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Swapping Bindings

rewrite let v?2

provided: v1 \notin fv(x2)




Hoisting Bindings

rewrite
(\vl. let v2 = x2 —3 let v2 =

in x3) (\vl. x3)

provided: v1 \notin fv(x2)




Common Sub-Expression Elimination

, rewrite ,
X1l 1in —» let vl = x1 in

x1 in x3[vl/v2]
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—quivalence

o “After optimisation, the program should give the same result”

* \WWhat do we mean by result, given that optimisations can
reduce the amount of allocation?

, eval
x1 (nil, x1) —» (storel, x1')

rewrite l
eval

X2 (nil, x2) ——» (store2, x1')




No evaluation under lambdas

(\vl. let v2 = 2 + 3
in vl + v2)

rewrite let v2 = 2 + 3 in
| ’ (\vl. vl + v2 )




Only observe termination

, eval
x1 (nil, x1) —» (storel, x1')

rewrite l

x2 (nil, x2) ——>» (store2, x1')

eval




Only observe termination

, eval
x1 (nil, x1) —» (

rewrite l

x 2 (nil, x2) ——» (

eval




Only observe termination

x1

rewrite l

x2 TERM x2




Contextual Equivalence

(\v. i1f x3
then let vl = blah in xl1
else x4) x5

rewrite

(\v. if x3
then let vl = blah in x2
else x4) x5




Contextual Equivalence

map (\v. £ x3 (g x1 v)) vys

rewrite

map (\v. £ x3 (g x2 Vv)) vys
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map (\v. £ x3 (g x1 v)) vys

rewrite

map (\v. £ x3 (g x2 Vv)) vys




Contextual

—quivalence

C[x1]

rewrite

C[x2]




Contextual Equivalence

forall C. TERM C[x1] <=> TERM C[x2]




Contextual Equivalence

rewrite
(\vl. let v2 = x2 —» 1let v2 = x2

in x3) (\vl. x3)

x1 X2
ctx

forall C. TERM C[x1] <=> TERM C[x2]




Contextual Equivalence

(\vl. let v2 let v2 = x2
. X3)

forall C. TERM C[x1] <=> TERM C[x2]




Contextual Equivalence

(\vl. let v2

C
@all} TERM C[x1] <=> TERM C[x2]

hmmmmm




Contextual Equivalence

map (\v. £ x3 (g x1 v)) ys

map (\v. £ x3 (g (v + v) Vv)) ys

map (\v. £ x3 (g (v + v) Vv)) ys

C




Closing Substitutions

(\x. X + X) 5 (\x.




Closing Substitutions

(\x. X + x) 5 (\x. 2 * x) 5

C[x + X]




Closing Substitutions

(\x. X + x) 5 (\x. 2 * x) 5

5 + 5

10




Closing Substitutions

let £ = \z.
let v1 = z + 1 in
let v2 = 2 * z in
g (vl + v2)

in £ 5




Closing Substitutions

Cl[let vl = z + 1 in Cl[let v2 = 2 * z in
let v2 = 2 * 2z 1in let vl = z + 1 in

g (vl + v2)] g (vl + v2)]




Closing Substitutions

let vl = 5 + 1 in
let v2 = 2 * 5 1in
g (vl + v2)

let £ = \z.
let v2
let vl

2 * z 1n
z + 1 in

g (vl + v2)

in £ 5




Closing Substitutions

let £ = \z.
let vl = z + 1 in
let v2 = 2 * z in
g (vl + v2)

in £ 100

let vl = 100 + 1 in
let v2 = 2 * 100 in
g (vl + v2)

let £ = \z.
let v2 = 2 * z 1in
let vl = z + 1 in
g (vl + v2)

in £ 100

let v2 = 2 *# 100 in
let vl = 100 + 1 in
g (vl + v2)




Closing Substitutions

let £ = \z.
let vl = z + 1 in
let v2 = 2 * z in
g (vl + v2)

in £ (100 * 90)

let vl = 9000 + 1 in
let v2 = 2 * 9000 1in
g (vl + v2)

let £ = \z.
let v2 = 2 * z 1in
let vl = z + 1 in
g (vl + v2)

in £ (100 * 90)

let v2 = 2 * 9000 in
let vl = 9000 + 1 in
g (vl + v2)




Closing Substitutions

let £ = \z. let £ = \z.
let vl = z + 1 in let v2 = 2 * z 1in
let v2 = 2 * z 1in let vl = z + 1 in
g (vl + v2) g (vl + v2)

in £ (bar “hello”) in £ (bar “hello”)

let vl = 2?2 + 1 in
let v2 = 2 * ?2?2 in
g (vl + v2)




Contextual Equivalence (again)

forall C. TERM C[x1] <=> TERM C[x2]




—quivalence

forall C. TERM C[x1]
<=> TERM C[x2]

xl = x2
Clu

forall C 0. TERM C[ O x1 ]
<=> TERM C[ O x2 ]




Closed Instantiation of Use-Equivalence

forall C. TERM C[x1]
<=> TERM C[x2]

xl = x2
Clu

forall C 0. TERM C[ O x1 ]
<=> TERM C[ O x2 ]




The ClU-Theorem

-

ntextual Eo

—quivale

valence
ce coincide

Proved true for all lambda languages
with uniform semantics!




Uniform Semantics

e Single Step Reduction is Deterministic
e Reduction is preserved by value substitution

e |f one expression reduces to another and the first terminates
then so does the second.

e . afew others




Uniform Semantics

e Reduction is preserved by value substitution
e |mplies that reduction does not look deep within an AST node

to decide what to do.

i1f True then x2 else x3 => x2

(\v. x1) x2 => x1[x2/V]
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