
Smart Contracts as Authorized Production Rules

Ben Lippmeier (with Amos Robinson and Andrae Muys)

FP-Syd 2019/4/24

Alice

Alice Bob

Alice Bob

Alice Bob

Alice Bob

fact Coin [holder: Party]
 
fact Offer [id: Symbol, terms: Text,  
 giver: Party, receiver: Party]  
 
fact Accept [id: Symbol, accepter: Party]

fact Coin [holder: Party, issuer: Party]
 
fact Offer [id: Symbol, terms: Text,  
 giver: Party, receiver: Party]  
 
fact Accept [id: Symbol, accepter: Party]

Alice Bob

Isabelle

(authorize)

Alice Bob

fact Coin [holder: Party, issuer: Party]
 
fact Offer [id: Symbol, terms: Text,  
 giver: Party, receiver: Party]  
 
fact Accept [id: Symbol, accepter: Party]

(authorize)

Isabelle

Alice Bob(authorize)

Isabelle

• Any fact can be stated with a party's own authority.

• Any existing fact that carries a single party's authority 
can be deleted by that party acting alone.

• Ensuring that coin facts always carry the authority 
of multiple parties means they cannot be unilaterally 
created, deleted, or transferred (updated).

rule transfer  
await Offer [id = ?i, giver = ?g, receiver = ?a]
 gain {g}
 and Accept [id = i, accepter = a]
 gain {a}
 and Coin [issuer = ?s, holder = g]
 gain {s, g}
to
 say Coin [issuer = s, holder = a]
 by {s, a} use {'transfer}  

 Coin [holder = !Alice, issuer = !Isabelle]
 by {!Alice, !Isabelle} use {'transfer}

 Offer [id = '1234, terms = "for one guitar",  
 giver = !Alice, receiver = !Bob]  
 by {!Alice} obs {!Bob} use {'transfer}

 Accept [id = '1234, accepter = !Bob]
 by {!Bob} obs {!Alice} use {'transfer}

 Coin [holder = !Bob, issuer = !Isabelle]  
 by {!Bob, !Isabelle} use {'transfer}

Coin

Offer

Accept

Alice

BobIsabelle

Coin

Offer

Accept

BobIsabelle

Alice

Offer

Accept

BobIsabelle

Coin

Alice

Transaction  
{ ident: ... fresh number ...  
, rule: transfer
, spent:  
 Coin [holder = !Alice, issuer = !Isabelle]
 by {!Alice, !Isabelle} use {'transfer}

 Offer [id = '1234, terms = "for one guitar",  
 giver = !Alice, receiver = !Bob]  
 by {!Alice} obs {!Bob} use {'transfer}

 Accept [id = '1234, accepter = !Bob]
 by {!Bob} obs {!Alice} use {'transfer}

, new:
 Coin [holder = !Bob, issuer = !Isabelle]  
 by {!Bob, !Isabelle} use {'transfer}
}

Transaction  
{ ident: ... fresh number ...  
, rule: transfer
, spent:  
 Coin [holder = !Alice, issuer = !Isabelle]
 by {!Alice, !Isabelle} use {'transfer}

 Offer [id = '1234, terms = "for one guitar",  
 giver = !Alice, receiver = !Bob]  
 by {!Alice} obs {!Bob} use {'transfer}

 Accept [id = '1234, accepter = !Bob]
 by {!Bob} obs {!Alice} use {'transfer}

, new:
 Coin [holder = !Bob, issuer = !Isabelle]  
 by {!Bob, !Isabelle} use {'transfer}
}

Alice

Transaction  
{ ident: ... fresh number ...  
, rule: transfer
, spent:  
 Coin [holder = !Alice, issuer = !Isabelle]
 by {!Alice, !Isabelle} use {'transfer}

 Offer [id = '1234, terms = "for one guitar",  
 giver = !Alice, receiver = !Bob]  
 by {!Alice} obs {!Bob} use {'transfer}

 Accept [id = '1234, accepter = !Bob]
 by {!Bob} obs {!Alice} use {'transfer}

, new:
 Coin [holder = !Bob, issuer = !Isabelle]  
 by {!Bob, !Isabelle} use {'transfer}
}

Isabelle

Transaction  
{ ident: ... fresh number ...  
, rule: transfer
, spent:  
 Coin [holder = !Alice, issuer = !Isabelle]
 by {!Alice, !Isabelle} use {'transfer}

, HASH[fact_2, salt_2]

, HASH[fact_3, salt_3]

, new:
 Coin [holder = !Bob, issuer = !Isabelle]  
 by {!Bob, !Isabelle} use {'transfer}
}

Isabelle

Transaction  
{ ident: ... fresh number ...  
, rule: transfer
, spent:  
 Coin [holder = !Alice, issuer = !Isabelle]
 by {!Alice, !Isabelle} use {'transfer}

, HASH[fact_2, salt_2]

, HASH[fact_3, salt_3]

, new:
 Coin [holder = !Bob, issuer = !Isabelle]  
 by {!Bob, !Isabelle} use {'transfer}
}

Isabelle

HASH[transaction]

Alice

IsabelleBob

(view)
(view)

1) Alice forms the complete transaction, 
 using her own copy of the store.

2) Alice sends restricted views to 
 Bob and Isabelle. All three views 
 have the same transaction hash.

Alice

IsabelleBob

(view)

????

1) Alice forms the complete transaction, 
 using her own copy of the store.

2) Alice sends restricted views to 
 Bob and Isabelle. All three views 
 have the same transaction hash.

3) Isabelle can confirm with Bob that
 he agrees to the transaction, even though
 she cannot see the terms of the Offer.(view)

Alice

IsabelleBob

(view)

????

1) Alice forms the complete transaction, 
 using her own copy of the store.

2) Alice sends restricted views to 
 Bob and Isabelle. All three views 
 have the same transaction hash.

3) Isabelle can confirm with Bob that
 he agrees to the transaction, even though
 she cannot see the terms of the Offer.

4) Bob can confirm with Isabelle that,  
 Alice really has a coin to transfer to him.

(view)

Useful Theorems

Frame condition
IF a rule executes and generates  
 some transaction 

THEN we can execute the same rule with
 just the input facts that are listed in
 that transaction.

This lets the parties in the system 
re-execute the complete transaction views
they receive to check their consistency.

AuthorITY FLOW
IF a rule produces a fact that is authorized 
 by some party.

THEN is also matched on a fact that was also 
 authorized by the same party.

This tells us that the parties that submit
transactions do not have any special rights.

Facts are given meaning by the rules only,  
not the people "running" the system

Store Weakening
IF a rule executes and generates
 some transaction.

THEN it will do the same even when there
 are extra facts added to the store that
 the submitting party cannot see.

This is necessary for our semantics to
make sense in an open system. Rule firing
should not be inhibited by data you cannot see.

Rule Upgrade

rule upgrade  
await Coin [issuer = ?s, holder = ?h] gain {s,h}
 and LetsUpgrade [rules = ?rs] gain {!Operator}
 and YeahOk [party = s, rules = rs] gain {s}
 and YeahOk [party = h, rules = rs] gain {h}
to
 say Coin [issuer = s, holder = h]
 by {s, h} use rs

Rule Splitting

Transaction  
{ ident: ... fresh number ...  
, rule: 'transfer
, spent:  
 Coin [holder = !Alice, issuer = !Isabelle]
 by {!Alice, !Isabelle} use {'transfer}

 Offer [id = '1234, terms = "for one guitar",  
 giver = !Alice, receiver = !Bob]  
 by {!Alice} obs {!Bob} use {'transfer}

 Accept [id = '1234, accepter = !Bob]
 by {!Bob} obs {!Alice} use {'transfer}

, new:
 Coin [holder = !Bob, issuer = !Isabelle]  
 by {!Bob, !Isabelle} use {'transfer}
}

Isabelle

rule transfer  
await Offer [id = ?i, giver = ?g, receiver = ?a]
 gain {g}
 and Accept [id = i, accepter = a]
 gain {a}
 and Coin [issuer = ?s, holder = g]
 gain {s, g}
to
 say Coin [issuer = s, holder = a]
 by {s, a} use {'transfer}  

rule transfer  
await Offer [id = ?i, giver = ?g, receiver = ?a]
 gain {g}
 and Accept [id = i, accepter = a]
 gain {a}
 and Coin [issuer = ?s, holder = g]
 gain {s, g}
to
 say Coin [issuer = s, holder = a]
 by {s, a} use {'transfer}  

split

rule agree  
await Offer [id = ?i, giver = ?g, receiver = ?a]
 gain {g}
 and Accept [id = i, accepter = a]
 gain {a}
to
 say Agreed [giver = g, receiver = a]
 by {g, a} obs {!Isabelle} use {doTransfer}

rule doTransfer
await Agreed [giver = ?g, receiver = ?a]
 gain {g, a}
 and Coin [issuer = ?s, holder = g]
 gain {s, g}
to
 say Coin [issuer = s, holder = a]
 by {s, a} use {doTransfer}  

