}[\varphi 3/a] }
                                      \sigma 1[\varphi 3/a]$
                   \geq (Def. Sub. 5)
```

Lemma: (Weaken Type Environment)

If $\Gamma | \Sigma \vdash t :: \tau_1; \sigma$ and $x \notin fv(t)$ then $\Gamma, x: \tau_2 | \Sigma \vdash t :: \tau_1; \sigma$ If $\Gamma | \Sigma \vdash_{T} \varphi :: \kappa$ and $a \notin fv(\varphi)$ then $\Gamma, x: \tau_2 | \Sigma \vdash t :: \tau_1; \sigma$ then $\Gamma, a: \varphi_2 | \Sigma \vdash_{T} \varphi :: \kappa$

By induction over the derivations of the first statements of each.

Lemma 1.12 (Visible Actions)

If the reduction of an expression reads, writes or allocates mutable data in a pre-existing region then it has the corresponding effect.

If
$$\emptyset | \Sigma \vdash t :: \tau; \sigma$$
 and $H; t \downarrow H'; t' \vdash B$
and $\Sigma \models H$ and $\Sigma \in H$ and $\underline{\rho} \in \Sigma$
then (If mread $l^{\rho} \in B$ for some l then $\Gamma | \Sigma \vdash Read \ \underline{\rho} \sqsubseteq \sigma$)
and (If write $l^{\rho} \in B$ for some l then $\Gamma | \Sigma \vdash Write \ \underline{\rho} \sqsubseteq \sigma$)
and (If malloc $l^{\rho} \in B$ for some l then $\Gamma | \Sigma \vdash Alloc \ \overline{\rho} \sqsubseteq \sigma$)

Lemma 1.14 (Non-Interfering Effects Yield Commutable Actions)

- If (1) $\Gamma | \Sigma_1 \vdash t_1 :: \tau_1; \sigma_1$ and (2) $H_1; t_1 \downarrow H'_1; t'_1 \vdash B_1$
- and (3) $\Gamma | \Sigma_2 \vdash t_2 :: \tau_2; \sigma_2$ and (4) $H_2; t_2 \downarrow H'_2; t'_2 \vdash B_2$
- and (5) NonInterfering(Γ , σ_1 , σ_2)
- then CommutableActions(B_1, B_2)

Case: $t = K \overline{\varphi} \overline{t}$ / TyAlloc / EiAlloc

(6) $\overline{\Gamma \mid \Sigma \vdash t :: \tau_i [\rho/r \, \overline{\phi'/a}]; \sigma_i}^{i \leftarrow 0..n}$ (7) $\Gamma | \Sigma \vdash_{\mathrm{T}} \underline{\rho} :: \%$ (8) $K :: \forall (r : \%) . \forall (\overline{a : \kappa}) . \overline{\tau} \to T \ r \ \overline{a} \in \mathrm{ctorTypes}(T)$ (TyAlloc) (<u>1</u>) $\Gamma | \Sigma \vdash K \rho \overline{\varphi'} \overline{t} :: T \rho \overline{\varphi'}; \sigma_0 \lor \sigma_1 ... \lor \sigma_n \lor Alloc \rho$ (9) $\overline{H_j}; t_j \downarrow H_{j+1}; v_j^{\circ} \vdash B_j \xrightarrow{j \leftarrow 0..n}$ (10) $\rho \in H_{n+1}$ (11) *l* fresh (EiAlloc) $(\underline{2}) H_0; K \underline{\rho} \overline{\varphi_i'} \overline{t_j} \downarrow H_{n+1}, l \stackrel{\rho}{\mapsto} C_k \overline{v_j^{\circ}}; l \vdash \bigcup \overline{B_j} \cup B' \cup \{\text{test } \rho\}$ $(12) B' = \begin{cases} \{\text{malloc } l^{\rho} \} & \text{if mutable } \rho \in H_{n+1}, \\ \{\text{palloc } l^{\rho} \} & \text{if const } \rho \in H_{n+1}. \end{cases}$ $\Sigma \models H_0, \ \Sigma \vdash H_0, \ \rho' \in \Sigma$ (3..5)(assume) If mread $l^{\rho'} \in B_j \dots \Gamma | \Sigma' \vdash Alloc \rho' \sqsubseteq \sigma_j$ (13) (Via IH, sim. to TyAppT case) malloc $l^{\rho'} \in B'$ (14)(assume) Case $\rho' \neq \rho$: (15)Case (mutable ρ) $\in H_{n+1}$ (16) $B' = \{ \text{malloc } l^{\rho} \}$ (17) $(12\ 16)$ Suppose $\neg(\Gamma | \Sigma' \vdash Alloc \rho' \sqsubseteq Alloc \rho)$ (18)Contradiction (19) $(14\ 15\ 17)$ Cases for (const ρ) \in H_{n+1} and $B' = \emptyset$ similarly. (20)Case $\rho' = \rho$: (21)Case (mutable ρ) \in H_{n+1} (22) $B' = \{ \text{malloc } l^{\rho} \}$ (23) $(12\ 22)$ $\Gamma | \Sigma' \vdash Alloc \ \rho \sqsubseteq Alloc \ \rho$ (24)(immediate) If malloc $l^{\rho'} \in B'$ then $\Gamma | \Sigma' \vdash Alloc \rho \sqsubseteq Alloc \rho'$ (Imp. Intro 14 - 24) (25)

> It needs one of these for every expression form. Many details are still omitted. ok, bored now...

Lemma 1.8 (Substitution of Values in Values)

If
$$\Gamma$$
, $x : \tau_2 | \Sigma \vdash t :: \tau_1; \sigma$
and $\Gamma | \Sigma \vdash v^\circ :: \tau_2; \bot$
then $\Gamma | \Sigma \vdash t [v^\circ/x] :: \tau_1; \sigma$

(MUMBLE) ... assuming no free variables in *v* are bound by *t* ...

$$(\ y. \ x. x + y) (x * 2) 5$$

=> $(\ x. x + (x * 2)) 5$
=> $5 + (5 * 2)$
=> 15

 $(\ x \ x \ y) \ (x \ 2) \ 5$ => $(\ z \ z \ + \ (x \ 2)) \ 5$ non-capturing => $5 \ + \ (x \ 2)$

You can sneak past with closed values

Lemma subst_value_value

- : forall env x val t1 T1 T2
- , (forall z, freeX z val -> noBindsX z t1)
- -> TYPE (extend env x T2) t1 T1
- -> TYPE env val T2
- -> TYPE env (subst x val t1) T1.

Lemma subst_value_value_closed

- : forall env val t1 T1 T2
- , closedX val
- -> TYPE (extent env x T2) t1 T1
- -> TYPE env val T2
- -> TYPE env (subst x val t1) T1.

This trick isn't enough for System-F

$$\begin{array}{c} \text{Lemma 1.9 (Substitution of Types in Values)} \\ \text{If} \quad \Gamma, a: \kappa_2 \mid \Sigma \vdash t ::: \tau_1; \sigma \\ \text{and} \quad \Gamma \mid \Sigma \vdash_{\tau} \varphi_2 :: \kappa_2 \\ \text{then} \quad \Gamma[\varphi_2/a] \mid \Sigma \vdash t[\varphi_2/a] :: \tau_1[\varphi_2/a]; \sigma[\varphi_2/a] \end{array}$$

$$\begin{array}{c} \text{Case:} \quad t = t_{11} \varphi_{12} / \text{TyAppT} \\ \underline{(3) \Gamma, a: \kappa_3 \mid \Sigma \vdash t_1 :: \forall (a_1: \kappa_{11}). \varphi_{12}; \sigma_1 \quad (4) \Gamma, a: \kappa_3 \mid \Sigma \vdash_{\tau} \varphi_2 :: \kappa_{11} \\ \underline{(1) \Gamma, a: \kappa_3 \mid \Sigma \vdash t_1 :: \forall (a_1: \kappa_{11}). \varphi_{12}; \varphi_1 \quad (4) \Gamma, a: \kappa_3 \mid \Sigma \vdash_{\tau} \varphi_2 :: \kappa_{11} \\ \underline{(1) \Gamma, a: \kappa_3 \mid \Sigma \vdash t_1 :: \varphi_{12}[\varphi_2/a_1]; \sigma_1[\varphi_2/a_1]} \end{array}$$

$$\begin{array}{c} \text{(2)} \quad \Gamma \mid \Sigma \vdash_{\tau} \varphi_3 :: \kappa_3 \qquad (assume) \\ \text{(5)} \quad \Gamma[\varphi_3/a] \mid \Sigma \\ \quad \vdash t_1[\varphi_3/a] :: (\forall (a_1: \kappa_{11}). \varphi_{12})[\varphi_3/a]; \sigma_1[\varphi_3/a] \quad (\text{IH 3 2)} \\ \text{(6)} \quad \Gamma[\varphi_3/a] \mid \Sigma \\ \quad \vdash t_1[\varphi_3/a] :: \forall (a_1: \kappa_{11}[\varphi_3/a]). \varphi_{12}[\varphi_3/a]; \sigma_1[\varphi_3/a] \quad (\text{Def. Sub. 5}) \\ \text{(7)} \quad \Gamma[\varphi_3/a] \mid \Sigma \vdash_{\tau} \varphi_2[\varphi_3/a] :: \kappa_{11}[\varphi_3/a] \quad (\text{Sub. Type/Type 4 2}) \\ \text{(8)} \quad \frac{\Gamma[\varphi_3/a] \mid \Sigma \vdash_{\tau} [\varphi_3/a] \quad \varphi_2[\varphi_3/a] \\ :: (\varphi_{12}[\varphi_3/a])[\varphi_2[\varphi_3/a]]_{\tau} : (\sigma_1[\varphi_3/a])[\varphi_2[\varphi_3/a]/a_1] \quad (\text{TyAppT 6 7}) \\ \text{(9)} \quad \frac{\Gamma[\varphi_3/a] \mid \Sigma \vdash_{(t_1} \varphi_2)[\varphi_3/a] \\ :: (\varphi_{12}[\varphi_2/a_1])[\varphi_3/a] : (\sigma_1[\varphi_2/a_1])[\varphi_3/a] \quad (\text{Def. Sub. 8}) \end{array}$$

 $\frac{(3) \Gamma, a: \kappa_3 | \Sigma \vdash t_1 :: \forall (a_1: \kappa_{11}). \varphi_{12}; \sigma_1 \quad (4) \Gamma, a: \kappa_3 | \Sigma \vdash_{\mathrm{T}} \varphi_2 :: \kappa_{11}}{(\underline{1}) \Gamma, a: \kappa_3 | \Sigma \vdash t_1 \varphi_2 :: \varphi_{12}[\varphi_2/a_1]; \sigma_1}$

 $(\varphi_{12}[\varphi_3/a])[\varphi_2[\varphi_3/a]/a_1] \equiv (\varphi_{12}[\varphi_2/a_1])[\varphi_3/a]$

 $\frac{(3) \Gamma, a: \kappa_3 | \Sigma \vdash t_1 :: \forall (a_1: \kappa_{11}). \varphi_{12}; \sigma_1 \quad (4) \Gamma, a: \kappa_3 | \Sigma \vdash_{\mathrm{T}} \varphi_2 :: \kappa_{11}}{(\underline{1}) \Gamma, a: \kappa_3 | \Sigma \vdash t_1 \varphi_2 :: \varphi_{12}[\varphi_2/a_1]; \sigma_1}$

 $(\varphi_{12}[\varphi_3/a])[\varphi_2[\varphi_3/a]/a] \equiv (\varphi_{12}[\varphi_2/a])[\varphi_3/a]$

Lemma 1.9 (Substitution of Types in Values)

If Γ , $a : \kappa_2 | \Sigma \vdash t :: \tau_1; \sigma$ and $\Gamma | \Sigma \vdash_{T} \varphi_2 :: \kappa_2$ then $\Gamma[\varphi_2/a] | \Sigma \vdash t[\varphi_2/a] :: \tau_1[\varphi_2/a]; \sigma[\varphi_2/a]$

(FFS)

... assuming no free variables in φ_2 are bound by t assuming a is not bound by t ...

The arbitrariness requirement

$$\frac{\forall x. P(x)}{P(a)} \qquad \frac{\Gamma \vdash e :: \forall a.\sigma}{\Gamma \vdash e :: \sigma[a := \tau]}$$

$$P(a)$$
(a arbitrary) $\Gamma \vdash e :: \sigma$ $a \notin \mathsf{fv}(\Gamma)$ $\forall x. P(x)$ $\Gamma \vdash e :: \forall a.\sigma$

Breaching the arbitrariness requirement

• When generalising for a variable, all proofs steps must be possible for all members of the domain.

1
$$(Cat(kitty) \rightarrow HasFur(kitty)) \land Cat(kitty)$$
2 $Cat(kitty) \rightarrow HasFur(kitty)$ 3 $Cat(kitty)$ 4 $HasFur(kitty)$ 5 $\forall x. HasFur(x)$ WRONG

Where do we pull a fresh variable from?

 $(y \cdot x \cdot x + y) (x + 2) 5$ => (| z . z + (x * 2)) 5=> 5 + (**x** * 2)

 $\Gamma \vdash e :: \sigma \qquad a \notin \mathsf{fv}(\Gamma)$ $\Gamma \vdash e :: \forall a.\sigma$

$(\ x \ x \ x + y) (x \ 2) 5$ => $(\ z \ z + (x \ 2)) 5$ => $5 + (x \ 2)$

 $(\ \ \ \ \ \) = > (\ \) = (\ \) = > (\ \) = (\ \) = > (\ \) = (\) = (\ \) = (\) = (\ \) = (\) = (\ \) = (\)$

$(\ x \ x \ x \ y) (x \ x \ 2) 5$ => $(\ z \ z \ + \ (x \ x \ 2)) 5$ => $5 \ + \ (x \ x \ 2)$

 $(\ \cdot \ \cdot \ 0 + \underline{1}) (x * 2) 5$ => $(\ 0 + (x * 2)) 5$ => 5 + (x * 2)

- If you get into trouble then swap the names around.
- Relies on tool support / proof assistant extensions to generate the various freshness and alpha-conversion lemmas.

Higher order abstract syntax

- Shift the problem into the meta-language.
- Works well in Twelf, problems with induction principles in Coq.
- Eliminates need for substitution lemmas, but they you must argue that the HOAS representation is adequate wrt original.

Explicit names	HOAS
data Exp	data Exp
= Var Name	= Var Name
Lam Name Exp	Lam (Exp -> Exp)
App Exp Exp	App Exp Exp

Substitution with names vs deBruijn indices

Theorem subst_value_value_names

- : forall env x val t1 T1 T2
- , (forall z, freeX z val -> noBindsX z t1)
- -> TYPE (extend env x T2) t1 T1
- -> TYPE env val T2
- -> TYPE env (subst x val t1) T1.

Theorem subst_value_value_debruijn

- : forall ix tenv t1 t2 T1 T2
- , get tenv ix = Some T2
- -> closedX t2
- -> TYPE tenv t1 T1
- -> TYPE (drop ix tenv) t2 T2
- -> TYPE (drop ix tenv) (subst ix t2 t1) T1.

HELLO my name is

