
Polarized Data Parallel Data Flow
Ben Lippmeier, Fil Mackay, Amos Robinson

FHPC 2016/09/17

Image: A♥ / Aih. flickr. CC Generic.

do ls <- readLines “huge.txt”
 writeLines “out.txt” ls
 let xs = map read ls
 let total = sum xs
 print total

do ls <- readLines “huge.txt”
 writeLines “out.txt” ls
 print (sum (map read ls))

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

xs

ls

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

xs

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

xs

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

xs

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

xs

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

xs

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

drain

xs

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

drain

xs

data Source m a = …
data SinK m a = …

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

drain

xs

readLines : Name -> m (S String)
writeLines : Name -> m (K String)

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

drain

data Source m a = …
data SinK m a = …

xs

readLines : Name -> m (S String)
writeLines : Name -> m (K String)
dup : S a -> K a -> S a

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

drain

data Source m a = …
data SinK m a = …

xs

readLines : Name -> m (S String)
writeLines : Name -> m (K String)
dup : S a -> K a -> S a
sum : m (K a, Ref Nat)

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

drain

data Source m a = …
data SinK m a = …

xs

readLines : Name -> m (S String)
writeLines : Name -> m (K String)
dup : S a -> K a -> S a
sum : m (K a, Ref Nat)
map : (a -> b) -> K b -> K a

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

drain

data Source m a = …
data SinK m a = …

xs

readLines : Name -> m (S String)
writeLines : Name -> m (K String)
dup : S a -> K a -> S a
sum : m (K a, Ref Nat)
map : (a -> b) -> K b -> K a
drain : S a -> K a -> m ()

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

drain

data Source m a = …
data SinK m a = …

xs

do ls <- readLines “huge.txt”
 (ref, xs) <- sum
 k1 <- map read xs
 k2 <- writeLines “out.txt”
 s1 <- dup ls k1
 drain s1 k2
 total <- readRef ref
 print total

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

drain

readLines : Name -> m (S String)
writeLines : Name -> m (K String)
dup : S a -> K a -> S a
sum : m (K a, Ref Nat)
map : (a -> b) -> K b -> K a
drain : S a -> K a -> m ()s1

k1

k2

data Source m a = …
data SinK m a = …

xs

hugeA.txt hugeB.txt

readLines readLines

folds

sum

print

map

writeLines

outD.txt

dup

map

dup

drain

(+)

map
read read

show

filter
even

max

print

hugeA.txt hugeB.txt

readLines readLines

folds

sum

print

map

writeLines

outD.txt

dup

map

dup

drain

2

1

3

…

4

5

7

3

1

1

…

(+)

9

7

5
…

map
read read

show

filter
even

max

print

map_i

map_i :: (a -> b) -> Source a -> m (Source b)

map_o

map_o :: (a -> b) -> Sink b -> m (Sink a)

pull from output 
induces  

pull from input 
 

“pully”

push to input
induces 

push to output 
 

“pushy”

:: a :: a

:: b :: b

+

+

“Polarity Versions”

dup_iio

+

dup_iio

dup_ioi

+

+

dup_iio

dup_ioi dup_ooi

dup_oio

B

B

+

+

dup_iii

dup_iio

dup_ioi dup_ooi

dup_oio

dup_ooo

B

B

B

+

+

+

dup_iii dup_oii

dup_iio

dup_ioi dup_ooi

dup_ioo

dup_oio

dup_ooo

B

B

B

B

+

+

+

dup_iii dup_oii

dup_iio

dup_ioi dup_ooi

dup_ioo

dup_oio

dup_ooo

B

B

B

B

+

+

+

dup_ioo

dup_ioo

dup_ooo

drain

“Active Version”

hugeA.txt hugeB.txt

readLines readLines

folds

sum

print

map

writeLines

outD.txt

dup

map

dup

drain

2

1

3

…

4

5

7

3

1

1

…

(+)

9

7

5
…

map
read read

show

filter
even

max

print

hugeA.txt hugeB.txt

readLines readLines

folds

sum

print

map

writeLines

outD.txt

dup

map

dup

drain

2

1

3

…

4

5

7

3

1

1

…

(+)

9

7

5
…

map
read read

show

filter
even

max

print

hugeA.txt hugeB.txt

readLines readLines

folds
sum

print

map

writeLines

outD.txt

dup

map

dupdrain

2

1

3

…

4

5

7

3

1

1

…

(+)

9

7

5
…

map
read read

show

filter
even

max

print

OK
op

+…

…

op

…

…+

OK

data Sources ix m e  
 = Sources
 { sArity :: ix  
 , sPull :: ix -> (e -> m ()) -> m () -> m ()}

data Sinks ix m e  
 = Sinks
 { kArity :: ix  
 , kPush :: ix -> e -> m ()
 , kEject :: ix -> m () }

stream index monad element type

eat eject

map_i :: Monad m
 => (ix -> a -> b)
 -> Sources ix m a -> m (Sources ix m b)

map_i f (Sources n pullA)
 = return (Sources n pullB)
 where
 pullB i eatB eject
 = pullA i eatA eject
 where
 eatA x = eatB (f i x)

huge.txt

readLines

writeLines

out.txt

sum

print

map
read

total

dup

ls

drain

xs

readFiles

drainP

writeFiles

dup

funnel

print

sum

naturally concurrent 
input streams are contending

for a shared output

uncontrolled order of consumption
elements pushed in

non-deterministic order

funnel_o

+

1

+ + +

“You push”

naturally sequential 
read from the input streams 

one after the other

controlled order of consumption
drain entire stream first,  

or round robin element-wise

funnel_i

+ 1

“I pull”

drainP

funnel_i

funnel_o

drainP

k

k’

ss

s’

k

 (funnel_i s >>= λs’. drainP s’ k)
=> (funnel_o (arity s) k >>= λk’. drainP s k’)

“Drain Fattening”

repa-flow package (on Hackage)

Used in production at Vertigo,
 financial data processing ~ few GBs.

Implementation uses chunked streams.
 Absolute performance primarily depends on
 the library used to process the chunks.

Questions?

drain buffer

!

!

drain buffer

!

!

“operator is in control”

drain buffer

!

!

“operator is in control” “context is in control”

buffer

!

!

zipDrain altBuffer

(a * b) (a + b)

drain

“operator is in control” “context is in control”

Comparison

Image: Leo Reynolds.flickr. CC-NC-SA.

conduit - Michael Snoyman

data Pipe l i o u m r
 = HaveOutput (Pipe l i o u m r) (m ()) o
 | NeedInput (i -> Pipe l i o u m r)
 (u -> Pipe l i o u m r)  
 | Done r  
 | PipeM (m (Pipe l i o u m r))  
 | Leftover (Pipe l i o u m r))

• Pipe is an instance of Monad.
• Data can flow both ways through the pipe, and yield a final result.
• Single stream, single element at a time.
• Individual Sources created by ‘yield’ action.
• Combine pipes/conduits with fusion operators.

leftovers input elems output elems
upstream result

monad
result

pipes - Gabriel Gonzelez

data Proxy a a’ b’ b m r

 = Request a’ (a -> Proxy a’ a b’ b m r)
 | Respond b (b’ -> Proxy a’ a b’ b m r)  
 | M (m (Proxy a’ a b’ b m r))
 | Pure r

upstream  
input and output

downstream  
input and output underlying monad

result

• Proxy / Pipe is an instance of Monad.
• Data can flow both ways through the pipe, and yield a final result.

machines - Edward Kmett

newtype MachineT m k o
 = MachineT
 { runMachine :: m (Step k o (MachineT m k o))

type Machine k o
 = forall m. Monad m => MachineT m k o

type Process a b = Machine (Is a) b)

type Source b = forall k. Machine k b

• Like streams as used in Data.Vector stream fusion,  
 except the step function returns a whole new Machine (stream)

• Clean and general API, but not sure if it supports array fusion. 
 Machines library does not seem to attempt fusion.

repa-flow vs others

• Repa flow provides chunked, data parallel database-like  
 operators with a straightforward API. 

• Sources and Sinks are values rather than computations.  
 The “Pipe” between them created implicitly in IO land.

• API focuses on simplicity and performance via stream and  
array fusion, rather than having the most general API.

• Suspect we could wrap single-stream Repa flow  
 operators as either Pipes or Conduits, but neither of the  
 former seem to naturally support data parallel flows.

Implementation

Image: gullevek. flickr. CC-NC-SA.

repa-stream repa-eval

repa-array

repa-flow

(stream / “chain” fusion)

(delayed array fusion)

(CPS fusion)

(parallel gang management)
repa-convert
(de/serialization)

