Unhygenic letregion and the region phase change

Ben Lippmeier
University of New South Wales
Fp-Syd 2011/08/18



Programming with References

letref x = “foo” 1in

do putStr (readRef Xx)
writeRef x “bar”
putStr (readRef Xx)

readRef :: Ref a -> a
writeRef :: Ref a -> a -> ()



Mutable References and Locations

val

val
val

val
val?2

letref x = val in t
t[1/x] 1 fresh

readRef 1
val

- writeRef 1 val?2

()



—valuation

H ; letref x = “foo” in
do putStr (readRef Xx)
writeRef x “bar”
putStr (readRef Xx)



—valuation

H, 1 ~ “foo” ; do putStr (readRef 1)
writeRef 1 “bar”
putStr (readRef 1)



—valuation

H, 1 ~ “foo” ; do putStr “foo”
writeRef 1 “bar”
putStr (readRef 1)



—valuation

H, 1 ~ “foo” ; do writeRef 1 “bar”
putStr (readRef 1)

41 fooll



—valuation

H, 1 ~ “bar” ; do putStr (readRef 1)

41 fOOII



—valuation

H, 1 ~ “bar” ; do putStr “bar”

41 fOOII



—valuation

H, 1 ~ “bar” ; ()

“foobar”



L ocation

Phase Change

H ; letref x = “foo” 1in
do putStr (readRef Xx)
writeRef x “bar”
putStr (readRef Xx)

1l ~ “foo” ; do putStr (readRef 1)
writeRef 1 “bar”
putStr (readRef 1)



Type Environments and Store Typings

TE . ST |- v T1

TE, x : Ref Tl : ST |- t T2

TE ; ST |- letref x = v in t T2
letref x = “foo” 1in

do putStr (readRef x)
writeRef x “bar”
putStr (readRef Xx)



Type Environments and Store Typings

TE ; OT (= Vv T1
TE, x : Ref T1 ; ST |- t T2
TE ; ST |- letref x = v in t T2

X ¢+ T elem TE

letref x = “foo” 1in

do putStr (readRef Xx)
writeRef x “bar”
putStr (readRef Xx)



Type Environments and Store Typings

TE ; OT (= Vv T1
TE, x : Ref T1 ; ST |- t T2
TE ; ST |- letref x = v in t T2

1l : T elem ST

letref x = “foo” 1in

do putStr (readRef Xx)
writeRef x “bar”
putStr (readRef Xx)



Programming with Regions

letregion r 1in
letref X = “foo” at r in
do putStr (readRef Xx)
writeRef “bar”
putStr (readRef Xx)



Programming with Regions

r

X :: Ref r String

letregion r 1in
letref X = “foo” at r in
do putStr (readRef x)
writeRef “bar”
putStr (readRef Xx)

readRef :: forall (r:%) (a:*)
Ref r a -> a

writeRef :: forall (r:%) (a:*)
Ref r a -> a -> ()



> H

4

Py

Region allocation

_—-— H, p

1(p)

~ val

4

letregion r in t

t[p/r]

letref x
t[1/x]

p fresh

val at p in t
1 fresh



—valuation

H ; letregion r in
letref x = “foo” at r in
do putStr (readRef Xx)
writeRef x “bar”
putStr (readRef Xx)



—valuation

H, p ; letref x = “foo” at p in
do putStr (readRef Xx)
writeRef x “bar”
putStr (readRef Xx)



—valuation

H, p, 1l(p)~“foo” ; do putStr (readRef 1)
writeRef 1 “bar”
putStr (readRef 1)



—valuation

H, p, l(p)~-“foo” ; do putStr “foo”
writeRef 1 “bar”
putStr (readRef 1)



New typing rules for letregion and letref

TE ; ST |- letref x = v at r in t :: T2



Type change during evaluation

o

(@

A

X :: Ref r String

letregion r 1in
letref X = “foo” at r 1in
do putStr (readRef Xx)
writeRef “bar”
putStr (readRef Xx)



Type change during evaluation

Q

r %
X :: Ref r String

letregion r in /

letref X = “foo” at r 1in

do putStr (readRef Xx)
writeRef “bar”
putStr (readRef Xx)



Type change during evaluation

r :: %
X :: Ref p String
——> letref X = “foo” at p 1in

do putStr (readRef Xx)
writeRef “bar”
putStr (readRef Xx)



Region encapsulation

letregion r in
letref x = “foo” at r
in X

letregion r in
letref x = “foo” at r
in putStr (readRef x)

Ref r String

()



Imposing hygiene?

r notIn freeVars(T)
TE, r : rgn ; ST |-t :: T




Imposing hygiene?

letregion r in
letref x = “foo” at r
in (\() -> readRef x) :: () -> String



