
Work Efficient Higher Order Vectorisation

Ben Lippmeier✿ Manuel Chakravarty✿ Gabriele Keller✿
Roman Leshchinskiy Simon Peyton Jones★

✿University of New South Wales
★Microsoft Research Ltd

ICFP 2012

Data Parallel Haskell (DPH)

• Nested data parallel programming
 on shared memory multicore.

Data Parallel Haskell (DPH)

• Nested data parallel programming
 on shared memory multicore.

• Compiling common classes of programs used
 to break their asymptotic work complexity.

Data Parallel Haskell (DPH)

• Nested data parallel programming
 on shared memory multicore.

• Compiling common classes of programs used
 to break their asymptotic work complexity.

• Not anymore!

 retrieve [[A B] [C D E] [F G] [H]] (xss)
 [[1 0 1] [2] [1 0] [0]] (iss)
 ==> [[B A B] [E] [G F] [H]]

 retrieve [[A B] [C D E] [F G] [H]] (xss)
 [[1 0 1] [2] [1 0] [0]] (iss)
 ==> [[B A B] [E] [G F] [H]]

 retrieve :: A (A Char) -> A (A Int) -> A (A Char)
 retrieve xss iss
 = zipWithP mapP (mapP indexP xss) iss

User written source code.

 indexP :: A Char -> Int -> Char
mapP indexP xss :: A (Int -> Char)

 retrieve [[A B] [C D E] [F G] [H]] (xss)
 [[1 0 1] [2] [1 0] [0]] (iss)
 ==> [[B A B] [E] [G F] [H]]

 retrieve :: A (A Char) -> A (A Int) -> A (A Char)
 retrieve xss iss
 = zipWithP mapP (mapP indexP xss) iss

nested parallel computation

User written source code.

 indexP :: A Char -> Int -> Char
mapP indexP xss :: A (Int -> Char)

 retrieve [[A B] [C D E] [F G] [H]] (xss)
 [[1 0 1] [2] [1 0] [0]] (iss)
 ==> [[B A B] [E] [G F] [H]]

 retrieve :: A (A Char) -> A (A Int) -> A (A Char)
 retrieve xss iss
 = zipWithP mapP (mapP indexP xss) iss

builds an array of
partially applied functions

User written source code.

 indexP :: A Char -> Int -> Char
mapP indexP xss :: A (Int -> Char)

Vectorisation

 retrieve [[A B] [C D E] [F G] [H]] (xss)
 [[1 0 1] [2] [1 0] [0]] (iss)
 ==> [[B A B] [E] [G F] [H]]

 retrieve :: A (A Char) -> A (A Int) -> A (A Char)
 retrieve xss iss
 = zipWithP mapP (mapP indexP xss) iss

retrieve_v :: A (A Char) -> A (A Int) -> A (A Char)
retrieve_v xss iss
 = let ns = takeLengths iss
 in unconcat iss
 $ index_l (replicates ns xss)
 $ concat iss

User written source code.

Vectorised data-parallel version.

 retrieve [[A B] [C D E] [F G] [H]] (xss)
 [[1 0 1] [2] [1 0] [0]] (iss)
 ==> [[B A B] [E] [G F] [H]]

 retrieve [[A B] [C D E] [F G] [H]] (xss)
 [[1 0 1] [2] [1 0] [0]] (iss)
 ==> [[B A B] [E] [G F] [H]]

 ns = takeLengths iss
 = [3 1 2 1]

 retrieve [[A B] [C D E] [F G] [H]] (xss)
 [[1 0 1] [2] [1 0] [0]] (iss)
 ==> [[B A B] [E] [G F] [H]]

 ns = takeLengths iss
 = [3 1 2 1]

xss1 = replicates ns xss
 = [[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

 retrieve [[A B] [C D E] [F G] [H]] (xss)
 [[1 0 1] [2] [1 0] [0]] (iss)
 ==> [[B A B] [E] [G F] [H]]

 ns = takeLengths iss
 = [3 1 2 1]

xss1 = replicates ns xss
 = [[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

iss2 = concat iss
 = [1 0 1 2 1 0 0]

 retrieve [[A B] [C D E] [F G] [H]] (xss)
 [[1 0 1] [2] [1 0] [0]] (iss)
 ==> [[B A B] [E] [G F] [H]]

 ns = takeLengths iss
 = [3 1 2 1]

xss1 = replicates ns xss
 = [[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

iss2 = concat iss
 = [1 0 1 2 1 0 0]

xss2 = index_l xss1 iss2
 = [B A B E G F H]

 retrieve [[A B] [C D E] [F G] [H]] (xss)
 [[1 0 1] [2] [1 0] [0]] (iss)
 ==> [[B A B] [E] [G F] [H]]

 ns = takeLengths iss
 = [3 1 2 1]

xss1 = replicates ns xss
 = [[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

iss2 = concat iss
 = [1 0 1 2 1 0 0]

xss2 = index_l xss1 iss2
 = [B A B E G F H]

res = unconcat iss xss2
 = [[B A B] [E] [G F] [H]]

 retrieve [[A B] [C D E] [F G] [H]] (xss)
 [[1 0 1] [2] [1 0] [0]] (iss)
 ==> [[B A B] [E] [G F] [H]]

 ns = takeLengths iss
 = [3 1 2 1]

xss1 = replicates ns xss
 = [[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

iss2 = concat iss
 = [1 0 1 2 1 0 0]

xss2 = index_l xss1 iss2
 = [B A B E G F H]

res = unconcat iss xss2
 = [[B A B] [E] [G F] [H]]

xss1 = replicates ns xss
 = [[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

xss1 = replicates [3 1 2 1]
 [[A B] [C D E] [F G] [H]]
 = [[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

xss1 = replicates [3 1 2 1]
 [[A B] [C D E] [F G] [H]]
 = [[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

 retrieve :: A (A Char) -> A (A Int) -> A (A Char)
 retrieve xss iss
 = zipWithP mapP (mapP indexP xss) iss

partial application => sharing

[[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

lengths:

indices:

data:

[2 2 2 3 2 2 1]

[0 2 4 6 9 11 13]

[A B A B A B C D E F G F G H]

segment descriptor
NESL-style array representation

array value

• NESL-style nested array representation cannot represent
 physical sharing of elements between among sub-arrays.

retrieve [[A B C D E F G H]] [[0 1 2 3 4 5 6 7]]
 ==> [A B C D E F G H]

• O(size) when using sequential lists (or arrays)

• O(size2) when vectorised. --- BAD!

[[A B] [A B] [A B] [C D E] [F G] [F G] [H]]
array value

[A B] [C D E]

[* * * * * * *]

[F G] [H]

pointer-based array representation

• Naive pointer based representation has poor locality.

• Hard to distribute array across processors.

Complexity Goal

The vectorised program should have the same
asymptotic work complexity,
 but run in parallel,
 and be faster than the sequential version.

Suppose the source program is evaluated using
pointer-based nested arrays.

Operators

replicate :: Int -> e -> A e

replicates :: A Int -> A e -> A e

concat :: A (A e) -> A e

unconcat :: A (A e) -> A e -> A (A e)

pack :: A Bool -> A e -> A e

combine2 :: A Bool -> A e -> A e -> A e

index :: Int -> A e -> e

index_l :: A (A e) -> A Int -> A e

append :: A e -> A e -> A e

append_l :: A (A e) -> A (A e) -> A (A e)

Operators

Pointer Based Old DPH (NESL Style)
replicate O(length result) O(size result)
replicates O(max (len source, len result)) O(max (len source, size result))
concat O(max (len source, len result)) O(1)
unconcat O(len result) O(1)
pack O(len source) O(max (len source, size result))
combine2 O(len result) O(size result)
index O(1) O(1)
index_l O(len result) O(max (len source, size result))
append O(len result) O(size result)
append_l O(len (concat result)) O(size (concat result))

You don’t need O(1) concat

 retrieve :: A (A Char) -> A (A Int) -> A (A Char)
 retrieve xss iss
 = zipWithP mapP (mapP indexP xss) iss

retrieve_v :: A (A Char) -> A (A Int) -> A (A Char)
retrieve_v xss iss
 = let ns = takeLengths iss
 in unconcat iss
 $ index_l (replicates ns xss)
 $ concat iss

User written source code.

Vectorised data-parallel version.

Operators
Pointer Based Old DPH (NESL Style)

replicate O(len result) O(size result)

replicates O(max (len source, len result)) O(max (len source, size result))

concat O(max (len source, len result)) O(1)

unconcat O(len result) O(1)

pack O(len source) O(max (len source, size result))

combine2 O(len result) O(size result)

index O(1) O(1)

index_l O(len result) O(max (len source, size result))

append O(len result) O(size result)

append_l O(len (concat result)) O(size (concat result))

Operators
Pointer Based New DPH

replicate O(len result) O(len result)

replicates O(max (len source, len result)) O(max (len source, len result))

concat O(max (len source, len result)) O(max (len source, len result))

unconcat O(len result) O(len result)

pack O(len source) O(len source)

combine2 O(len result) O(len result)

index O(1) O(1) / O(len result) for nested result

index_l O(len result) O(max (len source, len result))

append O(len result) O(len result)

append_l O(len (concat result)) O(len (concat result))

Operators
Pointer Based New DPH

replicate O(len result) O(len result)

replicates O(max (len source, len result)) O(max (len source, len result))

concat O(max (len source, len result)) O(max (len source, len result))

unconcat O(len result) O(len result)

pack O(len source) O(len source)

combine2 O(len result) O(len result)

index O(1) O(1) / O(len result) for nested result

index_l O(len result) O(max (len source, len result))

append O(len result) O(len result)

append_l O(len (concat result)) O(len (concat result))

All implemented using parallel vector operations!

In the paper

• Reference implementation of all operators.

• Other operators (besides replicates) also cause problems.

• Discussion of what complexity operators need to have.

• Invariants needed to maintain complexity.

• How to convert between old and new representations.

• How to avoid using extra descriptor fields when not needed.

• Example arrays and tests

Benchmarks

smvm :: A (A (Int, Double))
 -> A Double -> A Double

smvm matrix vector
 = let term (ix, coeff) = coeff * (vector ! ix)
 in mapP (\row -> sumP (mapP term row)) matrix

Sparse Matrix-Vector Multiplication

1 0 0 0 2 0 0 2
2 0 0 0 0 5 0 0
0 0 0 0 1 0 0 0
0 3 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 4 0 0 0 0
0 1 0 0 0 0 0 1

x0

x1

x2

x3

x4

x5

x6

x7

y0

y1

y2

y3

y4

y5

y6

y7

=

Barnes-Hut Gravitation Simulation

 calcAccels :: Double -> Box -> A MassPoint -> A Accel
 calcAccels epsilon boundingBox points
 = mapP (\m -> calcAccel epsilon m tree) points
 where tree = buildTree boundingBox points

Things that need to be fixed

• Need array fusion for new representation.

• Integrate with vectorisation avoidance.

• Current parallel implementation is slower than sequential.

• Avoid performing fine grained computations in parallel.

Questions?

Append Example

Spare Slides

Operators

replicate :: Int -> e -> A e

replicates :: A Int -> A e -> A e

concat :: A (A e) -> A e

unconcat :: A (A e) -> A e -> A (A e)

pack :: A Bool -> A e -> A e

combine2 :: A Bool -> A e -> A e -> A e

index :: Int -> A e -> e

index_l :: A Int -> A (A e) -> A e

append :: A e -> A e -> A e

append_l :: A (A e) -> A (A e) -> A (A e)

[[A B] [A B] [A B] [C D E] [F G] [F G] [H]]
 segmap: [0 0 0 1 2 2 3]
source block: [0 0 1 1]
 start index: [1 3 0 4]
 length: [2 3 2 1]
 Blocks 0: [X A B C D E]
 1: [F G X X H X X X]

[[A B] [A B] [A B] [C D E] [F G] [F G] [H]]
 segmap: [0 0 0 1 2 2 3]
source block: [0 0 1 1]
 start index: [1 3 0 4]
 length: [2 3 2 1]
 Blocks 0: [X A B C D E]
 1: [F G X X H X X X]

[[K] [] [L M N O]]
 segmap: [0 1 2]
source block: [0 0 0]
 start index: [0 1 1]
 length: [1 0 4]
 Blocks 0: [K L M N O]

[[A B] [A B] [A B] [C D E] [F G] [F G] [H]]
 segmap: [0 0 0 1 2 2 3]
source block: [0 0 1 1]
 start index: [1 3 0 4]
 length: [2 3 2 1]
 Blocks 0: [X A B C D E]
 1: [F G X X H X X X]

[[K] [] [L M N O]]
 segmap: [0 1 2]
source block: [0 0 0]
 start index: [0 1 1]
 length: [1 0 4]
 Blocks 0: [K L M N O]

[[A B] [A B] [A B] [C D E] [F G] [F G] [H] [K] [] [L M N O]]
 segmap: [0 0 0 1 2 2 3 4 5 6]
source block: [0 0 1 1 2 2 2]
 start index: [1 3 0 4 0 1 1]
 length: [2 3 2 1 1 0 4]
 Blocks 0: [X A B C D E]
 1: [F G X X H X X X]
 2: [K L M N O]

 segmap: [0 0 0 1 5 5 6 7 8 9]
source block: [0 0 1 1 0 1 1 1 1 2 2 2]
 start index: [1 3 2 2 0 5 7 0 4 0 1 1]
 length: [2 3 2 2 1 2 1 2 1 1 0 4]
 Blocks 0: [X A B C D E]
 1: [F G X X H X X X]
 2: [K L M N O]

 segmap: [0 0 0 1 5 5 6]
source block: [0 0 1 1 0 1 1 1 1]
 start index: [1 3 2 2 0 5 7 0 4]
 length: [2 3 2 2 1 2 1 2 1]
 Blocks 0: [X A B C D E]
 1: [F G X X H X X X]

[[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

[[K] [] [L M N O]]
 segmap: [0 1 2]
source block: [0 0 0]
 start index: [0 1 1]
 length: [1 0 4]
 Blocks 0: [K L M N O]

[[A B] [A B] [A B] [C D E] [F G] [F G] [H] [K] [] [L M N O]]

 segmap: [0 0 0 1 5 5 6 7 8 9]
source block: [0 0 1 1 0 1 1 1 1 2 2 2]
 start index: [1 3 2 2 0 5 7 0 4 0 1 1]
 length: [2 3 2 2 1 2 1 2 1 1 0 4]
 Blocks 0: [X A B C D E]
 1: [F G X X H X X X]
 2: [K L M N O]

 segmap: [0 0 0 1 5 5 6]
source block: [0 0 1 1 0 1 1 1 1]
 start index: [1 3 2 2 0 5 7 0 4]
 length: [2 3 2 2 1 2 1 2 1]
 Blocks 0: [X A B C D E]
 1: [F G X X H X X X]

[[A B] [A B] [A B] [C D E] [F G] [F G] [H]]

[[K] [] [L M N O]]
 segmap: [0 1 2]
source block: [0 0 0]
 start index: [0 1 1]
 length: [1 0 4]
 Blocks 0: [K L M N O]

[[A B] [A B] [A B] [C D E] [F G] [F G] [H] [K] [] [L M N O]]

Invariant
All physical segment descriptors

must be reachable from the
virtual segment map

Tree Lookup Benchmark

Spare Slides

Tree Reconstruction

 treeLookup :: A Int -> A Int -> A Int
 treeLookup table indices
 | lengthP indices == 1
 = [:table !: (indices !: 0):]

 | otherwise
 = let half = lengthP indices `div` 2
 s1 = sliceP 0 half indices
 s2 = sliceP half half indices
 in concatP (mapP (treeLookup table) [: s1, s2 :])

Index Space Overflow

Spare Slides

Index space overflow

retsum :: A (A Int) -> A (A Int) -> A (A Int)
retsum xss iss
 = zipWithP mapP
 (mapP (\xs i. indexP xs i + sumP xs) xss) iss

retsum [[1 2] [4 5 6] [8]] (xss)
 [[1 0 1] [1 2] [0]] (iss)
 ==> [[5 4 5] [20 21] [16]]

Rewriting to Simplified Segds

Spare Slides

Backing off to simpler segment descriptors

 RULE "sum_vs/promote"
 forall segd arr
 . sum_vs (promoteSSegd (promoteSegd segd))
 (singletondPR arr)
 = sum_s segd arr

sum_vs :: VSegd -> PDatas Int -> PData Int

sum_s :: Segd -> PData Int -> PData Int

Space Complexity

Spare Slides

Space Complexity

furthest :: PA (Float, Float) -> Float
furthest ps = maxP (mapP (\p. maxP (mapP (dist p) ps)) ps)

furthest_v xs
 = let c = length xs
 xss’ = replicate c xs
 ns = lengths xss’
 in max $ max_l c
 $ unconcat xss’
 $ dist_l (U.sum ns)
 (replicates ns xs) (concat xss’)

