
Falling Down the Naming Well

Ben Lippmeier
University of New South Wales
FP-Syd 2011/04/21

One slide summary of Disciple / DDC

• Disciple is an explicitly lazy dialect of Haskell. Many Haskell
programs will work with only minor changes.

• The type system includes effect and closure typing, along with
mutability polymorphism. Most of the extras can be inferred.

• The compiler (DDC) is still a work in progress.

add :: forall r1 r2 r3
 . Int r1 -> Int r2 -(e1)> Int r3
 :- e1 = Read r1 + Read r2 + Alloc r3

Basic Soundness Proof

Progress Preservation

Substitution of
Types in Types

Substitution of
Types in Values

Substitution of
Values in Values

Substitution of
Types in Kinds

Soundness “Well typed programs run to
the end and do not crash”

“A well typed program
 is done or can take a step”

“If it takes a step then
it is still well typed”

Drowning, not waving.

Drowning, not waving.

...and typing this all up in Latex isn’t fun either...
\statement{
 If &~ $\tyJudge{\Gamma, \ a : \kappa_2}{\Sigma}{t}{\tau_1}{\sigma}$
\\
 \ and &~ $\kiJudge{\Gamma}{\Sigma}{\varphi_2}{\kappa_2}$
\\
 then &~ $\tyJudge{\Gamma[\varphi_2/a]}{\Sigma}
 {t[\varphi_2/a]}{\tau_1[\varphi_2/a]}{\sigma[\varphi_2/a]}$ \\
}

\tabbedstmts{
 (\un{2})
 \> $\kiJudgeGS{\varphi_3}{\kappa_3}$
 \> (assume)
\\[1ex]
 (5) \> ${\Gamma[\varphi_3/a]} ~|~ \Sigma ~\vdash~ t_1[\varphi_3/a]$
\\
 \> \quad
 $::~ (\tyForall{a_1}{\kappa_{11}}{\varphi_{12}})[\varphi_3/a]
 ~;~ { \sigma_1[\varphi_3/a] }$
 \> (IH 3 2)
\\[1ex]
 (6) \> ${\Gamma[\varphi_3/a]} ~|~ \Sigma \vdash {t_1[\varphi_3/a]}$
\\
 \> \quad
 $::~ \tyForall
 {a_1}
 {\kappa_{11}[\varphi_3/a]}
 {\varphi_{12}[\varphi_3/a] }
 ~;~ \sigma_1[\varphi_3/a]$
 \> (Def. Sub. 5)

Let’s just not and say we did.

Proving something more interesting

Proving something more interesting

It needs one of these for every expression form.

ok, bored now...Many details are still omitted.

Implicit assumptions in informal proofs.

(MUMBLE)
 ... assuming no free variables in v are bound by t ...

Variable capture... I hates it.

(\y. \x. x + y) (x * 2) 5
 => (\x. x + (x * 2)) 5
 => 5 + (5 * 2)
 => 15

capturing

(\y. \x. x + y) (x * 2) 5
 => (\z. z + (x * 2)) 5
 => 5 + (x * 2)

non-capturing

You can sneak past with closed values

Lemma subst_value_value
 : forall env x val t1 T1 T2
 , (forall z, freeX z val -> noBindsX z t1)
 -> TYPE (extend env x T2) t1 T1
 -> TYPE env val T2
 -> TYPE env (subst x val t1) T1.

Lemma subst_value_value_closed
 : forall env val t1 T1 T2
 , closedX val
 -> TYPE (extent env x T2) t1 T1
 -> TYPE env val T2
 -> TYPE env (subst x val t1) T1.

This trick isn’t enough for System-F

needs an identity
for substitution

≡

≡

Another brick in the wall

(FFS)
 ... assuming no free variables in are bound by t ...
 ... assuming a is not bound by t ...

The arbitrariness requirement

Breaching the arbitrariness requirement

• When generalising for a variable, all proofs steps must be
possible for all members of the domain.

Where do we pull a fresh variable from?

(\y. \x. x + y) (x * 2) 5
 => (\z. z + (x * 2)) 5
 => 5 + (x * 2)

deBruijn indices

 (\y. \x. x + y) (x * 2) 5
 => (\z. z + (x * 2)) 5
 => 5 + (x * 2)

 (\. \. 0 + 1) (0 * 2) 5
 => (\. 0 + (1 * 2)) 5
 => 5 + (0 * 2)

Locally nameless

 (\y. \x. x + y) (x * 2) 5
 => (\z. z + (x * 2)) 5
 => 5 + (x * 2)

 (\. \. 0 + 1) (x * 2) 5
 => (\. 0 + (x * 2)) 5
 => 5 + (x * 2)

Nominal Reasoning

 (\y. \x. x + y) (x * 2) 5
 => (\x. \y. y + x) (x * 2) 5
 => (\y. y + (x * 2)) 5
 => 5 + (x * 2)

SWAP

• If you get into trouble then swap the names around.

• Relies on tool support / proof assistant extensions to generate
the various freshness and alpha-conversion lemmas.

Higher order abstract syntax

• Shift the problem into the meta-language.

• Works well in Twelf, problems with induction principles in Coq.

• Eliminates need for substitution lemmas, but they you must
argue that the HOAS representation is adequate wrt original.

data Exp
 = Var Name
 | Lam Name Exp
 | App Exp Exp

data Exp
 = Var Name
 | Lam (Exp -> Exp)
 | App Exp Exp

Explicit names HOAS

Substitution with names vs deBruijn indices

Theorem subst_value_value_debruijn
 : forall ix tenv t1 t2 T1 T2
 , get tenv ix = Some T2
 -> closedX t2
 -> TYPE tenv t1 T1
 -> TYPE (drop ix tenv) t2 T2
 -> TYPE (drop ix tenv) (subst ix t2 t1) T1.

Theorem subst_value_value_names
 : forall env x val t1 T1 T2
 , (forall z, freeX z val -> noBindsX z t1)
 -> TYPE (extend env x T2) t1 T1
 -> TYPE env val T2
 -> TYPE env (subst x val t1) T1.

0

