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case quotInt# ixLinear width of { iX ->
case remInt# ixLinear width of { iY ->
writeDoubleArray# world arrDest ixLinear
(+##
(indexDoubleArray# arrBV
(+# arrBV_start (+# (*# width x3_X2of) iX)))

(*##
(indexDoubleArray# arrBM
(+# arrBM_start (+# (*# width x4_X2ok) iX)))

(/##
(+##
(+##
(+##
(indexDoubleArray# arrSrc
(+# arrSrc_start (+# (*# (-# width 1) iY) iX)))

(indexDoubleArray# arrSrc
(+# arrSrc_start (+# (*# width iY) (-# iX 1)))))

(indexDoubleArray# arrSrc
(+# arrSrc_start (+# (*# (+# width 1) iY) iX))))

(indexDoubleArray# arrSrc
(+# arrSrc_start (+# (*# width iY) (+# iX 1)))))

4.0)))
}}

Figure 2. Old core IR for solveLaplace using unsafe indexing.
TODO: Change this to Floats to match Sobel Example

data Array sh a
| Manifest (Vector a)
| Delayed (sh -> a)

Our array type is polymorphic over sh, which is the type used
for the indices, and a which is the type of the elements contained.
A manifest array is one represented by real data, that is held in
flat unboxed array provided by the Data.Vector library CITE . A
delayed array is represented by a function that takes an array index
and produces the corresponding element. Delayed arrays are the
key to Repa’s approach to array fusion. For example, we can the
array map function as follows:

{-# INLINE map #-}
map :: (Shape sh, Elt a, Elt b)

=> (a -> b) -> Array sh a -> Array sh b
map f arr
= case arr of

Manifest vec -> Delayed (\ix -> f (vec ! ix))
Delayed g -> Delayed (f . g)

Here, Shape is the class of types that can be used as indices, and
Elt the class of types that can be used as array elements. Note that
both cases of map produce a Delayed array, and that the second
corresponds to the following familiar identity:

map f (map g xs) = map (f . g) xs

Similar traversal functions such as zipWith can be defined
in the same way. We also support reductions such as sum and
foldl, but do not support filtering operations as the result array
may not necessarily be rectangular. See [4] for details. Fusion is
achieved via the judicious use of INLINE pragmas, and the magic
of the GHC simplifier. During compilation the outer structure of
functions such as map is eliminated, leaving code that applies the
parameter function directly to each element of the array. Parallelism
is introduced by using the force function:

force :: (Shape sh, Elt a)
=> Array sh a -> Array sh a

For Manifest arrays, force is the identity. For Delayed ar-
rays, force allocates a fresh mutable Data.Vector, and then forks
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Figure 3. Common Convolution Kernels

off several concurrent threads. Each thread is responsible for calling
the delayed function for a subset of indices, and updating the array
with the resulting element. Finally, the array is “frozen”, treating
it as constant from then on. This freezing operation is a type-cast
only, and does not incur any copying overhead. Note that although
we use destructive update in the implementation of force, as this
function allocates the returned vector itself, it has a pure interface.

In our implementation, we also include INLINE pragmas on
the definition of force. During compilation, creates a fresh un-
folding at each use. In most cases we are left with intermediate
code consisting of a loop that computes and updates each value of
the array directly, without any intermediate function calls, or box-
ing/unboxing of numeric values.

Finally, note that the programmer is responsible for inserting
calls to force in the appropriate place in their code. Forcing the
array at different points has implications for sharing and data lay-
out, though in practice we have found there are usually only a
small number of places where it would “make sense”, so the choice
presents no difficulty.

4. Stencil Based Convolutions
Stencils functions lie at the heart of image processing, as well
as algorithms for solving Partial Differential Equations (PDEs).
Some commonly used kernels are shown in Figure 4. TODO:

Note terminology difference between “kernel”, “stencil”, “stencil
function”, “operator” Kernel is just the coeffieients, stencil may
include normalising factor. Stencil function implements the stencil,
operator may use several stencil functions. TODO: We haven’t
shown the normalising factors in the figure.

The SobelY , RobertsX and KirschW kernels perform dis-
crete differentiation, and are used in edge detection. The PeakPoint

kernel is used for noise detection, HighPass is a high-pass filter,
and Binomial7X is a low-pass filter. Laplace us used to compute
the average of four surrounding pixels, and is used in the numerical
solution of the Laplace equation. How these kernels are derived is
not important to this discussion, but see REF for a nice introduc-
tion to convolution based image processing, and REF for numerical
solution of PDEs.

For kernel names written with subscripts, the subscript indicates
that it is just one member of a closely related family of kernels. For
example, SobelY differentiates along the Y axis only. However,
rotating the kernel 90 degrees yields SobelX which differentiates
along the X axis. By “rotate” we mean to permute the coefficients
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case quotInt# ixLinear width of { iX ->
case remInt# ixLinear width of { iY ->
writeDoubleArray# world arrDest ixLinear
(+##
(indexDoubleArray# arrBV
(+# arrBV_start (+# (*# width x3_X2of) iX)))

(*##
(indexDoubleArray# arrBM
(+# arrBM_start (+# (*# width x4_X2ok) iX)))

(/##
(+##
(+##
(+##
(indexDoubleArray# arrSrc
(+# arrSrc_start (+# (*# (-# width 1) iY) iX)))

(indexDoubleArray# arrSrc
(+# arrSrc_start (+# (*# width iY) (-# iX 1)))))

(indexDoubleArray# arrSrc
(+# arrSrc_start (+# (*# (+# width 1) iY) iX))))

(indexDoubleArray# arrSrc
(+# arrSrc_start (+# (*# width iY) (+# iX 1)))))

4.0)))
}}

Figure 2. Old core IR for solveLaplace using unsafe indexing.
TODO: Change this to Floats to match Sobel Example

data Array sh a
| Manifest (Vector a)
| Delayed (sh -> a)

Our array type is polymorphic over sh, which is the type used
for the indices, and a which is the type of the elements contained.
A manifest array is one represented by real data, that is held in
flat unboxed array provided by the Data.Vector library CITE . A
delayed array is represented by a function that takes an array index
and produces the corresponding element. Delayed arrays are the
key to Repa’s approach to array fusion. For example, we can the
array map function as follows:

{-# INLINE map #-}
map :: (Shape sh, Elt a, Elt b)

=> (a -> b) -> Array sh a -> Array sh b
map f arr
= case arr of

Manifest vec -> Delayed (\ix -> f (vec ! ix))
Delayed g -> Delayed (f . g)

Here, Shape is the class of types that can be used as indices, and
Elt the class of types that can be used as array elements. Note that
both cases of map produce a Delayed array, and that the second
corresponds to the following familiar identity:

map f (map g xs) = map (f . g) xs

Similar traversal functions such as zipWith can be defined
in the same way. We also support reductions such as sum and
foldl, but do not support filtering operations as the result array
may not necessarily be rectangular. See [4] for details. Fusion is
achieved via the judicious use of INLINE pragmas, and the magic
of the GHC simplifier. During compilation the outer structure of
functions such as map is eliminated, leaving code that applies the
parameter function directly to each element of the array. Parallelism
is introduced by using the force function:

force :: (Shape sh, Elt a)
=> Array sh a -> Array sh a

For Manifest arrays, force is the identity. For Delayed ar-
rays, force allocates a fresh mutable Data.Vector, and then forks
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Figure 3. Common Convolution Kernels

off several concurrent threads. Each thread is responsible for calling
the delayed function for a subset of indices, and updating the array
with the resulting element. Finally, the array is “frozen”, treating
it as constant from then on. This freezing operation is a type-cast
only, and does not incur any copying overhead. Note that although
we use destructive update in the implementation of force, as this
function allocates the returned vector itself, it has a pure interface.

In our implementation, we also include INLINE pragmas on
the definition of force. During compilation, creates a fresh un-
folding at each use. In most cases we are left with intermediate
code consisting of a loop that computes and updates each value of
the array directly, without any intermediate function calls, or box-
ing/unboxing of numeric values.

Finally, note that the programmer is responsible for inserting
calls to force in the appropriate place in their code. Forcing the
array at different points has implications for sharing and data lay-
out, though in practice we have found there are usually only a
small number of places where it would “make sense”, so the choice
presents no difficulty.

4. Stencil Based Convolutions
– — Compute gradient in the X direction. - NOINLINE gradientX
- gradientX :: Array DIM2 Float -¿ Array DIM2 Float gradientX
img(Array _ [Region RangeAll (GenManifest _)])= img
‘deepSeqArray‘ force2

Stencils functions lie at the heart of image processing, as well
as algorithms for solving Partial Differential Equations (PDEs).
Some commonly used kernels are shown in Figure 4. TODO:

Note terminology difference between “kernel”, “stencil”, “stencil
function”, “operator” Kernel is just the coeffieients, stencil may
include normalising factor. Stencil function implements the stencil,
operator may use several stencil functions. TODO: We haven’t
shown the normalising factors in the figure.

The SobelY , RobertsX and KirschW kernels perform dis-
crete differentiation, and are used in edge detection. The PeakPoint

kernel is used for noise detection, HighPass is a high-pass filter,
and Binomial7X is a low-pass filter. Laplace us used to compute
the average of four surrounding pixels, and is used in the numerical
solution of the Laplace equation. How these kernels are derived is
not important to this discussion, but see REF for a nice introduc-
tion to convolution based image processing, and REF for numerical
solution of PDEs.
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case quotInt# ixLinear width of { iX ->
case remInt# ixLinear width of { iY ->
writeDoubleArray# world arrDest ixLinear
(+##
(indexDoubleArray# arrBV
(+# arrBV_start (+# (*# width x3_X2of) iX)))

(*##
(indexDoubleArray# arrBM
(+# arrBM_start (+# (*# width x4_X2ok) iX)))

(/##
(+##
(+##
(+##
(indexDoubleArray# arrSrc
(+# arrSrc_start (+# (*# (-# width 1) iY) iX)))

(indexDoubleArray# arrSrc
(+# arrSrc_start (+# (*# width iY) (-# iX 1)))))

(indexDoubleArray# arrSrc
(+# arrSrc_start (+# (*# (+# width 1) iY) iX))))

(indexDoubleArray# arrSrc
(+# arrSrc_start (+# (*# width iY) (+# iX 1)))))

4.0)))
}}

Figure 2. Old core IR for solveLaplace using unsafe indexing.
TODO: Change this to Floats to match Sobel Example

data Array sh a
| Manifest (Vector a)
| Delayed (sh -> a)

Our array type is polymorphic over sh, which is the type used
for the indices, and a which is the type of the elements contained.
A manifest array is one represented by real data, that is held in
flat unboxed array provided by the Data.Vector library CITE . A
delayed array is represented by a function that takes an array index
and produces the corresponding element. Delayed arrays are the
key to Repa’s approach to array fusion. For example, we can the
array map function as follows:

{-# INLINE map #-}
map :: (Shape sh, Elt a, Elt b)

=> (a -> b) -> Array sh a -> Array sh b
map f arr
= case arr of

Manifest vec -> Delayed (\ix -> f (vec ! ix))
Delayed g -> Delayed (f . g)

Here, Shape is the class of types that can be used as indices, and
Elt the class of types that can be used as array elements. Note that
both cases of map produce a Delayed array, and that the second
corresponds to the following familiar identity:

map f (map g xs) = map (f . g) xs

Similar traversal functions such as zipWith can be defined
in the same way. We also support reductions such as sum and
foldl, but do not support filtering operations as the result array
may not necessarily be rectangular. See [4] for details. Fusion is
achieved via the judicious use of INLINE pragmas, and the magic
of the GHC simplifier. During compilation the outer structure of
functions such as map is eliminated, leaving code that applies the
parameter function directly to each element of the array. Parallelism
is introduced by using the force function:

force :: (Shape sh, Elt a)
=> Array sh a -> Array sh a

For Manifest arrays, force is the identity. For Delayed ar-
rays, force allocates a fresh mutable Data.Vector, and then forks
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Figure 3. Common Convolution Kernels

off several concurrent threads. Each thread is responsible for calling
the delayed function for a subset of indices, and updating the array
with the resulting element. Finally, the array is “frozen”, treating
it as constant from then on. This freezing operation is a type-cast
only, and does not incur any copying overhead. Note that although
we use destructive update in the implementation of force, as this
function allocates the returned vector itself, it has a pure interface.

In our implementation, we also include INLINE pragmas on
the definition of force. During compilation, creates a fresh un-
folding at each use. In most cases we are left with intermediate
code consisting of a loop that computes and updates each value of
the array directly, without any intermediate function calls, or box-
ing/unboxing of numeric values.

Finally, note that the programmer is responsible for inserting
calls to force in the appropriate place in their code. Forcing the
array at different points has implications for sharing and data lay-
out, though in practice we have found there are usually only a
small number of places where it would “make sense”, so the choice
presents no difficulty.

4. Stencil Based Convolutions
– — Compute gradient in the X direction. - NOINLINE gradientX
- gradientX :: Array DIM2 Float -¿ Array DIM2 Float gradientX
img(Array _ [Region RangeAll (GenManifest _)])= img
‘deepSeqArray‘ force2

Stencils functions lie at the heart of image processing, as well
as algorithms for solving Partial Differential Equations (PDEs).
Some commonly used kernels are shown in Figure 4. TODO:

Note terminology difference between “kernel”, “stencil”, “stencil
function”, “operator” Kernel is just the coeffieients, stencil may
include normalising factor. Stencil function implements the stencil,
operator may use several stencil functions. TODO: We haven’t
shown the normalising factors in the figure.

The SobelY , RobertsX and KirschW kernels perform dis-
crete differentiation, and are used in edge detection. The PeakPoint

kernel is used for noise detection, HighPass is a high-pass filter,
and Binomial7X is a low-pass filter. Laplace us used to compute
the average of four surrounding pixels, and is used in the numerical
solution of the Laplace equation. How these kernels are derived is
not important to this discussion, but see REF for a nice introduc-
tion to convolution based image processing, and REF for numerical
solution of PDEs.
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case quotInt# ixLinear width of { iX ->
case remInt# ixLinear width of { iY ->
writeDoubleArray# world arrDest ixLinear
(+##
(indexDoubleArray# arrBV
(+# arrBV_start (+# (*# width x3_X2of) iX)))

(*##
(indexDoubleArray# arrBM
(+# arrBM_start (+# (*# width x4_X2ok) iX)))

(/##
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(+##
(indexDoubleArray# arrSrc
(+# arrSrc_start (+# (*# (-# width 1) iY) iX)))
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4.0)))
}}

Figure 2. Old core IR for solveLaplace using unsafe indexing.
TODO: Change this to Floats to match Sobel Example

data Array sh a
| Manifest (Vector a)
| Delayed (sh -> a)

Our array type is polymorphic over sh, which is the type used
for the indices, and a which is the type of the elements contained.
A manifest array is one represented by real data, that is held in
flat unboxed array provided by the Data.Vector library CITE . A
delayed array is represented by a function that takes an array index
and produces the corresponding element. Delayed arrays are the
key to Repa’s approach to array fusion. For example, we can the
array map function as follows:

{-# INLINE map #-}
map :: (Shape sh, Elt a, Elt b)

=> (a -> b) -> Array sh a -> Array sh b
map f arr
= case arr of

Manifest vec -> Delayed (\ix -> f (vec ! ix))
Delayed g -> Delayed (f . g)

Here, Shape is the class of types that can be used as indices, and
Elt the class of types that can be used as array elements. Note that
both cases of map produce a Delayed array, and that the second
corresponds to the following familiar identity:

map f (map g xs) = map (f . g) xs

Similar traversal functions such as zipWith can be defined
in the same way. We also support reductions such as sum and
foldl, but do not support filtering operations as the result array
may not necessarily be rectangular. See [4] for details. Fusion is
achieved via the judicious use of INLINE pragmas, and the magic
of the GHC simplifier. During compilation the outer structure of
functions such as map is eliminated, leaving code that applies the
parameter function directly to each element of the array. Parallelism
is introduced by using the force function:

force :: (Shape sh, Elt a)
=> Array sh a -> Array sh a

For Manifest arrays, force is the identity. For Delayed ar-
rays, force allocates a fresh mutable Data.Vector, and then forks
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off several concurrent threads. Each thread is responsible for calling
the delayed function for a subset of indices, and updating the array
with the resulting element. Finally, the array is “frozen”, treating
it as constant from then on. This freezing operation is a type-cast
only, and does not incur any copying overhead. Note that although
we use destructive update in the implementation of force, as this
function allocates the returned vector itself, it has a pure interface.

In our implementation, we also include INLINE pragmas on
the definition of force. During compilation, creates a fresh un-
folding at each use. In most cases we are left with intermediate
code consisting of a loop that computes and updates each value of
the array directly, without any intermediate function calls, or box-
ing/unboxing of numeric values.

Finally, note that the programmer is responsible for inserting
calls to force in the appropriate place in their code. Forcing the
array at different points has implications for sharing and data lay-
out, though in practice we have found there are usually only a
small number of places where it would “make sense”, so the choice
presents no difficulty.

4. Stencil Based Convolutions
– — Compute gradient in the X direction. - NOINLINE gradientX
- gradientX :: Array DIM2 Float -¿ Array DIM2 Float gradientX
img(Array _ [Region RangeAll (GenManifest _)])= img
‘deepSeqArray‘ force2

Stencils functions lie at the heart of image processing, as well
as algorithms for solving Partial Differential Equations (PDEs).
Some commonly used kernels are shown in Figure 4. TODO:

Note terminology difference between “kernel”, “stencil”, “stencil
function”, “operator” Kernel is just the coeffieients, stencil may
include normalising factor. Stencil function implements the stencil,
operator may use several stencil functions. TODO: We haven’t
shown the normalising factors in the figure.

The SobelY , RobertsX and KirschW kernels perform dis-
crete differentiation, and are used in edge detection. The PeakPoint

kernel is used for noise detection, HighPass is a high-pass filter,
and Binomial7X is a low-pass filter. Laplace us used to compute
the average of four surrounding pixels, and is used in the numerical
solution of the Laplace equation. How these kernels are derived is
not important to this discussion, but see REF for a nice introduc-
tion to convolution based image processing, and REF for numerical
solution of PDEs.
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Abstract

• Declarative approach to writing parallel stencil based convolu-
tions that run as fast as hand written ones

• Demonstrate the current state of the art. What absolute perfor-
mance can we a eek out of a Haskell program for a non-trivial
numerical problem.

• Compare runtimes with standard image processing library
OpenCV. Demonstrate real-time processing of video with a
programs written directly in Haskell.

• Discuss challenges with array fusion, and how we might im-
prove the language/compiler to address them.

1. Introduction

This paper addresses an implicit challenge put to us by Rami
Mukhtar of NICTA (the Australian equivalent of INRIA). At the
time, Rami was starting a project on writing image processing al-
gorithms in declarative languages. Having read our previous work
on the Repa library for parallel arrays CITE , he took it to heart, and
promptly implemented the Canny edge detection algorithm CITE

as a benchmark. Unfortunately, he then informed us that the Repa
version was at least 10x slower than the equivalent implementation
in OpenCV CITE , an industry standard library of computer vi-
sion algorithms. Due to this, he instead based his project around
the Accelerate CITE EDSL for writing parallel array codes on
GPGPUs, produced by a competing (but friendly) faction in our
research group. Clearly, we could not let this stand.

Simply put, our aim is to implement parallel image process-
ing algorithms that run as fast (faster!) than the highly optimised
ones for imperative languages. Of course, we want to do this in
a functional language, so the code is clearer and safer as well as
being faster. Importantly, we also want to write this code directly
in Haskell and use Haskell runtime system, instead of, say, imple-
menting an EDSL that produces LLVM or CUDA code. For this
we are trying to distance ourselves from the old adage that “what
functional language are good for is writing compilers for yet more
functional languages.”

[Copyright notice will appear here once ’preprint’ option is removed.]

At the core of many image processing algorithms is the 2D
convolution operator ∗, who’s definition is as follows:

(A ∗ K)(x, y) =
X

i

X

j

A(x + i, y + j) K(i, j)

Here, A is the image being processed, and K is the convolu-
tion kernel or stencil. The stencil is a small matrix, with typical
dimensions 3x3 or 1x5, that defines a transformation on the image.
Typical transformations include the Gaussian blur, and the Sobel
differentiation operator, both of which are used in the Canny edge
detection algorithm. For this paper we focus on the efficient parallel
implementation of stencil convolution, though we will return to the
larger Canny algorithm near the end. As we are primarily interested
in image processing we also focus on arrays of rank 2, though our
techniques are equally applicable to arrays of higher rank.

With this in mind our contributions are as follows:

• We present an array fusion approach to writing stencil functions
in Haskell that yields performance comparable to the industry
standard OpenCV library.

• To achieve this we extend our previous approach array program-
ming with two new features: partitioning and cursored arrays.
These allow us to optimise the implementation of algorithms
that use different functions to construct different regions of the
array, and to share subcomputations of adjacent elements.

• Our declarative API allows us to write cache-friendly programs
that access data in a block-wise manner, while cleanly separat-
ing the evaluation code from the specification of the element
values.

• We address the hairy details of array fusion that must be ac-
counted to obtain efficient code, including the staging of inliner
phases and the delicate interaction between GHC and its back-
end code generator, LLVM.

• Finally, with the ultimate aim of writing declarative code that
runs as fast as competing libraries, we discuss the current chal-
lenges to array fusion and suggest future directions for research.

The Ypnos CITE and PASTHA CITE libraries also address
stencil convolution in Haskell, though CITE presents no perfor-
mance figures and CITE lacks absolute numbers. On the other
hand, Ypnos deals elegantly with arrays of higher rank, and
PASTHA also has support for managing convergence conditions
for iterative convolution. Our aim of separating evaluation from
specification code is in the same spirit as the “Global view” model
of Chapel CITE , TODO: more on this, does it have numbers?.
We are more interested in having good absolute performance while
maintaining the declarative / functional nature of the code.
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r = a[i-1][j-1] * k[-1][-1]
  + a[i-1][j  ] * k[-1][ 0]
  + a[i-1][j+1] * k[-1][+1]

  + a[i  ][j-1] * k[ 0][-1]
  + a[i  ][j  ] * k[ 0][ 0]
  + a[i  ][j+1] * k[ 0][+1]

  + a[i+1][j-1] * k[+1][-1]
  + a[i+1][j  ] * k[+1][ 0]
  + a[i+1][j+1] * k[+1][+1]



Don’t. push. me. cause. I’m. close. to. the. edge....

For kernel names written with subscripts, the subscript indicates
that it is just one member of a closely related family of kernels. For
example, SobelY differentiates along the Y axis only. However,
rotating the kernel 90 degrees yields SobelX which differentiates
along the X axis. By “rotate” we mean to permute the coefficients
of the matrix, so that +1 is in the top-left in this example. Similarly,
Binomial7X performs low pass filtering in the X direction, and
the coefficients are 7 in number and are exactly those elements of
the 7th row of Pascal’s triangle [2]. Related kernels are obtained by
rotating the kernel or choosing a different row of the triangle. Ro-
tating it permits filtering along the Y axis, and choosing a different
row changes its size and the amount of “blurriness” achieved by
applying it to the image.

For these kernels we note some features of computational inter-
est, along with exceptions:

1. All coefficients are statically known.
2. Most coefficients are small integers.
3. Many coefficients are zero.
4. All kernels are symmetric.
5. All kernels reuse values for the coefficients.
6. Most kernels fit in a 5x5 matrix.
7. Most kernels are square. (ex Binomial7X )
8. Most kernels have odd dimensions. (ex RobertsX )

Points 1 & 2 suggest that we can specialise our stencil functions
based on the values of the kernel coefficients. For example, mul-
tiplication by two can be achieved by addition, and multiplication
by one is no-op. This is opposed to, say, writing a general purpose
function that reads coefficients from an array, and performs all mul-
tiplications explicitly REF . Points 3, 4 & 5 suggest that there are
savings to be had by common sub-expression and dead-code elim-
ination REF . Point 6 suggests that being able to handle stencils
smaller than a certain fixed size would allow us to support most of
the common cases REF . Points 7 & 8 have implications for border
handling, which we will discuss further in the next section.

4.1 Border Handling

TODO: Trim this section, it uses too much space. We don’t need a
list of every possible way to handle the border. When implement-
ing stencil functions, an immediate concern is what to do about the
case where the stencil “falls off” the edge of the array. For example,
Figure 4 shows the application of a 3x3 stencil close to the top left
of the array. In the figure, the white squares indicate the internal
region of the array, where we can apply the stencil without worry-
ing about the border. The border itself is marked in grey. There are
several options, all of which are used in practice:

1. Take the result array to consist of the internal region only, so
that the application of a 3x3 stencil will produce an output array
which has a height and breadth two pixels less than the source.

2. Take the result to be the same size as the source, and fill the
border region in the result with a constant value.

3. Take the result to be the same size as the source, and compute
the border region by applying the stencil while taking out-of-
bounds elements in the source to have a fixed, constant value.

4. As above, but take the out of bounds elements to have the same
value as the closest defined element in the source.

5. As above, but take the out of bounds elements to be a mirror
image of defined region of the source. This yields the same
result as using FFT to compute the convolution, as the source

Figure 4. Application of a 3x3 stencil close to the image border.
TODO: rename y0 to y11.

is assumed to periodically repeat throughout the entire input
plane. CITE .

6. TODO: Could copy source data into a larger array, and set
a border of elements around the “real” ones appropriately.
Problem is that originating libraries, like video capture and
image file loading, don’t produce data in this format, so we need
a copy.

As we will see in REF , we handle the distinction between
the border and internal cases by defining our arrays to represent
these regions directly. This allows us to write fast code for the
internal case, while keeping it separate for the more complicated,
and configurable border case.

5. Partitioned arrays and co-Stencils

In this section we present our new representation of arrays and
stencils, using the Laplace example from the previous section to
justify our design decisions.

5.1 Borders and partitioned arrays

For our Laplace example applied to an image of size 512x512, only
around 0.8% of the pixels are in the border region, so we certainly
don’t want to test for them at every iteration. Also, as the shape of
the result array mirrors the shape of the source, we can determine
whether we are in a border region based on the index in the result
array. Because of this, in our new representation we encode this
partitioning of the array into various regions directly.

Our new data types are shown in Figure 5.1. An Array is
defined as an extent and a list of distinct Regions. Each region has
a Range which defines the set of indices belonging to the region.
A Range can either be RangeAll, which corresponds to the entire
array, or a RangeRects which gives a list of rectangles (of arbitrary
rank). Given a RangeRects, we can determine whether a particular
index is inside this range either by checking whether it is within any
of the Rects (rectangles), or using the predicate rangeMatch. This
predicate should give the same result as the former, but can use a
more efficient implementation, this is discussed further in REF .

Each Region also has a Generator which encodes how the ar-
ray elements within that region should be computed. Generators of
Manifest and Delayed arrays operate on the same principle dis-
cussed in REF . We also have also added GenCursor for cursored
arrays, which are used to optimised the computation of array in-
dices, and are discussed in REF . The regions of a partitioned array
must provide full coverage, meaning that every array element must
be within some region.

The main benefit of partitioning the array like this is that we
can define one region for the border for the internal part of the
array, each using separate element functions. TODO: define “ele-
ment function” back in Repa intro section. In effect this “lifts” the
decision of which region a pixel is in out of the inner loop, result-
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Testing the border at every pixel is slow....

{-# INLINE relaxLaplace #-}
relaxLaplace :: Image -> Image
relaxLaplace arr
 = traverse arr id elemFn
 where  _ :. height :. width = extent arr

        {-# INLINE elemFn #-}
        elemFn get d@(Z :. i :. j)
         = if isBorder i j
            then  get d
            else (get (Z :. (i-1) :. j)
              +   get (Z :. i     :. (j-1))
              +   get (Z :. (i+1) :. j)
              +   get (Z :. i     :. (j+1))) / 4

        {-# INLINE isBorder #-}
        isBorder i j
         =  (i == 0) || (i >= width  - 1) 
         || (j == 0) || (j >= height - 1) 



Testing the border at every pixel is slow....

{-# INLINE relaxLaplace #-}
relaxLaplace :: Image -> Image
relaxLaplace arr
 = traverse arr id elemFn
 where  _ :. height :. width = extent arr

        {-# INLINE elemFn #-}
        elemFn get d@(Z :. i :. j)
         = if isBorder i j
            then  get d
            else (get (Z :. (i-1) :. j)
              +   get (Z :. i     :. (j-1))
              +   get (Z :. (i+1) :. j)
              +   get (Z :. i     :. (j+1))) / 4

        {-# INLINE isBorder #-}
        isBorder i j
         =  (i == 0) || (i >= width  - 1) 
         || (j == 0) || (j >= height - 1) 

DIE!



Sharing in computations of adjacent pixels.

data Stencil sh a
= Stencil
{ stencilSize :: sh
, stencilZero :: b
, stencilAcc :: sh -> a -> a -> a }

makeStencil :: sh -> (sh -> Maybe a) -> Stencil sh a
makeStencil ex getCoeff
= Stencil ex 0
\$ \ix val acc

-> case getCoeff ix of
Nothing -> acc
Just coeff -> acc + val * coeff

Figure 6. Stencils and Stencil Construction

solveLaplace :: Int -> Image -> Image -> Image
solveLaplace steps arrBoundMask@Manifest{}

arrBoundValue@Manifest{} arrInit@Manifest{}
= iterateBlockwise’ steps arrInit
\$ zipWith (+) arrBoundValue
. zipWith (*) arrBoundMask
. map (/ 4)
. mapStencil2 (BoundConst 0) laplace

laplace :: Stencil sh a
laplace
= makeStencil (Z :. 3 :. 3)
\$ \ix -> case ix of

Z :. 0 :. 1 -> Just 1
Z :. 0 :. -1 -> Just 1
Z :. 1 :. 0 -> Just 1
Z :. -1 :. 0 -> Just 1
_ -> Nothing

niceLaplace :: Stencil sh a
niceLaplace
= [stencil2| 0 1 0

1 0 1
0 1 0 |]

Figure 7. Stencil Based Laplace Function. TODO: Wrong Mani-
fest constructors

Clearly, from sum-of-products expansion in REF , we don’t want
to perform multiplications where we know the coefficient is zero,
as adding the resulting term will not affect the final sum. The
simple, neat and wrong solution is to allow terms of the form 0*x
in the intermediate code, and then add a GHC rewrite rule CITE
to implement the obvious identities 0 ∗ x ≡ 0 and x + 0 ≡ x.
Unfortunately, the first one of these is invalid for standard IEEE-
704 floating point numbers because the operation 0∗∞ is supposed
to produce NaN (Not a Number). Although this hardly matters for
image processing, we still don’t want to add a GHC rewrite rule to
the source as these apply globally and we risk breaking other code
that depends on this property. Never the less, in the literature stencil
kernels are usually specified using zeros, so we allow them in our
Template Haskell sugar, but eliminate them during desugaring to
the coefficient function.

5.4 Evaluation order and sharing
Suppose we apply a 3x3 stencil to a single internal point in an
image, and that every coefficient in the kernel is non-zero. At the
least, this would require nine floating point values to be loaded from
the source array, and one floating point store to the result. Now, as
the computation of a single point in the result does not depend on
any others, we can evaluate elements of the result in an arbitrary

Figure 8. Overlapping support of four adjacent 3x3 stencils

order. This makes stencil convolution an embarrassingly parallel
operation, which gives us much flexibility in the implementation.

However, as we want our convolution to run with good absolute
performance on a finite number of processors, it is often better to
impose a specific order of evaluation to improve efficiency. Figure
8 shows the evaluation of four horizontally adjacent points. If we
were to evaluate each of these points independently, we would need
4× 9 = 36 loads of the source array, and four writes to the result.
However, if we were to evaluate all four points in one operation we
would only need 18 loads, as well as the four writes to the result.
There is also the potential to share the evaluation of array indices,
and well as multiplications, depending on the form of the kernel.

The potential for sharing of indexing computations can be seen
from Fig. 2 which shows the core IR for part of the inner loop of
our original Laplace function. Although this code only computes
a single point in the result, note that the second argument to each
application of indexDoubleArray# produces the offset into the
array for each point in the stencil. This is performed with the famil-
iar expression x + y * width, where x and y are the coordinates
of the element of interest. TODO: Explain why we have ixLinear
in that code, either here or beforehand. However, as the spacial re-
lationship between the elements is fixed, we could instead compute
the index of the focus of the stencil, and then get to the others by
adding +1/-1 to get to the elements on the left and right of the fo-
cus, and +width/-width to get to the elements above and below. In
the case where we compute four elements of the result in a single
operation, the potential savings are even greater.

Recovering this sort of sharing is a well known problem in com-
piler optimisation, and is the target of the Global Value Numbering
(GVN) CITE transformation performed in some compilers. Unfor-
tunately, no current Haskell compiler implements this transform,
so we are not home free yet. Although GHC can now compile
via LLVM CITE , and LLVM does implement a GVN pass, its
ability to apply it to GHC generated code is currently limited by
low level memory aliasing issues exposed by the transformation
between GHC Code and the LLVM IR. More discussion in REF .

However, with a careful encoding of the problem in the source
language we can express some of this sharing directly and make
LLVM compiler’s job easier. This brings us to the cursored arrays,
which we discuss in the next section. TODO: Easier or possible?
Saying that it makes the job easier for the LLVM compiler, but that
it can do it anyway isn’t convincing.

5.5 Cursored arrays
Recall the new Repa array representation from §5.1. The definition
of element generators is repeated below for reference. TODO:

Prior work on cursors, ie from Ypnos. Cursors aren’t new, but we
show their relationship with delayed arrays.

data Generator sh a
= GenManifest { genVector :: Vector a }

| forall cursor.
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3*3*4 = 36
3*6 = 18

36 / 18 = 2



Application of a single Laplace stencil.

case quotInt# ixLinear width of { iX ->
case remInt#  ixLinear width of { iY -> 
 writeFloatArray# world arrDest ixLinear
  (+##  (indexFloatArray# arrBV
          (+# arrBV_start (+# (*# arrBV_width iY) iX)))
   (*## (indexFloatArray# arrBM 
          (+# arrBM_start (+# (*# arrBM_width iY) iX)))
    (/## (+## (+## (+##
        (indexFloatArray# arrSrc
         (+# arrSrc_start (+# (*# (-# width 1) iY) iX)))
        (indexFloatArray# arrSrc
         (+# arrSrc_start (+# (*# width iY) (-# iX 1)))))
        (indexFloatArray# arrSrc
         (+# arrSrc_start (+# (*# (+# width 1) iY) iX))))
        (indexFloatArray# arrSrc
         (+# arrSrc_start (+# (*# width iY) (+# iX 1)))))
     4.0))) 
 }}

0 1 0
1 0 1
0 1 0



case quotInt# ixLinear width of { iX ->
case remInt#  ixLinear width of { iY -> 
 writeFloatArray# world arrDest ixLinear
  (+##  (indexFloatArray# arrBV
          (+# arrBV_start (+# (*# arrBV_width iY) iX)))
   (*## (indexFloatArray# arrBM 
          (+# arrBM_start (+# (*# arrBM_width iY) iX)))
    (/## (+## (+## (+##
        (indexFloatArray# arrSrc
         (+# arrSrc_start (+# (*# (-# width 1) iY) iX)))
        (indexFloatArray# arrSrc
         (+# arrSrc_start (+# (*# width iY) (-# iX 1)))))
        (indexFloatArray# arrSrc
         (+# arrSrc_start (+# (*# (+# width 1) iY) iX))))
        (indexFloatArray# arrSrc
         (+# arrSrc_start (+# (*# width iY) (+# iX 1)))))
     4.0))) 
 }}

Application of a single Laplace stencil. 0 1 0
1 0 1
0 1 0

 x + y * width 



Two new features:

Partitioned arrays
Represent the partitioning into border and 
internal regions directly, to avoid the test in the 
inner loop.

Cursored arrays
Expose intermediate linear indices when 
calculating array offsets, to avoid repeated use 
of   x + y * width. 



New Repa Array Types:

data Array sh a
   = Array       { arrayExtent  :: sh
                 , arrayRegions :: [Region sh a] }
data Region sh a
   = Region      { regionRange  :: Range sh
                 , regionGen    :: Generator sh a }
data Range sh 
   = RangeAll
   | RangeRects  { rangeMatch   :: sh -> Bool
                 , rangeRects   :: [Rect sh] }
data Rect sh
   = Rect sh sh



data Generator sh a
 = GenManifest { genVector :: Vector a }!
! !
 | forall cursor. 
   GenCursored { genMake  :: sh -> cursor
               , genShift :: sh -> cursor -> cursor
               , genLoad  :: cursor -> a }

New Repa Array Types:

x1 x2 x3
x4 x5 x6
x7 x8 x9

cursor



Defining the stencil
data Stencil sh a
   = Stencil { stencilSize  :: sh 
             , stencilZero  :: b 
             , stencilAcc   :: sh -> a -> a -> a }

makeStencil :: sh -> (sh -> Maybe a) -> Stencil sh a
makeStencil ex getCoeff
        =  Stencil ex 0 
        $  \ix val acc  
               -> case getCoeff ix of
                    Nothing     -> acc
                    Just coeff  -> acc + val * coeff

laplace :: Stencil sh a
laplace =  makeStencil (Z :. 3 :. 3)
        $  \ix -> case ix of
                    Z :.  0 :.  1 -> Just 1
                    Z :.  0 :. -1 -> Just 1
                    Z :.  1 :.  0 -> Just 1
                    Z :. -1 :.  0 -> Just 1
                    _             -> Nothing



Defining the stencil
data Stencil sh a
   = Stencil { stencilSize  :: sh 
             , stencilZero  :: b 
             , stencilAcc   :: sh -> a -> a -> a }

makeStencil :: sh -> (sh -> Maybe a) -> Stencil sh a
makeStencil ex getCoeff
        =  Stencil ex 0 
        $  \ix val acc  
               -> case getCoeff ix of
                    Nothing     -> acc
                    Just coeff  -> acc + val * coeff

laplace :: Stencil sh a
laplace = [|stencil2 0 1 0
                     1 0 1
                     0 1 0 |]



Not a Number

{-# RULES 
    “add-id” forall (x :: Float). x + 0 = x
    “mul-id” forall (x :: Float). x * 0 = 0
#-}



Not a Number

{-# RULES 
    “add-id” forall (x :: Float). x + 0 = x
    “mul-id” forall (x :: Float). x * 0 = 0
#-}

With IEEE 754 Floats

∞ *  0 = NaN



Not a Number

{-# RULES 
    “add-id” forall (x :: Float). x + 0 = x
    “mul-id” forall (x :: Float). x * 0 = 0
#-}

makeStencil :: sh -> (sh -> Maybe a) -> Stencil sh a
makeStencil ex getCoeff
        =  Stencil ex 0 
        $  \ix val acc  
               -> case getCoeff ix of
                    Nothing     -> acc
                    Just coeff  -> acc + val * coeff



Applying a Stencil

-- | Compute gradient in the X direction.
gradientX :: Array DIM2 Float -> Array DIM2 Float
gradientX img
   = force2 $ forStencil2 (BoundConst 0) img
     [stencil2 | -1  0  1
                 -2  0  2
                 -1  0  1 |]



Detection of Local Maxima

-- | Suppress pixels which are not local maxima.
maxima :: Float -> Float -> Image (Float, Float) -> Image Word8
maxima threshLow threshHigh dMagOrient 
 = force2 $ makeBordered2 (extent dMagOrient) 1 (GenCursor id addDim (const 0))
                                                (GenCursor id addDim compare)
 where compare ix@(sh :. i :. j)
        | o == undef   = edge None
        | o == horiz   = isMax (getMag (sh :. i   :. j-1)) (getMag (sh :. i   :. j+1)) 
        | o == vert    = isMax (getMag (sh :. i-1 :. j))   (getMag (sh :. i+1 :. j)) 
        | o == negDiag = isMax (getMag (sh :. i-1 :. j-1)) (getMag (sh :. i+1 :. j+1)) 
        | o == posDiag = isMax (getMag (sh :. i-1 :. j+1)) (getMag (sh :. i+1 :. j-1)) 
        | otherwise    = edge None
        where
          o    = getOrient ix 
          m    = getMag    ix

          getMag    = fst . (dMagOrient !)
          getOrient = snd . (dMagOrient !)

          isMax mag1 mag2
           | m < threshLow  = edge None
           | m < mag1       = edge None
           | m < mag2       = edge None
           | m < threshHigh = edge Weak
           | otherwise      = edge Strong



mapStencil2 
  :: Boundary a -> Stencil DIM2 a -> Array DIM2 a -> Array DIM2 a

mapStencil2 boundary (Stencil sExtent _ _) arr
 = let (Z :. aHeight :. aWidth) = extent arr
       (Z :. sHeight :. sWidth) = sExtent

       rectsInternal    = ...
       rectsBorder      = ...
       inInternal ix    = ...
       inBorder   ix    = ...

       make  (Z:.y:.x)  = Cursor (x + y*aWidth)
       shift (Z:.y:.x) (Cursor offset)
        = Cursor (offset + x + y*aWidth)

       loadBorder ix    = case boundary of ...
       loadInner cursor = unsafeAppStencil2 stencil arr shift cursor

   in  Array (extent arr)
        [ Region (RangeRects inBorder rectsBorder)
                 (GenCursored id addIndex loadBorder) 

        , Region (RangeRects inInternal rectsInternal)
                 (GenCursored make shift loadInner) ]

For kernel names written with subscripts, the subscript indicates
that it is just one member of a closely related family of kernels. For
example, SobelY differentiates along the Y axis only. However,
rotating the kernel 90 degrees yields SobelX which differentiates
along the X axis. By “rotate” we mean to permute the coefficients
of the matrix, so that +1 is in the top-left in this example. Similarly,
Binomial7X performs low pass filtering in the X direction, and
the coefficients are 7 in number and are exactly those elements of
the 7th row of Pascal’s triangle [2]. Related kernels are obtained by
rotating the kernel or choosing a different row of the triangle. Ro-
tating it permits filtering along the Y axis, and choosing a different
row changes its size and the amount of “blurriness” achieved by
applying it to the image.

For these kernels we note some features of computational inter-
est, along with exceptions:

1. All coefficients are statically known.
2. Most coefficients are small integers.
3. Many coefficients are zero.
4. All kernels are symmetric.
5. All kernels reuse values for the coefficients.
6. Most kernels fit in a 5x5 matrix.
7. Most kernels are square. (ex Binomial7X )
8. Most kernels have odd dimensions. (ex RobertsX )

Points 1 & 2 suggest that we can specialise our stencil functions
based on the values of the kernel coefficients. For example, mul-
tiplication by two can be achieved by addition, and multiplication
by one is no-op. This is opposed to, say, writing a general purpose
function that reads coefficients from an array, and performs all mul-
tiplications explicitly REF . Points 3, 4 & 5 suggest that there are
savings to be had by common sub-expression and dead-code elim-
ination REF . Point 6 suggests that being able to handle stencils
smaller than a certain fixed size would allow us to support most of
the common cases REF . Points 7 & 8 have implications for border
handling, which we will discuss further in the next section.

4.1 Border Handling

TODO: Trim this section, it uses too much space. We don’t need a
list of every possible way to handle the border. When implement-
ing stencil functions, an immediate concern is what to do about the
case where the stencil “falls off” the edge of the array. For example,
Figure 4 shows the application of a 3x3 stencil close to the top left
of the array. In the figure, the white squares indicate the internal
region of the array, where we can apply the stencil without worry-
ing about the border. The border itself is marked in grey. There are
several options, all of which are used in practice:

1. Take the result array to consist of the internal region only, so
that the application of a 3x3 stencil will produce an output array
which has a height and breadth two pixels less than the source.

2. Take the result to be the same size as the source, and fill the
border region in the result with a constant value.

3. Take the result to be the same size as the source, and compute
the border region by applying the stencil while taking out-of-
bounds elements in the source to have a fixed, constant value.

4. As above, but take the out of bounds elements to have the same
value as the closest defined element in the source.

5. As above, but take the out of bounds elements to be a mirror
image of defined region of the source. This yields the same
result as using FFT to compute the convolution, as the source

Figure 4. Application of a 3x3 stencil close to the image border.
TODO: rename y0 to y11.

is assumed to periodically repeat throughout the entire input
plane. CITE .

6. TODO: Could copy source data into a larger array, and set
a border of elements around the “real” ones appropriately.
Problem is that originating libraries, like video capture and
image file loading, don’t produce data in this format, so we need
a copy.

As we will see in REF , we handle the distinction between
the border and internal cases by defining our arrays to represent
these regions directly. This allows us to write fast code for the
internal case, while keeping it separate for the more complicated,
and configurable border case.

5. Partitioned arrays and co-Stencils

In this section we present our new representation of arrays and
stencils, using the Laplace example from the previous section to
justify our design decisions.

5.1 Borders and partitioned arrays

For our Laplace example applied to an image of size 512x512, only
around 0.8% of the pixels are in the border region, so we certainly
don’t want to test for them at every iteration. Also, as the shape of
the result array mirrors the shape of the source, we can determine
whether we are in a border region based on the index in the result
array. Because of this, in our new representation we encode this
partitioning of the array into various regions directly.

Our new data types are shown in Figure 5.1. An Array is
defined as an extent and a list of distinct Regions. Each region has
a Range which defines the set of indices belonging to the region.
A Range can either be RangeAll, which corresponds to the entire
array, or a RangeRects which gives a list of rectangles (of arbitrary
rank). Given a RangeRects, we can determine whether a particular
index is inside this range either by checking whether it is within any
of the Rects (rectangles), or using the predicate rangeMatch. This
predicate should give the same result as the former, but can use a
more efficient implementation, this is discussed further in REF .

Each Region also has a Generator which encodes how the ar-
ray elements within that region should be computed. Generators of
Manifest and Delayed arrays operate on the same principle dis-
cussed in REF . We also have also added GenCursor for cursored
arrays, which are used to optimised the computation of array in-
dices, and are discussed in REF . The regions of a partitioned array
must provide full coverage, meaning that every array element must
be within some region.

The main benefit of partitioning the array like this is that we
can define one region for the border for the internal part of the
array, each using separate element functions. TODO: define “ele-
ment function” back in Repa intro section. In effect this “lifts” the
decision of which region a pixel is in out of the inner loop, result-
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unsafeAppStencil2
  :: Stencil DIM2 a -> Array DIM2 a 
  -> (DIM2 -> Cursor -> Cursor)       -- shift cursor
  -> Cursor -> a

unsafeAppStencil2
  stencil@(Stencil sExtent sZero sAcc)
  arr@(Array aExtent [Region RangeAll (GenManifest vec)])
  shift cursor
 
  | _ :. sHeight :. sWidth  <- sExtent
  , sHeight <= 3, sWidth <= 3
  = template3x3 loadFromOffset sZero

  | otherwise = error "stencil too big for this method"

  where getData (Cursor index)
         = vec `unsafeIndex` index
! !
        loadFromOffset oy ox!
         = let  offset = Z :. oy :. ox
                cur'   = shift offset cursor
           in   sAcc offset (getData cur')!



template3x3 :: (Int -> Int -> a -> a) -> a -> a
template3x3 f sZero
  =  f (-1) (-1)  $  f (-1)   0  $  f (-1)   1 
  $  f   0  (-1)  $  f   0    0  $  f   0    1   
  $  f   1  (-1)  $  f   1    0  $  f   1    1  
  $  sZero

... dreaming of supercompilation 



fillCursoredBlock2
 :: Elt a => IOVector a          -- vec
 -> (DIM2   -> cursor)           -- makeCursor
 -> (DIM2   -> cursor -> cursor) -- shiftCursor
 -> (cursor -> a) -> Int         -- loadElem, width
 -> Int -> Int -> Int -> Int     -- x0 y0 x1 y1
 -> IO ()

fillCursoredBlock2 !vec !make !shift !load !width !x0 !y0 !x1 !y1
 = fillBlock y0
 where 
  fillBlock !y
   | y > y1           = return ()
   | otherwise        
   = do   fillLine4 x0
          fillBlock (y + 1)
   where
    fillLine4 !x
     | x + 4 > x1     = fillLine1 x
     | otherwise

     = do BODY
          fillLine4 (x + 4)
!
     fillLine1 !x 
       | x > x1!    = return ()
       | otherwise
       = do unsafeWrite vec (x + y * imageWidth) 
               (getElem $ makeCursor (Z:.y:.x))
            fillLine1 (x + 1)



fillLine4 !x
 | x + 4 > x1     = fillLine1 x
 | otherwise
 = do let srcCur0 = make  (Z:.y:.x)
      let srcCur1 = shift (Z:.0:.1) srcCur0
      let srcCur2 = shift (Z:.0:.1) srcCur1
      let srcCur3 = shift (Z:.0:.1) srcCur2

      let val0    = load srcCur0
      let val1    = load srcCur1
      let val2    = load srcCur2
      let val3    = load srcCur3

      let !dstCur0 = x + y * width
      unsafeWrite vec (dstCur0)     val0
      unsafeWrite vec (dstCur0 + 1) val1
      unsafeWrite vec (dstCur0 + 2) val2
      unsafeWrite vec (dstCur0 + 3) val3
      fillLine4 (x + 4)



$wa4_s3HS =
  \ (ww4_s3lq :: Int#) (w2_s3ls :: State# RealWorld) ->
    case ># (+# ww4_s3lq 4) ipv8_i30r of _ {
      False ->
        let { a22_s4SQ = +# ww4_s3lq (*# ww3_s3ly ipv1_X2LM) } in
        let { Vector rb_i2YQ _ rb2_i2YS ~ _ <- ds6_d2b5 `cast` ... } in
        let { a23_i30Y = +# ww4_s3lq (*# ww3_s3ly ipv1_X2LM) } in
! let { __DEFAULT ~ s#_X39w
! <- writeFloatArray#
!      arr#_i2Pd
!      a23_i30Y
!      (plusFloat#
!         (plusFloat#
!            (plusFloat#
!               (plusFloat#
!                  (plusFloat#
!                     (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a22_s4SQ ipv1_X2LM) 1)))
!                     (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a22_s4SQ ipv1_X2LM) (-1)))) __float -1.0))
!                  (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# a22_s4SQ 1))) __float 2.0))
!               (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# a22_s4SQ (-1)))) __float -2.0))
!            (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a22_s4SQ (*# (-1) ipv1_X2LM)) 1))))
!         (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a22_s4SQ (*# (-1) ipv1_X2LM)) (-1)))) __float -1.0))
!      (w2_s3ls `cast` ...)
! } in
! let { a24_s4TG = +# a22_s4SQ 1 } in
! let { __DEFAULT ~ s#1_X39F
! <- writeFloatArray#
!      arr#_i2Pd
!      (+# a23_i30Y 1)
!      (plusFloat#
!         (plusFloat#
!            (plusFloat#
!               (plusFloat#
!                  (plusFloat#
!                     (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a24_s4TG ipv1_X2LM) 1)))
!                     (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a24_s4TG ipv1_X2LM) (-1)))) __float -1.0))
!                  (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# a24_s4TG 1))) __float 2.0))
!               (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# a24_s4TG (-1)))) __float -2.0))
!            (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a24_s4TG (*# (-1) ipv1_X2LM)) 1))))
!         (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a24_s4TG (*# (-1) ipv1_X2LM)) (-1)))) __float -1.0))
!      s#_X39w
! } in .....



0000163f! movl  0x03(%edi),%ecx
00001642! movl  0x07(%edi),%edx
00001645! movl  0x08(%ebp),%esi
00001648! movl  0x10(%ebp),%ebx
0000164b! movl  %ebx,0x04(%esp)
0000164f! leal  0x02(%esi,%edx),%eax
00001653! movl  %eax,(%esp)
00001656! movl  0x14(%ebp),%eax
00001659! leal  0x02(%esi,%eax),%edi
0000165d! leal  (%esi,%eax),%ebx
00001660! addl  %edx,%ebx
00001662! addl  %edx,%edi
00001664! movss 0x08(%ecx,%edi,4),%xmm1
0000166a! subss 0x08(%ecx,%ebx,4),%xmm1
00001670! movl  (%esp),%edi
00001673! movss 0x08(%ecx,%edi,4),%xmm2
00001679! addss %xmm2,%xmm2
0000167d! addss %xmm1,%xmm2
00001681! leal  (%edx,%esi),%edi
00001684! movss 0x08(%ecx,%edi,4),%xmm1
0000168a! mulss %xmm0,%xmm1
0000168e! addss %xmm2,%xmm1
00001692! leal  0x02(%esi),%edi
00001695! movl  %edi,(%esp)
00001698! movl  %edi,%ebx
0000169a! subl  %eax,%ebx
0000169c! addl  %edx,%ebx
0000169e! addss 0x08(%ecx,%ebx,4),%xmm1
000016a4! movl  $0x3fffffff,%ebx
000016a9! subl  %eax,%ebx
000016ab! leal  0x01(%ebx,%esi),%eax
000016af! addl  %edx,%eax
000016b1! subss 0x08(%ecx,%eax,4),%xmm1
000016b7! movl  0x04(%esp),%eax
000016bb! movl  0x14(%esp),%ecx
000016bf! movss %xmm1,0x0c(%eax,%ecx,4)

000016c5! movl! 0x10(%ebp),%eax
000016c8! movl! %eax,0x04(%esp)
000016cc! movl! 0x14(%ebp),%edx
000016cf! leal! 0x01(%esi,%edx),%ebx
000016d3! movl! 0x10(%esp),%edi
000016d7! movl! 0x03(%edi),%eax
000016da! movl! 0x07(%edi),%ecx
000016dd! addl! %ecx,%ebx
000016df! leal! 0x03(%esi,%edx),%edi
000016e3! addl! %ecx,%edi
000016e5! movss 0x08(%eax,%edi,4),%xmm1
000016eb! subss 0x08(%eax,%ebx,4),%xmm1
000016f1! leal  0x03(%esi,%ecx),%edi
000016f5! movss 0x08(%eax,%edi,4),%xmm2
000016fb! addss %xmm2,%xmm2
000016ff! addss %xmm1,%xmm2
00001703! leal  0x01(%esi,%ecx),%edi
00001707! movss 0x08(%eax,%edi,4),%xmm1
0000170d! mulss %xmm0,%xmm1
00001711! addss %xmm2,%xmm1
00001715! leal  0x03(%esi),%edi
00001718! subl  %edx,%edi
0000171a! addl  %ecx,%edi
0000171c! addss 0x08(%eax,%edi,4),%xmm1
00001722! leal  0x01(%esi),%edi
00001725! subl  %edx,%edi
00001727! addl  %ecx,%edi
00001729! subss 0x08(%eax,%edi,4),%xmm1
0000172f! movl  0x04(%esp),%eax
00001733! movl  0x14(%esp),%ecx
00001737! movss %xmm1,0x10(%eax,%ecx,4)
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$wa4_s3HS =
  \ (ww4_s3lq :: Int#) (w2_s3ls :: State# RealWorld) ->
    case ># (+# ww4_s3lq 4) ipv8_i30r of _ {
      False ->
        let { a22_s4SQ = +# ww4_s3lq (*# ww3_s3ly ipv1_X2LM) } in
        let { Vector rb_i2YQ _ rb2_i2YS ~ _ <- ds6_d2b5 `cast` ... } in
        let { a23_i30Y = +# ww4_s3lq (*# ww3_s3ly ipv1_X2LM) } in
! let { __DEFAULT ~ s#_X39w

! <- writeFloatArray#
!      arr#_i2Pd
!      a23_i30Y
!      (plusFloat#
!         (plusFloat#
!            (plusFloat#
!               (plusFloat#
!                  (plusFloat#
!                     (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a22_s4SQ ipv1_X2LM) 1)))
!                     (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a22_s4SQ ipv1_X2LM) (-1)))) __float -1.0))
!                  (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# a22_s4SQ 1))) __float 2.0))
!               (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# a22_s4SQ (-1)))) __float -2.0))
!            (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a22_s4SQ (*# (-1) ipv1_X2LM)) 1))))
!         (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a22_s4SQ (*# (-1) ipv1_X2LM)) (-1)))) __float -1.0))
!      (w2_s3ls `cast` ...)
! } in
! let { a24_s4TG = +# a22_s4SQ 1 } in
! let { __DEFAULT ~ s#1_X39F

! <- writeFloatArray#
!      arr#_i2Pd
!      (+# a23_i30Y 1)
!      (plusFloat#
!         (plusFloat#
!            (plusFloat#
!               (plusFloat#
!                  (plusFloat#
!                     (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a24_s4TG ipv1_X2LM) 1)))
!                     (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a24_s4TG ipv1_X2LM) (-1)))) __float -1.0))
!                  (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# a24_s4TG 1))) __float 2.0))
!               (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# a24_s4TG (-1)))) __float -2.0))
!            (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a24_s4TG (*# (-1) ipv1_X2LM)) 1))))
!         (timesFloat# (indexFloatArray# rb2_i2YS (+# rb_i2YQ (+# (+# a24_s4TG (*# (-1) ipv1_X2LM)) (-1)))) __float -1.0))
!      s#_X39w
! } in .....



fillLine4 !x
 | x + 4 > x1     = fillLine1 x
 | otherwise
 = do let srcCur0 = make  (Z:.y:.x)
      let srcCur1 = shift (Z:.0:.1) srcCur0
      let srcCur2 = shift (Z:.0:.1) srcCur1
      let srcCur3 = shift (Z:.0:.1) srcCur2

      let val0    = load srcCur0
      let val1    = load srcCur1
      let val2    = load srcCur2
      let val3    = load srcCur3

      let !dstCur0 = x + y * width
      unsafeWrite vec (dstCur0)     val0
      unsafeWrite vec (dstCur0 + 1) val1
      unsafeWrite vec (dstCur0 + 2) val2
      unsafeWrite vec (dstCur0 + 3) val3
      fillLine4 (x + 4)



touch# :: forall o

       .  o -> State# RealWorld 

            -> State# RealWorld

•  Quantifier forall o. is “special”..

•  You can instantiate it to unboxed types.

The poison

http://www.haskell.org/ghc/docs/latest/html/libraries/ghc-prim-0.2.0.0/GHC-Prim.html#t:State-35-
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fillLine4 !x
 | x + 4 > x1     = fillLine1 x
 | otherwise
 = do let srcCur0 = make  (Z:.y:.x)
      let srcCur1 = shift (Z:.0:.1) srcCur0
      let srcCur2 = shift (Z:.0:.1) srcCur1
      let srcCur3 = shift (Z:.0:.1) srcCur2

      let val0    = load srcCur0
      let val1    = load srcCur1
      let val2    = load srcCur2
      let val3    = load srcCur3

      touch val0 ; touch val1 ; touch val2 ; touch val3

      let !dstCur0 = x + y * width
      unsafeWrite vec (dstCur0)     val0
      unsafeWrite vec (dstCur0 + 1) val1
      unsafeWrite vec (dstCur0 + 2) val2
      unsafeWrite vec (dstCur0 + 3) val3
      fillLine4 (x + 4)



9b0: mov 0x2e(rbx), rcx
9b4: mov 0x1e(rbx), rdx
9b8: mov rdx, rsi
9bb: imul rcx, rsi
9bf: mov 0x36(rbx), rdi
9c3: lea 0x4(r14,rdi,1), r8
9c8: add r14, rdi
9cb: lea 0x1(rcx), r9
9cf: imul rdx, r9
9d3: lea 0x2(r9,rdi,1), r10
9d8: mov 0x6(rbx), r11
9dc: mov 0xe(rbx), r15

• 9e0: movss 0x10(r15,r10,4), xmm7
9e7: lea (r8,r9,1), r10

• 9eb: movss 0x10(r15,r10,4), xmm8
9f2: subss xmm7, xmm8
9f7: lea (r8,rsi,1), r10

• 9fb: movss 0x10(r15,r10,4), xmm9
a02: addss xmm9, xmm9
a07: addss xmm8, xmm9
a0c: lea 0x2(rsi,rdi,1), r10

• a11: movss 0x10(r15,r10,4), xmm8
a18: movaps xmm8, xmm10
a1c: mulss xmm0, xmm10
a21: addss xmm9, xmm10
a26: dec rcx
a29: imul rdx,rcx
a2d: add rcx,r8

• a30: addss 0x10(r15,r8,4), xmm10
a37: lea 0x1(r9,rdi,1), rdx

• a3c: movss 0x10(r15,rdx,4), xmm9
a43: lea 0x3(r9,rdi,1), rdx

• a48: movss 0x10(r15,rdx,4), xmm11
a4f: subss xmm9, xmm11
a54: lea 0x3(rsi,rdi,1), rdx

• a59: movss 0x10(r15,rdx,4), xmm12
a60: addss xmm12, xmm12
a65: addss xmm11, xmm12
a6a: lea 0x1(rsi,rdi,1), rdx

• a6f: movss 0x10(r15,rdx,4), xmm11
a76: movaps xmm11, xmm13
a7a: mulss xmm0, xmm13
a7f: addss xmm12, xmm13
a84: lea 0x3(rcx,rdi,1), rdx

• a89: addss 0x10(r15,rdx,4), xmm13

a90: lea (rdi,r9,1), rdx
• a94: subss 0x10(r15,rdx,4), xmm7

a9b: addss xmm8, xmm8
aa0: addss xmm7, xmm8
aa5: lea 0x1(rcx,rdi,1), rdx
aaa: lea 0x2(rcx,rdi,1), r8
aaf: lea (rdi,rsi,1), r10

• ab3: movss 0x10(r15,r10,4), xmm7
aba: mulss xmm0, xmm7
abe: addss xmm8, xmm7

• ac3: movss 0x10(r15,r8,4), xmm8
aca: addss xmm8, xmm7
acf: lea (rdi,rcx,1), r8

• ad3: subss 0x10(r15,r8,4), xmm7

ada: add rax, rdi
add: add rdi, r9

• ae0: subss 0x10(r15,r9,4), xmm9
ae7: addss xmm11, xmm11
aec: addss xmm9, xmm11
af1: lea (rdi,rsi,1), r8

• af5: movss 0x10(r15,r8,4), xmm9
afc: mulss xmm0, xmm9
b01: addss xmm11, xmm9

• b06: movss 0x10(r15,rdx,4), xmm11
b0d: addss xmm11, xmm9
b12: add rcx, rdi

• b15: subss 0x10(r15,rdi,4), xmm9

b1c: add r14,rsi
� b1f: movss xmm9,0x10(r11,rsi,4)

b26: mov 0x6(rbx),rcx
� b2a: movss xmm7,0x14(rcx,rsi,4)

b30: subss xmm11,xmm13
b35: mov 0x6(rbx),rcx

� b39: movss xmm13,0x18(rcx,rsi,4)
b40: subss xmm8,xmm10
b45: mov 0x6(rbx),rcx

� b49: movss xmm10,0x1c(rcx,rsi,4)
b50: lea 0x8(r14),rcx
b54: lea 0x4(r14),r14
b58: cmp 0x26(rbx),rcx
b5c: jle 9b0

Figure 12. x86 64 assembly for SobelX applied to four consecu-
tive pixels. FP loads and stores are marked with • and �.
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considering that the C version produces an inner loop that appears
close to optimal. We tried eliminating the application of make, but
this turned out not to be an improvement due to the extra register
required to maintain the centre index between loop iterations.

Figure 13 also contains an important lesson for anyone inter-
ested in parallelism in functional languages. The least efficient ver-
sion of our solver has best speedup graph, yet the most efficient
one has the worst. To argue that a particular parallel computing
system is useful, one cannot simply present the speedup vs number
of cores, as this does not discount the possibility of large linear in-
efficiencies. In practice we have found that the failure of unboxing
or fusion on a given benchmark to cause in excess of a 10x linear
slowdown, while maintaining a good speedup graph.

For this benchmark we used an image size of 300x300 matching
to our earlier work in [12]. In the end, it appears as though the
speedup of this benchmark is limited by scheduling issues. Figure
14 shows the huge variation in runtime for 100 consecutive runs
using 4 threads. Increasing the efficiency of our inner loop has also
reduced the grain size of the computation. For this input size we
really need gang scheduling [11] to ensure that all threads run in
lockstep, instead of being independently scheduled whenever the
OS “feels like it”. This is a feature which the GHC runtime does
not yet provide.

6.2 Sobel Operator

Figure 15 shows the runtimes of the Sobel stencil applied to three
image sizes. Also shown is a single threaded version using the
cv::Sobel function of OpenCV 2.2.0. This is using 32bit floats for
the array values. To mitigate variance in runtime due to scheduling
issues, we took the best result of 10 runs for each point. In this case,
single threaded OpenCV is faster than our single threaded Haskell
code primarily because it is using SSE SIMD intrinsics that we do
not have access to from Haskell. The LLVM compiler also does not
yet support auto-vectorisation to collect separate operations into
fused SIMD instructions itself. If this were possible we would not
need to use SIMD intrinsics explicitly in our Haskell code. With
SSE, the OpenCV version is able to perform loads, stores, additions
and multiplications on four packed 32bit floats at a time. However,
in all cases we are able to match OpenCV, with the larger image
sizes only needing two threads to break even.

6.3 Edge Detection

Figure 16 shows the result of applying the Canny algorithm to an
example image, with our implementation using two thresholds for
edge linking hysteresis. Our implementation is broken into several
stages: 1) convert the input RGB image to greyscale; 2) perform a
Gaussian blur to suppress high frequency noise; 3) differentiate the
image with Sobel_{X,Y}; 4) compute magnitude and orientation
of the vector gradient; 5) classify local maxima of the gradient
into strong and weak edges using the thresholds; 6) select points
marked as strong edges; 7) link weak edges that are attached to
strong edges. The output consists of all points marked as strong

— DRAFT — DRAFT — DRAFT — DRAFT — 9 2011/3/16

9b0: mov 0x2e(rbx), rcx
9b4: mov 0x1e(rbx), rdx
9b8: mov rdx, rsi
9bb: imul rcx, rsi
9bf: mov 0x36(rbx), rdi
9c3: lea 0x4(r14,rdi,1), r8
9c8: add r14, rdi
9cb: lea 0x1(rcx), r9
9cf: imul rdx, r9
9d3: lea 0x2(r9,rdi,1), r10
9d8: mov 0x6(rbx), r11
9dc: mov 0xe(rbx), r15

• 9e0: movss 0x10(r15,r10,4), xmm7
9e7: lea (r8,r9,1), r10

• 9eb: movss 0x10(r15,r10,4), xmm8
9f2: subss xmm7, xmm8
9f7: lea (r8,rsi,1), r10

• 9fb: movss 0x10(r15,r10,4), xmm9
a02: addss xmm9, xmm9
a07: addss xmm8, xmm9
a0c: lea 0x2(rsi,rdi,1), r10

• a11: movss 0x10(r15,r10,4), xmm8
a18: movaps xmm8, xmm10
a1c: mulss xmm0, xmm10
a21: addss xmm9, xmm10
a26: dec rcx
a29: imul rdx,rcx
a2d: add rcx,r8

• a30: addss 0x10(r15,r8,4), xmm10
a37: lea 0x1(r9,rdi,1), rdx

• a3c: movss 0x10(r15,rdx,4), xmm9
a43: lea 0x3(r9,rdi,1), rdx

• a48: movss 0x10(r15,rdx,4), xmm11
a4f: subss xmm9, xmm11
a54: lea 0x3(rsi,rdi,1), rdx

• a59: movss 0x10(r15,rdx,4), xmm12
a60: addss xmm12, xmm12
a65: addss xmm11, xmm12
a6a: lea 0x1(rsi,rdi,1), rdx

• a6f: movss 0x10(r15,rdx,4), xmm11
a76: movaps xmm11, xmm13
a7a: mulss xmm0, xmm13
a7f: addss xmm12, xmm13
a84: lea 0x3(rcx,rdi,1), rdx

• a89: addss 0x10(r15,rdx,4), xmm13

a90: lea (rdi,r9,1), rdx
• a94: subss 0x10(r15,rdx,4), xmm7

a9b: addss xmm8, xmm8
aa0: addss xmm7, xmm8
aa5: lea 0x1(rcx,rdi,1), rdx
aaa: lea 0x2(rcx,rdi,1), r8
aaf: lea (rdi,rsi,1), r10

• ab3: movss 0x10(r15,r10,4), xmm7
aba: mulss xmm0, xmm7
abe: addss xmm8, xmm7

• ac3: movss 0x10(r15,r8,4), xmm8
aca: addss xmm8, xmm7
acf: lea (rdi,rcx,1), r8

• ad3: subss 0x10(r15,r8,4), xmm7

ada: add rax, rdi
add: add rdi, r9

• ae0: subss 0x10(r15,r9,4), xmm9
ae7: addss xmm11, xmm11
aec: addss xmm9, xmm11
af1: lea (rdi,rsi,1), r8

• af5: movss 0x10(r15,r8,4), xmm9
afc: mulss xmm0, xmm9
b01: addss xmm11, xmm9

• b06: movss 0x10(r15,rdx,4), xmm11
b0d: addss xmm11, xmm9
b12: add rcx, rdi

• b15: subss 0x10(r15,rdi,4), xmm9

b1c: add r14,rsi
� b1f: movss xmm9,0x10(r11,rsi,4)

b26: mov 0x6(rbx),rcx
� b2a: movss xmm7,0x14(rcx,rsi,4)

b30: subss xmm11,xmm13
b35: mov 0x6(rbx),rcx

� b39: movss xmm13,0x18(rcx,rsi,4)
b40: subss xmm8,xmm10
b45: mov 0x6(rbx),rcx

� b49: movss xmm10,0x1c(rcx,rsi,4)
b50: lea 0x8(r14),rcx
b54: lea 0x4(r14),r14
b58: cmp 0x26(rbx),rcx
b5c: jle 9b0

Figure 12. x86 64 assembly for SobelX applied to four consecu-
tive pixels. FP loads and stores are marked with • and �.
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considering that the C version produces an inner loop that appears
close to optimal. We tried eliminating the application of make, but
this turned out not to be an improvement due to the extra register
required to maintain the centre index between loop iterations.

Figure 13 also contains an important lesson for anyone inter-
ested in parallelism in functional languages. The least efficient ver-
sion of our solver has best speedup graph, yet the most efficient
one has the worst. To argue that a particular parallel computing
system is useful, one cannot simply present the speedup vs number
of cores, as this does not discount the possibility of large linear in-
efficiencies. In practice we have found that the failure of unboxing
or fusion on a given benchmark to cause in excess of a 10x linear
slowdown, while maintaining a good speedup graph.

For this benchmark we used an image size of 300x300 matching
to our earlier work in [12]. In the end, it appears as though the
speedup of this benchmark is limited by scheduling issues. Figure
14 shows the huge variation in runtime for 100 consecutive runs
using 4 threads. Increasing the efficiency of our inner loop has also
reduced the grain size of the computation. For this input size we
really need gang scheduling [11] to ensure that all threads run in
lockstep, instead of being independently scheduled whenever the
OS “feels like it”. This is a feature which the GHC runtime does
not yet provide.

6.2 Sobel Operator

Figure 15 shows the runtimes of the Sobel stencil applied to three
image sizes. Also shown is a single threaded version using the
cv::Sobel function of OpenCV 2.2.0. This is using 32bit floats for
the array values. To mitigate variance in runtime due to scheduling
issues, we took the best result of 10 runs for each point. In this case,
single threaded OpenCV is faster than our single threaded Haskell
code primarily because it is using SSE SIMD intrinsics that we do
not have access to from Haskell. The LLVM compiler also does not
yet support auto-vectorisation to collect separate operations into
fused SIMD instructions itself. If this were possible we would not
need to use SIMD intrinsics explicitly in our Haskell code. With
SSE, the OpenCV version is able to perform loads, stores, additions
and multiplications on four packed 32bit floats at a time. However,
in all cases we are able to match OpenCV, with the larger image
sizes only needing two threads to break even.

6.3 Edge Detection

Figure 16 shows the result of applying the Canny algorithm to an
example image, with our implementation using two thresholds for
edge linking hysteresis. Our implementation is broken into several
stages: 1) convert the input RGB image to greyscale; 2) perform a
Gaussian blur to suppress high frequency noise; 3) differentiate the
image with Sobel_{X,Y}; 4) compute magnitude and orientation
of the vector gradient; 5) classify local maxima of the gradient
into strong and weak edges using the thresholds; 6) select points
marked as strong edges; 7) link weak edges that are attached to
strong edges. The output consists of all points marked as strong
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9b0: mov 0x2e(rbx), rcx
9b4: mov 0x1e(rbx), rdx
9b8: mov rdx, rsi
9bb: imul rcx, rsi
9bf: mov 0x36(rbx), rdi
9c3: lea 0x4(r14,rdi,1), r8
9c8: add r14, rdi
9cb: lea 0x1(rcx), r9
9cf: imul rdx, r9
9d3: lea 0x2(r9,rdi,1), r10
9d8: mov 0x6(rbx), r11
9dc: mov 0xe(rbx), r15

• 9e0: movss 0x10(r15,r10,4), xmm7
9e7: lea (r8,r9,1), r10

• 9eb: movss 0x10(r15,r10,4), xmm8
9f2: subss xmm7, xmm8
9f7: lea (r8,rsi,1), r10

• 9fb: movss 0x10(r15,r10,4), xmm9
a02: addss xmm9, xmm9
a07: addss xmm8, xmm9
a0c: lea 0x2(rsi,rdi,1), r10

• a11: movss 0x10(r15,r10,4), xmm8
a18: movaps xmm8, xmm10
a1c: mulss xmm0, xmm10
a21: addss xmm9, xmm10
a26: dec rcx
a29: imul rdx,rcx
a2d: add rcx,r8

• a30: addss 0x10(r15,r8,4), xmm10
a37: lea 0x1(r9,rdi,1), rdx

• a3c: movss 0x10(r15,rdx,4), xmm9
a43: lea 0x3(r9,rdi,1), rdx

• a48: movss 0x10(r15,rdx,4), xmm11
a4f: subss xmm9, xmm11
a54: lea 0x3(rsi,rdi,1), rdx

• a59: movss 0x10(r15,rdx,4), xmm12
a60: addss xmm12, xmm12
a65: addss xmm11, xmm12
a6a: lea 0x1(rsi,rdi,1), rdx

• a6f: movss 0x10(r15,rdx,4), xmm11
a76: movaps xmm11, xmm13
a7a: mulss xmm0, xmm13
a7f: addss xmm12, xmm13
a84: lea 0x3(rcx,rdi,1), rdx

• a89: addss 0x10(r15,rdx,4), xmm13

a90: lea (rdi,r9,1), rdx
• a94: subss 0x10(r15,rdx,4), xmm7

a9b: addss xmm8, xmm8
aa0: addss xmm7, xmm8
aa5: lea 0x1(rcx,rdi,1), rdx
aaa: lea 0x2(rcx,rdi,1), r8
aaf: lea (rdi,rsi,1), r10

• ab3: movss 0x10(r15,r10,4), xmm7
aba: mulss xmm0, xmm7
abe: addss xmm8, xmm7

• ac3: movss 0x10(r15,r8,4), xmm8
aca: addss xmm8, xmm7
acf: lea (rdi,rcx,1), r8

• ad3: subss 0x10(r15,r8,4), xmm7

ada: add rax, rdi
add: add rdi, r9

• ae0: subss 0x10(r15,r9,4), xmm9
ae7: addss xmm11, xmm11
aec: addss xmm9, xmm11
af1: lea (rdi,rsi,1), r8

• af5: movss 0x10(r15,r8,4), xmm9
afc: mulss xmm0, xmm9
b01: addss xmm11, xmm9

• b06: movss 0x10(r15,rdx,4), xmm11
b0d: addss xmm11, xmm9
b12: add rcx, rdi

• b15: subss 0x10(r15,rdi,4), xmm9

b1c: add r14,rsi
� b1f: movss xmm9,0x10(r11,rsi,4)

b26: mov 0x6(rbx),rcx
� b2a: movss xmm7,0x14(rcx,rsi,4)

b30: subss xmm11,xmm13
b35: mov 0x6(rbx),rcx

� b39: movss xmm13,0x18(rcx,rsi,4)
b40: subss xmm8,xmm10
b45: mov 0x6(rbx),rcx

� b49: movss xmm10,0x1c(rcx,rsi,4)
b50: lea 0x8(r14),rcx
b54: lea 0x4(r14),r14
b58: cmp 0x26(rbx),rcx
b5c: jle 9b0

Figure 12. x86 64 assembly for SobelX applied to four consecu-
tive pixels. FP loads and stores are marked with • and �.
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considering that the C version produces an inner loop that appears
close to optimal. We tried eliminating the application of make, but
this turned out not to be an improvement due to the extra register
required to maintain the centre index between loop iterations.

Figure 13 also contains an important lesson for anyone inter-
ested in parallelism in functional languages. The least efficient ver-
sion of our solver has best speedup graph, yet the most efficient
one has the worst. To argue that a particular parallel computing
system is useful, one cannot simply present the speedup vs number
of cores, as this does not discount the possibility of large linear in-
efficiencies. In practice we have found that the failure of unboxing
or fusion on a given benchmark to cause in excess of a 10x linear
slowdown, while maintaining a good speedup graph.

For this benchmark we used an image size of 300x300 matching
to our earlier work in [12]. In the end, it appears as though the
speedup of this benchmark is limited by scheduling issues. Figure
14 shows the huge variation in runtime for 100 consecutive runs
using 4 threads. Increasing the efficiency of our inner loop has also
reduced the grain size of the computation. For this input size we
really need gang scheduling [11] to ensure that all threads run in
lockstep, instead of being independently scheduled whenever the
OS “feels like it”. This is a feature which the GHC runtime does
not yet provide.

6.2 Sobel Operator

Figure 15 shows the runtimes of the Sobel stencil applied to three
image sizes. Also shown is a single threaded version using the
cv::Sobel function of OpenCV 2.2.0. This is using 32bit floats for
the array values. To mitigate variance in runtime due to scheduling
issues, we took the best result of 10 runs for each point. In this case,
single threaded OpenCV is faster than our single threaded Haskell
code primarily because it is using SSE SIMD intrinsics that we do
not have access to from Haskell. The LLVM compiler also does not
yet support auto-vectorisation to collect separate operations into
fused SIMD instructions itself. If this were possible we would not
need to use SIMD intrinsics explicitly in our Haskell code. With
SSE, the OpenCV version is able to perform loads, stores, additions
and multiplications on four packed 32bit floats at a time. However,
in all cases we are able to match OpenCV, with the larger image
sizes only needing two threads to break even.

6.3 Edge Detection

Figure 16 shows the result of applying the Canny algorithm to an
example image, with our implementation using two thresholds for
edge linking hysteresis. Our implementation is broken into several
stages: 1) convert the input RGB image to greyscale; 2) perform a
Gaussian blur to suppress high frequency noise; 3) differentiate the
image with Sobel_{X,Y}; 4) compute magnitude and orientation
of the vector gradient; 5) classify local maxima of the gradient
into strong and weak edges using the thresholds; 6) select points
marked as strong edges; 7) link weak edges that are attached to
strong edges. The output consists of all points marked as strong
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9b0: mov 0x2e(rbx), rcx
9b4: mov 0x1e(rbx), rdx
9b8: mov rdx, rsi
9bb: imul rcx, rsi
9bf: mov 0x36(rbx), rdi
9c3: lea 0x4(r14,rdi,1), r8
9c8: add r14, rdi
9cb: lea 0x1(rcx), r9
9cf: imul rdx, r9
9d3: lea 0x2(r9,rdi,1), r10
9d8: mov 0x6(rbx), r11
9dc: mov 0xe(rbx), r15

• 9e0: movss 0x10(r15,r10,4), xmm7
9e7: lea (r8,r9,1), r10

• 9eb: movss 0x10(r15,r10,4), xmm8
9f2: subss xmm7, xmm8
9f7: lea (r8,rsi,1), r10

• 9fb: movss 0x10(r15,r10,4), xmm9
a02: addss xmm9, xmm9
a07: addss xmm8, xmm9
a0c: lea 0x2(rsi,rdi,1), r10

• a11: movss 0x10(r15,r10,4), xmm8
a18: movaps xmm8, xmm10
a1c: mulss xmm0, xmm10
a21: addss xmm9, xmm10
a26: dec rcx
a29: imul rdx,rcx
a2d: add rcx,r8

• a30: addss 0x10(r15,r8,4), xmm10
a37: lea 0x1(r9,rdi,1), rdx

• a3c: movss 0x10(r15,rdx,4), xmm9
a43: lea 0x3(r9,rdi,1), rdx

• a48: movss 0x10(r15,rdx,4), xmm11
a4f: subss xmm9, xmm11
a54: lea 0x3(rsi,rdi,1), rdx

• a59: movss 0x10(r15,rdx,4), xmm12
a60: addss xmm12, xmm12
a65: addss xmm11, xmm12
a6a: lea 0x1(rsi,rdi,1), rdx

• a6f: movss 0x10(r15,rdx,4), xmm11
a76: movaps xmm11, xmm13
a7a: mulss xmm0, xmm13
a7f: addss xmm12, xmm13
a84: lea 0x3(rcx,rdi,1), rdx

• a89: addss 0x10(r15,rdx,4), xmm13

a90: lea (rdi,r9,1), rdx
• a94: subss 0x10(r15,rdx,4), xmm7

a9b: addss xmm8, xmm8
aa0: addss xmm7, xmm8
aa5: lea 0x1(rcx,rdi,1), rdx
aaa: lea 0x2(rcx,rdi,1), r8
aaf: lea (rdi,rsi,1), r10

• ab3: movss 0x10(r15,r10,4), xmm7
aba: mulss xmm0, xmm7
abe: addss xmm8, xmm7

• ac3: movss 0x10(r15,r8,4), xmm8
aca: addss xmm8, xmm7
acf: lea (rdi,rcx,1), r8

• ad3: subss 0x10(r15,r8,4), xmm7

ada: add rax, rdi
add: add rdi, r9

• ae0: subss 0x10(r15,r9,4), xmm9
ae7: addss xmm11, xmm11
aec: addss xmm9, xmm11
af1: lea (rdi,rsi,1), r8

• af5: movss 0x10(r15,r8,4), xmm9
afc: mulss xmm0, xmm9
b01: addss xmm11, xmm9

• b06: movss 0x10(r15,rdx,4), xmm11
b0d: addss xmm11, xmm9
b12: add rcx, rdi

• b15: subss 0x10(r15,rdi,4), xmm9

b1c: add r14,rsi
� b1f: movss xmm9,0x10(r11,rsi,4)

b26: mov 0x6(rbx),rcx
� b2a: movss xmm7,0x14(rcx,rsi,4)

b30: subss xmm11,xmm13
b35: mov 0x6(rbx),rcx

� b39: movss xmm13,0x18(rcx,rsi,4)
b40: subss xmm8,xmm10
b45: mov 0x6(rbx),rcx

� b49: movss xmm10,0x1c(rcx,rsi,4)
b50: lea 0x8(r14),rcx
b54: lea 0x4(r14),r14
b58: cmp 0x26(rbx),rcx
b5c: jle 9b0

Figure 12. x86 64 assembly for SobelX applied to four consecu-
tive pixels. FP loads and stores are marked with • and �.
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Figure 14. Variation in runtime of Unrolled Stencil Laplace

considering that the C version produces an inner loop that appears
close to optimal. We tried eliminating the application of make, but
this turned out not to be an improvement due to the extra register
required to maintain the centre index between loop iterations.

Figure 13 also contains an important lesson for anyone inter-
ested in parallelism in functional languages. The least efficient ver-
sion of our solver has best speedup graph, yet the most efficient
one has the worst. To argue that a particular parallel computing
system is useful, one cannot simply present the speedup vs number
of cores, as this does not discount the possibility of large linear in-
efficiencies. In practice we have found that the failure of unboxing
or fusion on a given benchmark to cause in excess of a 10x linear
slowdown, while maintaining a good speedup graph.

For this benchmark we used an image size of 300x300 matching
to our earlier work in [12]. In the end, it appears as though the
speedup of this benchmark is limited by scheduling issues. Figure
14 shows the huge variation in runtime for 100 consecutive runs
using 4 threads. Increasing the efficiency of our inner loop has also
reduced the grain size of the computation. For this input size we
really need gang scheduling [11] to ensure that all threads run in
lockstep, instead of being independently scheduled whenever the
OS “feels like it”. This is a feature which the GHC runtime does
not yet provide.

6.2 Sobel Operator

Figure 15 shows the runtimes of the Sobel stencil applied to three
image sizes. Also shown is a single threaded version using the
cv::Sobel function of OpenCV 2.2.0. This is using 32bit floats for
the array values. To mitigate variance in runtime due to scheduling
issues, we took the best result of 10 runs for each point. In this case,
single threaded OpenCV is faster than our single threaded Haskell
code primarily because it is using SSE SIMD intrinsics that we do
not have access to from Haskell. The LLVM compiler also does not
yet support auto-vectorisation to collect separate operations into
fused SIMD instructions itself. If this were possible we would not
need to use SIMD intrinsics explicitly in our Haskell code. With
SSE, the OpenCV version is able to perform loads, stores, additions
and multiplications on four packed 32bit floats at a time. However,
in all cases we are able to match OpenCV, with the larger image
sizes only needing two threads to break even.

6.3 Edge Detection

Figure 16 shows the result of applying the Canny algorithm to an
example image, with our implementation using two thresholds for
edge linking hysteresis. Our implementation is broken into several
stages: 1) convert the input RGB image to greyscale; 2) perform a
Gaussian blur to suppress high frequency noise; 3) differentiate the
image with Sobel_{X,Y}; 4) compute magnitude and orientation
of the vector gradient; 5) classify local maxima of the gradient
into strong and weak edges using the thresholds; 6) select points
marked as strong edges; 7) link weak edges that are attached to
strong edges. The output consists of all points marked as strong
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9b0: mov 0x2e(rbx), rcx
9b4: mov 0x1e(rbx), rdx
9b8: mov rdx, rsi
9bb: imul rcx, rsi
9bf: mov 0x36(rbx), rdi
9c3: lea 0x4(r14,rdi,1), r8
9c8: add r14, rdi
9cb: lea 0x1(rcx), r9
9cf: imul rdx, r9
9d3: lea 0x2(r9,rdi,1), r10
9d8: mov 0x6(rbx), r11
9dc: mov 0xe(rbx), r15

• 9e0: movss 0x10(r15,r10,4), xmm7
9e7: lea (r8,r9,1), r10

• 9eb: movss 0x10(r15,r10,4), xmm8
9f2: subss xmm7, xmm8
9f7: lea (r8,rsi,1), r10

• 9fb: movss 0x10(r15,r10,4), xmm9
a02: addss xmm9, xmm9
a07: addss xmm8, xmm9
a0c: lea 0x2(rsi,rdi,1), r10

• a11: movss 0x10(r15,r10,4), xmm8
a18: movaps xmm8, xmm10
a1c: mulss xmm0, xmm10
a21: addss xmm9, xmm10
a26: dec rcx
a29: imul rdx,rcx
a2d: add rcx,r8

• a30: addss 0x10(r15,r8,4), xmm10
a37: lea 0x1(r9,rdi,1), rdx

• a3c: movss 0x10(r15,rdx,4), xmm9
a43: lea 0x3(r9,rdi,1), rdx

• a48: movss 0x10(r15,rdx,4), xmm11
a4f: subss xmm9, xmm11
a54: lea 0x3(rsi,rdi,1), rdx

• a59: movss 0x10(r15,rdx,4), xmm12
a60: addss xmm12, xmm12
a65: addss xmm11, xmm12
a6a: lea 0x1(rsi,rdi,1), rdx

• a6f: movss 0x10(r15,rdx,4), xmm11
a76: movaps xmm11, xmm13
a7a: mulss xmm0, xmm13
a7f: addss xmm12, xmm13
a84: lea 0x3(rcx,rdi,1), rdx

• a89: addss 0x10(r15,rdx,4), xmm13

a90: lea (rdi,r9,1), rdx
• a94: subss 0x10(r15,rdx,4), xmm7

a9b: addss xmm8, xmm8
aa0: addss xmm7, xmm8
aa5: lea 0x1(rcx,rdi,1), rdx
aaa: lea 0x2(rcx,rdi,1), r8
aaf: lea (rdi,rsi,1), r10

• ab3: movss 0x10(r15,r10,4), xmm7
aba: mulss xmm0, xmm7
abe: addss xmm8, xmm7

• ac3: movss 0x10(r15,r8,4), xmm8
aca: addss xmm8, xmm7
acf: lea (rdi,rcx,1), r8

• ad3: subss 0x10(r15,r8,4), xmm7

ada: add rax, rdi
add: add rdi, r9

• ae0: subss 0x10(r15,r9,4), xmm9
ae7: addss xmm11, xmm11
aec: addss xmm9, xmm11
af1: lea (rdi,rsi,1), r8

• af5: movss 0x10(r15,r8,4), xmm9
afc: mulss xmm0, xmm9
b01: addss xmm11, xmm9

• b06: movss 0x10(r15,rdx,4), xmm11
b0d: addss xmm11, xmm9
b12: add rcx, rdi

• b15: subss 0x10(r15,rdi,4), xmm9

b1c: add r14,rsi
� b1f: movss xmm9,0x10(r11,rsi,4)

b26: mov 0x6(rbx),rcx
� b2a: movss xmm7,0x14(rcx,rsi,4)

b30: subss xmm11,xmm13
b35: mov 0x6(rbx),rcx

� b39: movss xmm13,0x18(rcx,rsi,4)
b40: subss xmm8,xmm10
b45: mov 0x6(rbx),rcx

� b49: movss xmm10,0x1c(rcx,rsi,4)
b50: lea 0x8(r14),rcx
b54: lea 0x4(r14),r14
b58: cmp 0x26(rbx),rcx
b5c: jle 9b0

Figure 12. x86 64 assembly for SobelX applied to four consecu-
tive pixels. FP loads and stores are marked with • and �.
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Figure 14. Variation in runtime of Unrolled Stencil Laplace

considering that the C version produces an inner loop that appears
close to optimal. We tried eliminating the application of make, but
this turned out not to be an improvement due to the extra register
required to maintain the centre index between loop iterations.

Figure 13 also contains an important lesson for anyone inter-
ested in parallelism in functional languages. The least efficient ver-
sion of our solver has best speedup graph, yet the most efficient
one has the worst. To argue that a particular parallel computing
system is useful, one cannot simply present the speedup vs number
of cores, as this does not discount the possibility of large linear in-
efficiencies. In practice we have found that the failure of unboxing
or fusion on a given benchmark to cause in excess of a 10x linear
slowdown, while maintaining a good speedup graph.

For this benchmark we used an image size of 300x300 matching
to our earlier work in [12]. In the end, it appears as though the
speedup of this benchmark is limited by scheduling issues. Figure
14 shows the huge variation in runtime for 100 consecutive runs
using 4 threads. Increasing the efficiency of our inner loop has also
reduced the grain size of the computation. For this input size we
really need gang scheduling [11] to ensure that all threads run in
lockstep, instead of being independently scheduled whenever the
OS “feels like it”. This is a feature which the GHC runtime does
not yet provide.

6.2 Sobel Operator

Figure 15 shows the runtimes of the Sobel stencil applied to three
image sizes. Also shown is a single threaded version using the
cv::Sobel function of OpenCV 2.2.0. This is using 32bit floats for
the array values. To mitigate variance in runtime due to scheduling
issues, we took the best result of 10 runs for each point. In this case,
single threaded OpenCV is faster than our single threaded Haskell
code primarily because it is using SSE SIMD intrinsics that we do
not have access to from Haskell. The LLVM compiler also does not
yet support auto-vectorisation to collect separate operations into
fused SIMD instructions itself. If this were possible we would not
need to use SIMD intrinsics explicitly in our Haskell code. With
SSE, the OpenCV version is able to perform loads, stores, additions
and multiplications on four packed 32bit floats at a time. However,
in all cases we are able to match OpenCV, with the larger image
sizes only needing two threads to break even.

6.3 Edge Detection

Figure 16 shows the result of applying the Canny algorithm to an
example image, with our implementation using two thresholds for
edge linking hysteresis. Our implementation is broken into several
stages: 1) convert the input RGB image to greyscale; 2) perform a
Gaussian blur to suppress high frequency noise; 3) differentiate the
image with Sobel_{X,Y}; 4) compute magnitude and orientation
of the vector gradient; 5) classify local maxima of the gradient
into strong and weak edges using the thresholds; 6) select points
marked as strong edges; 7) link weak edges that are attached to
strong edges. The output consists of all points marked as strong
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9b0: mov 0x2e(rbx), rcx
9b4: mov 0x1e(rbx), rdx
9b8: mov rdx, rsi
9bb: imul rcx, rsi
9bf: mov 0x36(rbx), rdi
9c3: lea 0x4(r14,rdi,1), r8
9c8: add r14, rdi
9cb: lea 0x1(rcx), r9
9cf: imul rdx, r9
9d3: lea 0x2(r9,rdi,1), r10
9d8: mov 0x6(rbx), r11
9dc: mov 0xe(rbx), r15

• 9e0: movss 0x10(r15,r10,4), xmm7
9e7: lea (r8,r9,1), r10

• 9eb: movss 0x10(r15,r10,4), xmm8
9f2: subss xmm7, xmm8
9f7: lea (r8,rsi,1), r10

• 9fb: movss 0x10(r15,r10,4), xmm9
a02: addss xmm9, xmm9
a07: addss xmm8, xmm9
a0c: lea 0x2(rsi,rdi,1), r10

• a11: movss 0x10(r15,r10,4), xmm8
a18: movaps xmm8, xmm10
a1c: mulss xmm0, xmm10
a21: addss xmm9, xmm10
a26: dec rcx
a29: imul rdx,rcx
a2d: add rcx,r8

• a30: addss 0x10(r15,r8,4), xmm10
a37: lea 0x1(r9,rdi,1), rdx

• a3c: movss 0x10(r15,rdx,4), xmm9
a43: lea 0x3(r9,rdi,1), rdx

• a48: movss 0x10(r15,rdx,4), xmm11
a4f: subss xmm9, xmm11
a54: lea 0x3(rsi,rdi,1), rdx

• a59: movss 0x10(r15,rdx,4), xmm12
a60: addss xmm12, xmm12
a65: addss xmm11, xmm12
a6a: lea 0x1(rsi,rdi,1), rdx

• a6f: movss 0x10(r15,rdx,4), xmm11
a76: movaps xmm11, xmm13
a7a: mulss xmm0, xmm13
a7f: addss xmm12, xmm13
a84: lea 0x3(rcx,rdi,1), rdx

• a89: addss 0x10(r15,rdx,4), xmm13

a90: lea (rdi,r9,1), rdx
• a94: subss 0x10(r15,rdx,4), xmm7

a9b: addss xmm8, xmm8
aa0: addss xmm7, xmm8
aa5: lea 0x1(rcx,rdi,1), rdx
aaa: lea 0x2(rcx,rdi,1), r8
aaf: lea (rdi,rsi,1), r10

• ab3: movss 0x10(r15,r10,4), xmm7
aba: mulss xmm0, xmm7
abe: addss xmm8, xmm7

• ac3: movss 0x10(r15,r8,4), xmm8
aca: addss xmm8, xmm7
acf: lea (rdi,rcx,1), r8

• ad3: subss 0x10(r15,r8,4), xmm7

ada: add rax, rdi
add: add rdi, r9
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aec: addss xmm9, xmm11
af1: lea (rdi,rsi,1), r8

• af5: movss 0x10(r15,r8,4), xmm9
afc: mulss xmm0, xmm9
b01: addss xmm11, xmm9

• b06: movss 0x10(r15,rdx,4), xmm11
b0d: addss xmm11, xmm9
b12: add rcx, rdi

• b15: subss 0x10(r15,rdi,4), xmm9

b1c: add r14,rsi
� b1f: movss xmm9,0x10(r11,rsi,4)

b26: mov 0x6(rbx),rcx
� b2a: movss xmm7,0x14(rcx,rsi,4)

b30: subss xmm11,xmm13
b35: mov 0x6(rbx),rcx

� b39: movss xmm13,0x18(rcx,rsi,4)
b40: subss xmm8,xmm10
b45: mov 0x6(rbx),rcx

� b49: movss xmm10,0x1c(rcx,rsi,4)
b50: lea 0x8(r14),rcx
b54: lea 0x4(r14),r14
b58: cmp 0x26(rbx),rcx
b5c: jle 9b0

Figure 12. x86 64 assembly for SobelX applied to four consecu-
tive pixels. FP loads and stores are marked with • and �.
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considering that the C version produces an inner loop that appears
close to optimal. We tried eliminating the application of make, but
this turned out not to be an improvement due to the extra register
required to maintain the centre index between loop iterations.

Figure 13 also contains an important lesson for anyone inter-
ested in parallelism in functional languages. The least efficient ver-
sion of our solver has best speedup graph, yet the most efficient
one has the worst. To argue that a particular parallel computing
system is useful, one cannot simply present the speedup vs number
of cores, as this does not discount the possibility of large linear in-
efficiencies. In practice we have found that the failure of unboxing
or fusion on a given benchmark to cause in excess of a 10x linear
slowdown, while maintaining a good speedup graph.

For this benchmark we used an image size of 300x300 matching
to our earlier work in [12]. In the end, it appears as though the
speedup of this benchmark is limited by scheduling issues. Figure
14 shows the huge variation in runtime for 100 consecutive runs
using 4 threads. Increasing the efficiency of our inner loop has also
reduced the grain size of the computation. For this input size we
really need gang scheduling [11] to ensure that all threads run in
lockstep, instead of being independently scheduled whenever the
OS “feels like it”. This is a feature which the GHC runtime does
not yet provide.

6.2 Sobel Operator

Figure 15 shows the runtimes of the Sobel stencil applied to three
image sizes. Also shown is a single threaded version using the
cv::Sobel function of OpenCV 2.2.0. This is using 32bit floats for
the array values. To mitigate variance in runtime due to scheduling
issues, we took the best result of 10 runs for each point. In this case,
single threaded OpenCV is faster than our single threaded Haskell
code primarily because it is using SSE SIMD intrinsics that we do
not have access to from Haskell. The LLVM compiler also does not
yet support auto-vectorisation to collect separate operations into
fused SIMD instructions itself. If this were possible we would not
need to use SIMD intrinsics explicitly in our Haskell code. With
SSE, the OpenCV version is able to perform loads, stores, additions
and multiplications on four packed 32bit floats at a time. However,
in all cases we are able to match OpenCV, with the larger image
sizes only needing two threads to break even.

6.3 Edge Detection

Figure 16 shows the result of applying the Canny algorithm to an
example image, with our implementation using two thresholds for
edge linking hysteresis. Our implementation is broken into several
stages: 1) convert the input RGB image to greyscale; 2) perform a
Gaussian blur to suppress high frequency noise; 3) differentiate the
image with Sobel_{X,Y}; 4) compute magnitude and orientation
of the vector gradient; 5) classify local maxima of the gradient
into strong and weak edges using the thresholds; 6) select points
marked as strong edges; 7) link weak edges that are attached to
strong edges. The output consists of all points marked as strong
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Figure 15. Sobel and Canny runtimes, 100 iterations

edges, as well as any weak edges that are attached to strong edges.
A breakdown of runtimes for each of these stages applied to a
1024x1024 image is shown in Figure 17, while graphs of other sizes
are also in Figure 15.

When all is said and done our single threaded implementation
is about 4 times slower than OpenCV. With 8 threads it’s about
50% slower with a 512x512 image, 10% slower for 768x768, and
on par for 1024x1024. We feel this is a good result considering
that the blur and differentiation stages for the OpenCV version
use SIMD operations that we cannot access to from Haskell. The
OpenCV implementation also uses different data formats for the
various stages, converting between 8-bit unsigned and 16-bit signed
integers during the application of SobelX,Y . The other stages are
performed in a mixture of 8 and 16 bit integer formats. In our own
code we also perform the greyscale conversion and edge linking
with 8 bit integers. However, using integer operations for the other
stages does not help us due to the lack of registers and the aliasing
issues mentioned in §5.3.

The OpenCV implementation also hand-fuses the “local max-
ima” and “select strong” stages, recording an array of indices for
strong edges pixels while computing the local maxima. To dupli-
cate this we would need to provide a joint mapFilter operation,
with a corresponding version of fillCursoredBlock2. The de-
layed array approach cannot recover this form of fusion automati-
cally as it cannot be expressed by simple function composition.

On the positive side, the performance of our Haskell code is
more than adequate for real-time edge detection of a video stream.
We have an OSX demo available from the Repa homepage CITE .

Figure 16. Application of Canny edge detector to an image.
TODO: Replace image, suppress border. Giraffe is CC licence.

GCC 4.4.3 GHC 7.0.2 + Repa with # threads
OpenCV 1 2 4 8

Grey scale 10.59 12.05 6.19 3.25 2.08
Gaussian blur 3.53 17.42 9.70 5.92 5.15
Detect 18.95 68.73 43.81 31.21 28.49
Differentiate fused 11.90 7.41 5.38 5.22
Mag / Orient fused 27.09 16.11 10.45 7.85
Maxima fused 12.87 7.84 4.83 3.32
Select strong fused 10.01 5.68 3.60 5.16
Link edges fused 6.86 6.77 6.95 6.94

TOTAL 33.05 98.25 59.70 40.38 35.72

Figure 17. Canny Edge Detection, 1024x1024 image

7. Challenges of Array Fusion
In this section we summarise the main challenges we have encoun-
tered with this work, and suggest avenues for future research.

7.1 Lack of support for SIMD operations
At face value, using 4-way SIMD instructions such as available in
the SSE or MMX set has the potential to improve the performance
of certain algorithms 4-fold. This is assuming that our application
isn’t memory bound, though note that even a 1024x1024 image of
32bit floats sits comfortably in the 12MB cache of our test ma-
chine. Of course, the fact we are using a super-scalar architecture
implies that we won’t necessarily get a 4-fold speedup on a lin-
ear instruction stream, though we note that using SIMD also effec-
tively increases the size of the register set. This would help to avoid
the aliasing issues discussed in §5. Whether it’s better to introduce
SIMD instructions in Haskell code, or have the LLVM compiler
reconstruct them is an open question.

7.2 Manual unwinding of recursive functions
As mentioned in §5.2 we must manually unfold loops over regions
and rectangles as GHC avoids inlining the definitions of recursive
functions. The nice way to fix this would be some form of super-
compilation [4, 16]. Support for supercompilation in GHC is cur-
rently being developed, though still in an early stage. Failing that,
we could perhaps add a new form of the INLINE pragma that un-
folded recursive functions indiscriminately, or a fixed number of
times. The downside of the first is potential divergence at compile
time, the downside of the second is lack of generality.
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Figure 15. Sobel and Canny runtimes, 100 iterations

edges, as well as any weak edges that are attached to strong edges.
A breakdown of runtimes for each of these stages applied to a
1024x1024 image is shown in Figure 17, while graphs of other sizes
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When all is said and done our single threaded implementation
is about 4 times slower than OpenCV. With 8 threads it’s about
50% slower with a 512x512 image, 10% slower for 768x768, and
on par for 1024x1024. We feel this is a good result considering
that the blur and differentiation stages for the OpenCV version
use SIMD operations that we cannot access to from Haskell. The
OpenCV implementation also uses different data formats for the
various stages, converting between 8-bit unsigned and 16-bit signed
integers during the application of SobelX,Y . The other stages are
performed in a mixture of 8 and 16 bit integer formats. In our own
code we also perform the greyscale conversion and edge linking
with 8 bit integers. However, using integer operations for the other
stages does not help us due to the lack of registers and the aliasing
issues mentioned in §5.3.

The OpenCV implementation also hand-fuses the “local max-
ima” and “select strong” stages, recording an array of indices for
strong edges pixels while computing the local maxima. To dupli-
cate this we would need to provide a joint mapFilter operation,
with a corresponding version of fillCursoredBlock2. The de-
layed array approach cannot recover this form of fusion automati-
cally as it cannot be expressed by simple function composition.

On the positive side, the performance of our Haskell code is
more than adequate for real-time edge detection of a video stream.
We have an OSX demo available from the Repa homepage CITE .
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In this section we summarise the main challenges we have encoun-
tered with this work, and suggest avenues for future research.

7.1 Lack of support for SIMD operations
At face value, using 4-way SIMD instructions such as available in
the SSE or MMX set has the potential to improve the performance
of certain algorithms 4-fold. This is assuming that our application
isn’t memory bound, though note that even a 1024x1024 image of
32bit floats sits comfortably in the 12MB cache of our test ma-
chine. Of course, the fact we are using a super-scalar architecture
implies that we won’t necessarily get a 4-fold speedup on a lin-
ear instruction stream, though we note that using SIMD also effec-
tively increases the size of the register set. This would help to avoid
the aliasing issues discussed in §5. Whether it’s better to introduce
SIMD instructions in Haskell code, or have the LLVM compiler
reconstruct them is an open question.

7.2 Manual unwinding of recursive functions
As mentioned in §5.2 we must manually unfold loops over regions
and rectangles as GHC avoids inlining the definitions of recursive
functions. The nice way to fix this would be some form of super-
compilation [4, 16]. Support for supercompilation in GHC is cur-
rently being developed, though still in an early stage. Failing that,
we could perhaps add a new form of the INLINE pragma that un-
folded recursive functions indiscriminately, or a fixed number of
times. The downside of the first is potential divergence at compile
time, the downside of the second is lack of generality.
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edges, as well as any weak edges that are attached to strong edges.
A breakdown of runtimes for each of these stages applied to a
1024x1024 image is shown in Figure 17, while graphs of other sizes
are also in Figure 15.

When all is said and done our single threaded implementation
is about 4 times slower than OpenCV. With 8 threads it’s about
50% slower with a 512x512 image, 10% slower for 768x768, and
on par for 1024x1024. We feel this is a good result considering
that the blur and differentiation stages for the OpenCV version
use SIMD operations that we cannot access to from Haskell. The
OpenCV implementation also uses different data formats for the
various stages, converting between 8-bit unsigned and 16-bit signed
integers during the application of SobelX,Y . The other stages are
performed in a mixture of 8 and 16 bit integer formats. In our own
code we also perform the greyscale conversion and edge linking
with 8 bit integers. However, using integer operations for the other
stages does not help us due to the lack of registers and the aliasing
issues mentioned in §5.3.

The OpenCV implementation also hand-fuses the “local max-
ima” and “select strong” stages, recording an array of indices for
strong edges pixels while computing the local maxima. To dupli-
cate this we would need to provide a joint mapFilter operation,
with a corresponding version of fillCursoredBlock2. The de-
layed array approach cannot recover this form of fusion automati-
cally as it cannot be expressed by simple function composition.

On the positive side, the performance of our Haskell code is
more than adequate for real-time edge detection of a video stream.
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tered with this work, and suggest avenues for future research.
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At face value, using 4-way SIMD instructions such as available in
the SSE or MMX set has the potential to improve the performance
of certain algorithms 4-fold. This is assuming that our application
isn’t memory bound, though note that even a 1024x1024 image of
32bit floats sits comfortably in the 12MB cache of our test ma-
chine. Of course, the fact we are using a super-scalar architecture
implies that we won’t necessarily get a 4-fold speedup on a lin-
ear instruction stream, though we note that using SIMD also effec-
tively increases the size of the register set. This would help to avoid
the aliasing issues discussed in §5. Whether it’s better to introduce
SIMD instructions in Haskell code, or have the LLVM compiler
reconstruct them is an open question.

7.2 Manual unwinding of recursive functions
As mentioned in §5.2 we must manually unfold loops over regions
and rectangles as GHC avoids inlining the definitions of recursive
functions. The nice way to fix this would be some form of super-
compilation [4, 16]. Support for supercompilation in GHC is cur-
rently being developed, though still in an early stage. Failing that,
we could perhaps add a new form of the INLINE pragma that un-
folded recursive functions indiscriminately, or a fixed number of
times. The downside of the first is potential divergence at compile
time, the downside of the second is lack of generality.
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