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do ls <- readLines “huge.txt”
   writeLines “out.txt” ls
   let xs    = map read ls
   let total = sum xs
   print total



do ls <- readLines “huge.txt”
   writeLines “out.txt” ls
   print (sum (map read ls))
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data Source m a = …
data SinK   m a = …

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

drain

xs



readLines  : Name -> m (S String)
writeLines : Name -> m (K String)
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readLines  : Name -> m (S String)
writeLines : Name -> m (K String)
dup        : S a -> K a -> S a

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

drain

data Source m a = …
data SinK   m a = …

xs



readLines  : Name -> m (S String)
writeLines : Name -> m (K String)
dup        : S a -> K a -> S a
sum        : m (K a, Ref Nat)
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readLines  : Name -> m (S String)
writeLines : Name -> m (K String)
dup        : S a -> K a -> S a
sum        : m (K a, Ref Nat)
map   : (a -> b) -> K b -> K a
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readLines  : Name -> m (S String)
writeLines : Name -> m (K String)
dup        : S a -> K a -> S a
sum        : m (K a, Ref Nat)
map   : (a -> b) -> K b -> K a
drain      : S a -> K a -> m ()
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do ls    <- readLines “huge.txt”
   (ref, xs) <- sum
   k1    <- map read xs
   k2    <- writeLines “out.txt”
   s1    <- dup ls k1
   drain s1 k2
   total <- readRef ref   
   print total
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map_i

map_i   :: (a -> b) -> Source a -> m (Source b)

map_o

map_o   :: (a -> b) -> Sink   b -> m (Sink   a)

pull from output 
induces  

pull from input 
 

“pully”

push to input 
induces 

push to output 
 

“pushy”

:: a :: a

:: b :: b

+

+

“Polarity Versions”



dup_iio

+



dup_iio

dup_ioi

+

+



dup_iio

dup_ioi dup_ooi

dup_oio

B

B

+

+



dup_iii

dup_iio

dup_ioi dup_ooi

dup_oio

dup_ooo

B

B

B

+

+

+



dup_iii dup_oii

dup_iio

dup_ioi dup_ooi

dup_ioo

dup_oio

dup_ooo

B

B

B

B

+

+

+



dup_iii dup_oii

dup_iio

dup_ioi dup_ooi

dup_ioo

dup_oio

dup_ooo

B

B

B

B

+

+

+



dup_ioo



dup_ioo

dup_ooo

drain

“Active Version”



hugeA.txt hugeB.txt

readLines readLines

folds

sum

print

map

writeLines

outD.txt

dup

map

dup

drain

2

1

3

…

4

5

7

3

1

1

…

(+)

9

7

5
…

map
read read

show

filter
even

max

print



hugeA.txt hugeB.txt

readLines readLines

folds

sum

print

map

writeLines

outD.txt

dup

map

dup

drain

2

1

3

…

4

5

7

3

1

1

…

(+)

9

7

5
…

map
read read

show

filter
even

max

print



hugeA.txt hugeB.txt

readLines readLines

folds
sum

print

map

writeLines

outD.txt

dup

map

dupdrain

2

1

3

…

4

5

7

3

1

1

…

(+)

9

7

5
…

map
read read

show

filter
even

max

print



OK
op

+…

…

op

…

…+

OK



data Sources ix m e    
   = Sources
   { sArity :: ix  
   , sPull  :: ix -> (e -> m ()) -> m () -> m ()}

data Sinks ix m e    
   = Sinks
   { kArity :: ix  
   , kPush  :: ix -> e -> m ()
   , kEject :: ix -> m () }

stream index monad element type

eat eject



map_i  :: Monad m
       => (ix -> a -> b) 
       -> Sources ix m a -> m (Sources ix m b)

map_i f   (Sources n pullA)
 = return (Sources n pullB)
 where
       pullB i eatB eject
        = pullA i eatA eject
        where  
              eatA x = eatB (f i x)
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naturally concurrent 
input streams are contending 

for a shared output

uncontrolled order of consumption 
elements pushed in 

non-deterministic order

funnel_o

+

1

+ + +

“You push”

naturally sequential 
read from the input streams 

one after the other

controlled order of consumption 
drain entire stream first,  

or round robin element-wise

funnel_i

+ 1

“I pull”
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   (funnel_i           s >>= λs’. drainP s’ k)
=> (funnel_o (arity s) k >>= λk’. drainP s  k’)

“Drain Fattening”



repa-flow package (on Hackage) 

Used in production at Vertigo, 
   financial data processing ~ few GBs. 

Implementation uses chunked streams.  
   Absolute performance primarily depends on 
   the library used to process the chunks.



Questions?



drain buffer

!

!



drain buffer

!

!

“operator is in control”
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“operator is in control” “context is in control”
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zipDrain altBuffer

(a * b) (a + b)

drain

“operator is in control” “context is in control”



Comparison
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conduit - Michael Snoyman 

data Pipe l i o u m r
  = HaveOutput (Pipe l i o u m r) (m ()) o
  | NeedInput  (i -> Pipe l i o u m r)
               (u -> Pipe l i o u m r)  
  | Done r  
  | PipeM (m (Pipe l i o u m r))  
  | Leftover (Pipe l i o u m r))

•  Pipe is an instance of Monad. 
•  Data can flow both ways through the pipe, and yield a final result. 
•  Single stream, single element at a time.  
•  Individual Sources created by ‘yield’ action. 
•  Combine pipes/conduits with fusion operators.

leftovers input elems output elems
upstream result

monad
result



pipes - Gabriel Gonzelez 

data Proxy a a’ b’ b m r

  = Request a’ (a  -> Proxy a’ a b’ b m r)
  | Respond b  (b’ -> Proxy a’ a b’ b m r)  
  | M          (m    (Proxy a’ a b’ b m r))
  | Pure r

upstream  
input and output

downstream  
input and output underlying monad

result

•  Proxy / Pipe is an instance of Monad. 
•  Data can flow both ways through the pipe, and yield a final result.



machines - Edward Kmett 

newtype MachineT m k o
  = MachineT
  { runMachine :: m (Step k o (MachineT m k o))

type Machine k o
  = forall m. Monad m => MachineT m k o

type Process a b = Machine (Is a) b)

type Source b    = forall k. Machine k b

•  Like streams as used in Data.Vector stream fusion,  
 except the step function returns a whole new Machine (stream) 

•  Clean and general API, but not sure if it supports array fusion. 
 Machines library does not seem to attempt fusion.



repa-flow vs others 

•  Repa flow provides chunked, data parallel database-like  
 operators with a straightforward API. 

•  Sources and Sinks are values rather than computations.  
 The “Pipe” between them created implicitly in IO land. 

•  API focuses on simplicity and performance via stream and  
array fusion, rather than having the most general API. 

•  Suspect we could wrap single-stream Repa flow  
 operators as either Pipes or Conduits, but neither of the  
 former seem to naturally support data parallel flows. 



Implementation
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repa-stream repa-eval

repa-array

repa-flow

(stream / “chain” fusion)

(delayed array fusion)

(CPS fusion)

(parallel gang management)
repa-convert
(de/serialization)


